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ABSTRACT

With every triangulation of sphere we associate in a natural way a probabilistic space

and define several random events. The Four Color Conjecture turns out to be equivalent

to different statements about positive correlation among some pairs of these events.

c© (2003) John Wiley & Sons, Inc.

1. INTRODUCTION AND THE RESULTS

The famous Four Color Conjecture (4CC for short) has, as many outstanding mathe-

matical problems have, numerous equivalent reformulations (see, for example, [5, 6, 7,

8, 9, 10, 11, 12, 15, 21, 20] and further references in these publications). Sometimes

such reformulations are given in terms very remote from maps, graphs and colorings.
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In this paper several new restatements of the 4CC will be given, formally as assertions

about correlations of some random events. Of course now that we have proofs of the Four

Color Theorem given by K. Appel, W. Haken and J. Koch [2, 3, 4] and, more recently, by

N. Robertson, D. Sanders, P. Seymour and R. Thomas [19], these restatements become

corollaries of the Four Color Theorem.

It is well-known that it is sufficient to prove the 4CC for an arbitrary maximal planar

graph G. Let G = 〈V, E〉 be such a graph having 3n edges, i.e., E = {e1, . . . , e3n}.

Graph G, being drawn on a sphere, defines its triangulation (without loss of generality

we assume that n > 0). Let us cut the sphere along the edges of the graph G into

triangular facets. This results in a graph HG consisting of 2n copies of the full graph K3

which will be called the cut graph of graph G.

By a coloring of this graph HG we shall always mean a coloring of its edges in three

colors, 0, 1, and 2. Clearly, there are 62n such colorings.

We are to introduce two notions of similarity of colorings of the graph HG; the 4CC

will be shown to be equivalent to various statements about correlations between these

notions.

First, the graph HG inherits from the graph G an additional structure, namely, a

cyclic order of edges in every connected component. We shall say that such a component

is colored positively if colors 0, 1 and 2 follow in the “clock-wise order”, and negatively

otherwise. Further, we shall say that a coloring of HG is even or odd depending on

whether the number of positively (or, equivalently, negatively) colored components is

even or odd. At last, we shall say that two colorings of the graph HG have the same

parity if both of them are either even or odd.

Second, every coloring of the graph HG induces an assignment of the colors to the

edges of the graph G in the following way: to get the color of some edge e of the graph

G we add modulo 3 the colors of the two edges of the graph HG into which the edge e

was split during the generation of the graph HG from the graph G. We shall say that

two colorings of graph HG are equivalent if they induce the same assignments of colors

to the edges of graph G.
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Now, let two colorings of the graph H be selected at random independently one from

another, that is, the probability of the elementary event of selecting any particular pair of

colorings is equal to 6−4n. Let AG be the random event “the selected colorings have the

same parity”, and let BG be the random event “the selected colorings are equivalent”.

It turns out that the 4CC is equivalent to the existence of correlation between the

events AG and BG.

Theorem 1. For every maximal planar graph G with 3n edges

Prob{BG | AG} − Prob{BG} =
1

4 · 48n χG(4) (1)

where χG(4) is the number of colorings of vertices of the graph G in 4 colors.

Corollary 1.1. For every maximal planar graph G with 3n edges

Prob{BG | AG} − Prob{BG | AG} =
1

2 · 48n
χG(4). (2)

Corollary 1.2. The Four Color Conjecture is equivalent to the assertion that for every

maximal planar graph G the events AG and BG are (positively) correlated.

Corollary 1.3. The Four Color Conjecture is equivalent to the assertion that for every

maximal planar graph G the probability for two random edge colorings of its cut graph

HG to be equivalent under the condition that the colorings have equal parity is different

from (greater than) the similar probability under the condition that the colorings have

opposite parities.

The event AG can be split into two events, Aeven
G , “both selected colorings are even”,

and Aodd
G , “both selected colorings are odd”. It follows from Theorem 1 that at least one

of these two events should positively correlate with the event BG. In fact, both of them

correlate positively, but to a different extent.

Theorem 2. For every maximal planar graph G with 3n edges

Prob{BG | Aeven
G } − Prob{BG | Aodd

G } =
1

144n
χG(4). (3)
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Corollary 2.1. For every maximal planar graph G with 3n edges

Prob{BG | Aeven
G } − Prob{BG} =

(
1

4 · 48n
+

1
2 · 144n

)
χG(4), (4)

Prob{BG | Aodd
G } − Prob{BG} =

(
1

4 · 48n
− 1

2 · 144n

)
χG(4), (5)

Prob{BG | Aeven
G } − Prob{BG | AG} =

(
1

2 · 48n
+

1
2 · 144n

)
χG(4), (6)

Prob{BG | Aodd
G } − Prob{BG | AG} =

(
1

2 · 48n
− 1

2 · 144n

)
χG(4). (7)

Corollary 2.2. The Four Color Conjecture is equivalent to the assertion that for every

maximal planar graph G the events Aeven
G and BG are (positively) correlated.

Corollary 2.3. The Four Color Conjecture is equivalent to the assertion that for every

maximal planar graph G the events Aodd
G and BG are (positively) correlated.

Corollary 2.4. The Four Color Conjecture is equivalent to the assertion that for every

maximal planar graph G the probability for two random edge colorings of its cut graph

HG to be equivalent under the condition that both colorings are even is different from

(greater than) the similar probability under the condition that both colorings are odd.

Corollary 2.5. The Four Color Conjecture is equivalent to the assertion that for every

maximal planar graph G the probability for two random edge colorings of its cut graph

HG to be equivalent under the condition that both colorings are even is different from

(greater than) the similar probability under the condition that the colorings have opposite

parities.

Corollary 2.6. The Four Color Conjecture is equivalent to the assertion that for every

maximal planar graph G the probability for two random edge colorings of its cut graph

HG to be equivalent under the condition that both colorings are odd is different from

(greater than) the similar probability under the condition that the colorings have opposite

parities.

The proofs are based on expressing χG(4) via the coefficients of so called graph polyno-

mial of the line graph of graph G. Such expressions were presented in [13, 14] (for proofs
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see [15]) and, for the case of Theorem 1, in [1, Theorem 1.4]. The only but essential

novelty of the present paper are the probabilistic interpretations of these expressions. In

order to make this paper selfcontained, full proofs are given here.

The author found a number of similar theorems giving different probabilistic restate-

ments of the 4CC. Among them, the restatements selected for the present publication

seem to the author the most elegant. Another probabilistic restatement of the 4CC can

be found in [17].

Theorem 1 can be generalized to triangulations of arbitrary surfaces (in the case of a

non-orientable surface, two colorings are said to have the same parity if the cyclic order

of colors is different on even number of triangles). Theorem 2 seems to depend essentially

on the planarity.

2. PROOF OF THEOREM 1

A maximal planar graph G can, in a natural way, be represented by the set

T = {〈ei1 , ej1 , ek1〉, . . . , 〈ei2n , ej2n , ek2n〉} (8)

of triples of edges belonging to the same triangular face; we will assume that the edges

are listed in the “clock-wise order”.

A coloring µ of the graph HG can be viewed as a map from T into the set consisting

of the six triples

〈0, 1, 2〉, 〈1, 2, 0〉, 〈2, 0, 1〉, 〈2, 1, 0〉, 〈1, 0, 2〉, 〈0, 2, 1〉. (9)

Let µ1 and µ2 be the two randomly selected colorings of graph HG. We shall use a

kind of generating function to represent all possible choices of µ1 and µ2, these functions

will be polynomials in formal variables x1, . . . , x3n.

The assignment of colors 0, 1 or 2 to an edge ep will be represented by the monomials

1, xp, x2
p. (10)
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Respectively, the six possible colorings (9) of a triangle 〈ep, eq, er〉 from T will be repre-

sented by the six monomials

xqx
2
r, xpx

2
q, x2

pxr, x2
pxq, xpx

2
r, x2

qxr. (11)

The “positiveness” or “negativeness” of the coloring of the triangle 〈ep, eq, er〉 will be

reflected by choice of sign + or − in the formal sum

L1(xp, xq, xr) = xqx
2
r + xpx

2
q + x2

pxr − x2
pxq − xpx

2
r − x2

qxr. (12)

The product

M1(x1, . . . , x3n) =
2n∏

l=1

L1(xil
, xjl

, xkl
) (13)

can be formally expanded into the sum of 62n monomials which are in a natural one-

to-one correspondence with 62n possible choices of the coloring µ1. The signs of these

monomials correspond to the parity of the colorings.

To represent induced assignments of colors to the edges of the graph G we introduce

an operator R which replaces the exponent of each variable xp by its value modulo 3.

Equivalent choices of coloring µ1 correspond to equal (up to the sign) monomials in

RM1(x1, . . . , x3n).

Possible choices for µ2 will be represented in a similar way with the following modifi-

cation: coloring an edge ep in colors 0, 1, or 2 will be represented by the monomial

1, x2
p, xp (14)

respectively. These monomials will be called complimentary to the monomials (10) and

this notion naturally extends to products of several variables (formally, two monomials

N1 and N2 are complimentary if RN1N2 is a number). So the six possible colorings (9)

of a triangle 〈ep, eq, er〉 from T are now represented by the six monomials

x2
qxr, x2

pxq, xpx
2
r, xpx

2
q, x2

pxr, xqx
2
r (15)

complimentary to the monomials (11).
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Respectively, the 62n choices for µ2 are in one-to-one correspondence with 62n sum-

mands of the (expanded) product

M2(x1, . . . , x3n) =
2n∏

l=1

L2(xil
, xjl

, xkl
) (16)

where

L2(xp, xq, xr) = x2
qxr + x2

pxq + xpx
2
r − xpx

2
q − x2

pxr − xqx
2
r (17)

= RL1(x2
p, x

2
q, x

2
r) (18)

= −L1(xp, xq, xr). (19)

The summands of the polynomial RM2(x1, . . . , x3n) correspond to the induced as-

signments of colors to the edges of graph G under the complimentary representation

(14).

Two summands, one taken fromRM1(x1, . . . , x3n) and the other taken fromRM2(x1, . . . , x3n),

correspond to a choice of equivalent colorings µ1 and µ2 if and only if these sum-

mands are complimentary. So if we apply the operator R to the (expanded) product

RM1(x1, . . . , x3n)RM2(x1, . . . , x3n), then pairs of equivalent colorings, 〈µ1, µ2〉, and only

them, would contribute to the constant term of the polynomial

R(x1, . . . , x3n) = R(RM1(x1, . . . , x3n)RM2(x1, . . . , x3n)) (20)

= R(M1(x1, . . . , x3n)M2(x1, . . . , x3n)). (21)

Let us calculate this constant term, R0 = R(0, . . . , 0), in two ways.

The first way is connected with the left-hand side of (1). By definition, the conditional

probability Prob{BG | AG} is equal to Prob{AG∩BG}
Prob{AG} . Clearly, Prob{AG} = 1

2 so

Prob{BG | AG} − Prob{BG} = 2Prob{AG ∩BG} − Prob{BG}. (22)

We have:
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• If µ1 and µ2 are equivalent colorings of the same parity, then, on the one hand, they

contribute 1 to R0. On the other hand, they contribute 6−4n to both Prob{AG ∩
BG} and Prob{BG}, hence their contribution to (22) is also 6−4n.

• If µ1 and µ2 are equivalent colorings of the opposite parities, then, on the one hand,

they contribute −1 to R0. On the other hand, they contribute 0 to Prob{AG∩BG}
and 6−4n to Prob{BG}, hence their contribution to (22) is now equal to −6−4n.

Thus, we get:

Prob{BG | AG} − Prob{BG} = 6−4nR0. (23)

It is well-known that there is a natural correspondence between colorings of the vertices

of our graph G in 4 colors and colorings of edges of its dual graph in 3 colors (so called

“Tait colorings”, see numerous papers and books about the 4CC, for example, [7, 18, 21]).

Instead of considering this dual graph, we prefer to extend the notion of Tait colorings to

assignments of 3 colors to the edges of graph G: such an assignment will be called a Tait

coloring if 3 edges bounding the same triangular facet are colored in 3 different colors.

(Note that the assignment of colors to the edges of the graph G induced by a coloring of

its cut graph HG need not be a Tait coloring at all.)

The correspondence between vertex 4-colorings of graph G and its Tait colorings is not

one-to-one, in fact, every single Tait coloring corresponds to 4 different vertex 4-colorings

so the number of the Tait colorings is equal to 1
4χG(4).

The polynomial R has degree at most 2 in each of its 3n variables, so it could be

determined by its values taken for 33n suitable choices of the values of the variables. We

select this values by allowing each of the variables to take 3 values

1, ω, ω2 (24)

where ω = −1+
√−3
2 is a primitive cubic root of 1 and hence the values (24) are the 3

cubic roots of unity.

By the Interpolation Theorem we have:

R(x1, . . . , x3n) =
∑

λ

R(ωλ(e1), . . . , ωλ(e3n))Pλ(x1, . . . , x3n) (25)
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where the summation is taken over all 33n maps

λ : E → {0, 1, 2} (26)

and

Pλ(x1, . . . , x3n) =
3n∏

p=1

S(xp, λ(ep)), (27)

S(x, q) =
∏

0≤l≤2

l 6=q

x− ωl

ωq − ωl
. (28)

Thanks to the choice of the cubic roots of unity (24) as the coordinates of the inter-

polation points, we have according to (21):

R(ωλ(v1), . . . , ωλ(v3n)) = M1(ωλ(v1), . . . , ωλ(v3n))M2(ωλ(v1), . . . , ωλ(v3n)). (29)

Polynomial L1, occurring in the definition (13) of polynomial M1, can be factored:

L1(xp, xq, xr) = xqx
2
r + xpx

2
q + x2

pxr − x2
pxq − xpx

2
r − x2

qxr

= (xp − xr)(xr − xq)(xq − xp). (30)

Thus M1(ωλ(e1), . . . , ωλ(e3n)) is equal to 0 as soon as the map λ is not a Tait coloring

of graph G and hence the summation in (25) can be restricted to λ’s ranging over Tait

colorings of graph G.

Let us now determine the value of (29) when λ is a Tait coloring of graph G. In such a

case λ can be viewed also as a coloring of the graph HG and we can use the terminology

introduced above (positive and negative colorings, the parity).

If 〈ep, eq, er〉 ∈ T , then all 3 colors 0, 1, and 2, are used to color the edges ep, eq, er

and hence

L1(λ(ep), λ(eq), λ(er)) = ±(1− ω)(ω − ω2)(ω2 − 1)

= ±3
√−3. (31)
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Respectively,

M1(ωλ(e1), . . . , ωλ(e3n)) = ±33n. (32)

According to (19),

M2(ωλ(e1), . . . , ωλ(e3n)) = M1(ωλ(e1), . . . , ωλ(e3n)) (33)

and so the value of (29) is equal to 36n. Substituting it into (25) we get

R(x1, . . . , x3n) = 36n
∑

λ

Pλ(x1, . . . , x3n) (34)

where the summation is taken over all 1
4χG(4) maps (26) which are Tait colorings.

In order to calculate R0, we are to substitute x1 = . . . = x3n = 0 in (34). According

to (27)–(28),

Pλ(0, . . . , 0) =
3n∏

p=1

S(0, λ(ep)). (35)

It is easy to check that

S(0, 0) = S(0, 1) = S(0, 2) = 1
3 . (36)

Substituting these values into (35), we see that Pλ(0, . . . , 0) = 3−3n, hence, according

to (34) R0 = 1
433nχG(4) which together with (23) gives the required equality (1).

3. PROOF OF THEOREM 2

The proof is similar to the proof of Theorem 1, so we concentrate only on the new ideas.

In order to distinguish the events Aeven
G and Aodd

G , we introduce one more indetermi-

nant, J . The six possible colorings (9) will now be represented by the polynomial

L′′1(xp, xq, xr, J) = xqx
2
r + xpx

2
q + x2

pxr + Jx2
pxq + Jxpx

2
r + Jx2

qxr (37)

in the case of µ1, and by the polynomial

L′′2(xp, xq, xr, J) = x2
qxr + x2

pxq + xpx
2
r − Jxpx

2
q − Jx2

pxr − Jxqx
2
r (38)
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in the case of µ2.

Further, the 62n choices of µ1 and µ2 are now represented by the 62n summands,

respectively, in the (expanded) polynomials

M ′′
1 (x1, . . . , x3n, J) =

2n∏

l=1

L′′1(xil
, xjl

, xkl
, J) (39)

and in

M ′′
2 (x1, . . . , x3n, J) =

2n∏

l=1

L′′2(xil
, xjl

, xkl
, J). (40)

The parity of a coloring µ1 is now represented by the parity of the exponent of J in the

corresponding monomial; the parity of a coloring µ2 is represented both by the parity of

the exponent of J and by the sign of corresponding monomial .

We extend the action of the operator R on J in the following way:

RJ2k = 1, RJ2k+1 = J. (41)

Now we calculate the constant term of the polynomial

R′′(x1, . . . , x3n, J) = R(RM ′′
1 (x1, . . . , x3n, J)RM ′′

2 (x1, . . . , x3n, J))

= R(M ′′
1 (x1, . . . , x3n, J)M ′′

2 (x1, . . . , x3n, J)). (42)

Clearly, Prob{Aeven
G } = Prob{Aodd

G } = 1
4 so the left-hand side of (3) is equal to

4Prob{Aeven
G ∩BG} − 4Prob{Aodd

G ∩BG}. (43)

Two colorings, µ1 and µ2, contribute to R′′0 = R′′(0, . . . , 0) if and only if they are

equivalent and have the same parity. Moreover:

• If these colorings are both even, then, on the one hand, they contribute 1 to

R′′0 . On the other hand, they contribute 6−4n to Prob{Aeven
G ∩ BG} and 0 to

Prob{Aodd
G ∩BG}, hence their contribution to (43) is equal to 4 · 6−4n.
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• If these colorings are both odd, then, on the one hand, then they contribute −1

to R′′0 . On the other hand, they contribute 0 to Prob{Aeven
G ∩ BG} and 6−4n to

Prob{Aodd
G ∩BG}, hence their contribution to (43) is equal now equal to −4 ·6−4n.

Finally, we have:

Prob{BG | Aeven
G } − Prob{BG | Aodd

G } = 4 · 6−4nR′′0 . (44)

Applying the Interpolation Theorem we use, in agreement with (41), values J = 1 and

J = −1:

R′′(x1, . . . , x3n, J) =
∑

λ R′′(ωλ(v1), . . . , ωλ(v3n), 1)Pλ(x1, . . . , x3n) 1+J
2 +

∑
λ R′′(ωλ(v1), . . . , ωλ(v3n),−1)Pλ(x1, . . . , x3n)1−J

2 . (45)

It is easy to see that

M ′′
1 (x1, . . . , x3n,−1) = M1(x1, . . . , x3n), (46)

M ′′
2 (x1, . . . , x3n, 1) = M2(x1, . . . , x3n), (47)

so R′′(ωλ(e1), . . . , ωλ(e3n),±1) is equal to 0 as soon as the map λ is not a Tait coloring

of graph G and hence the summations in (45) again can be restricted to λ’s ranging over

Tait colorings of graph G.

Let us check that the sign in (32) is in fact always “+”. Indeed, the sign in (31)

depends on whether the map λ colors the triangle 〈ep, eq, er〉 positively or negatively.

It turns out that the parity of the number of positively or negatively colored triangles

coincides with the parity of n. This fact should be well-known but the author did not

find a proper reference. To keep the paper self-contained, a proof is given.

We proceed by induction. The case n = 1 is trivial. If not all triangles are colored

in the same way, then there are two neighboring triangles colored differently. We can

remove the common edge and glue together edges colored in the same color (it is easy to

show that no loop would arise). The resulting maximal planar graph has 3n − 3 edges

and by the induction hypothesis the parity of positive and negative triangles coincides
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with the parity of the number of edges. We have eliminated one positive and one negative

triangle, so the same coincidence of the parities takes place for the original graph as well.

Now suppose that all triangles are colored in the same way, say, positively. It is easy

to see that in such a case the degree of each vertex is divisible by 3. On the other hand,

it is well-known that a planar graph has a vertex of degree not greater than 5. Thus our

graph has a vertex of degree 3. Removing it we get again a maximal planar graph with

3n− 3 edges satisfying the induction hypothesis. Now we have eliminated three positive

triangles and got a new one colored negatively, again keeping the required coincidence of

the parities.

Thus, we refined (32) to M1(ωλ(e1), . . . , ωλ(e3n)) = 33n and according to (33) the same

value has M2(ωλ(e1), . . . , ωλ(e3n)).

Let us now determine what are the value of M ′′
1 (ωλ(v1), . . . , ωλ(v3n), 1) and the value

of M ′′
2 (ωλ(v1), . . . , ωλ(v3n),−1). If 〈ep, eq, er〉 ∈ T , then all 3 colors 0, 1, and 2, are used

to color the edges ep, eq, er and hence

L′′1(λ(ep), λ(eq), λ(er), 1) = L′′1(1, ω, ω2, 1) = −3, (48)

L′′2(λ(ep), λ(eq), λ(er),−1) = L′′2(1, ω, ω2,−1) = −3 (49)

and hence

M ′′
1 (ωλ(e1), . . . , ωλ(e3n), 1) = M ′′

2 (ωλ(e1), . . . , ωλ(e3n),−1) = 32n. (50)

Respectively,

R′′1 (ωλ(e1), . . . , ωλ(e3n),±1) = 35n. (51)

Substituting the latter value into (45) we get

R′′(x1, . . . , x3n, J) = 35n
∑

λ

Pλ(x1, . . . , x3n) (52)

where the summation is taken over all 1
4χG(4) maps (26) which are Tait colorings.

It remains to substitute here x1 = . . . = x3n = 0 and J = 0 and get that R′′0 =
1
432nχG(4) which together with (44) gives the required equality (3).
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