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One Probabilistic Equivalent of

the Four Color Conjecture

Yu. V. Matiyasevich∗

Abstract

For every two-connected planar threevalent graph we introduce in a
natural way a probabilistic space and define two random events; the Four
Color Conjecture turns out to be eqivalent to (positive) correlation of
these events.

In 2002 the famous Four Color Conjecture became 150 years old. According
to the experts on the history of mathematics (see, for example [8], [18]), the sole
author of the Conjecture is Francis Guthrie. In 1852 he was coloring a map of
England and found that 4 colors were sufficient for coloring the whole map in
such a way that each two neighboring counties (To the Editor: sic! counties,
not countries) were colored in different colors. Francis conjectured that 4 colors
would be sufficient for any possible map as well (of course, areas for coloring
should be connected). Being unable to prove it, he turned for help to his brother
Frederick who was a student in mathematics. The latter in his turn addressed
this question to his Professor, A. de Morgan, who began to put this question to
others.

The first “proof” of Guthrie’s conjecture was published by A. B. Kempe [15]
a quoter of century later; after another ten years an error was found.

Kempe became the first but not the last author of an erroneous proof
of Guthrie’s conjecture. The situation changed in 1976 when K. Appel and
W. Haken [2] annouced their proof based on intensive use of computers. The
volume of required calculations was so big that the proof published in [3], [4]
could not be checked by a human-being.
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Now, a quoter of century later, the state of the art essentially did not
change. K. Appel and W. Haken published another, slightly simplified proof [5].
N. Robertson, D. Sanders, P. Seymour, and R. Thomas came to the conclusion
that they cannot check even the part of this proof which was done without com-
puters, wrote new programs from scratch and obtained further simplifications.
Nevertheless their new proof [20] was based on the same ideas originating from
the “proof” of Kempe and cannot not be checked by a human-being.

Thus, there is a “demand” to find a proof acceptible for a human-being.
What could be the role of the theory of probabilities here? (In other words—
how could one justify publication of a paper about graph colorings in this Jour-
nal?) One of attributes of an important mathematical problem is the presence
of its restatements in the language of several areas of mathematics. In this
respect the Four Color Conjecture is an outstanding problem—it has scores of
reformulations in the languages of a dozen different areas of mathematics (see.,
for example, [1], [6], [7], [9], [10], [11], [12], [13], [14], [16], [19], [21], [22], [23]
). In this paper the Four Color Conjecture is restated in the language of the
theory of probabilities—with the notion of planar graph but without the no-
tion of coloring. It remains open whether the ideas and methods of the theory
of probabilities could be useful for a new proof, to say nothing about a proof
acceptible for a human-being.

To begin with, we are to clarify the notion of map used in the Four Color
Conjecture. We will assume that the map is presented via plane image of some
two-connected graph. Graph image is a mapping of the set V of its vertices into
pairwise different points of the plane and of the set E of its edges into simple
Jordan curves having the images of corresponding verticies as their endpoints
and having no other common points. Such an image split the plane into open
areas called countries. Two different countries are considered to be neighboring
if there is an edge the image of which belongs to the closure of each of these
countries. (The curves are required to be Jordan in order to avoid pathological
splitting of the plane into infinitely many pairwise neighboring countries; the
two-connectness guaranties that the image of each edge belongs to the boundary
of two different countries, i.e., no country is neighboring to itself.)

It is easy to understand that, while proving the Four Color Conjecture,
we can restrict ourself to consideration of only threevalent graphs, i.e., graphs
where every vertex is the endpoint of exactly three edges (otherwise, we could
surround the image of every vertex by a small neighborhood and declare it a
new country). Let G = 〈VG, EG〉 be such a graph with 3n edges e1, . . . , e3n

(clearly, the number of edges of a threevalent graph is always a multiple of 3).
Besides the graph G we can consider its edge graph FG = 〈EG, LG〉. The

verticies of graph FG are just the edges of graph G. Two verticies, ei and ej , of
the graph FG are connected in it by an edge if and only if ei and ej , considered
as edges of the graph G, are both incident to the same vertex of this graph.

Each of 3n verticies of graph FG has degree 4, hence the graph FG has 6n
edges.

A non-directed graph with 6n edges can be made directed in 26n ways.
We will assume that each of these ways has the same probability, in other
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words, each of the two possible orientations of every edge will be selected with
probability 1

2 independently of the orientations of other edges. More precisely,

we are to consider simultaneously two random orientations
−→
F ′G and

−→
F ′′G of the

graph FG, so our probabilistic space will consist of 212n pairs of orientations
〈−→F ′G,

−→
F ′′G〉 with probability of any particular pair equal to 2−12n.

We will introduce two notions of similarity of two orientations and establish
their relationship with the Four Color Conjecture.

We say that two orientations of the graph FG have the same parity if one of
them can be obtained from the other via changing orientation of even number
of edges.

In a directed graph every vertex is characterized by two numbers, namely,
the in-degree and the out-degree, i.e., the number of incoming and outcoming
edges. We say that two orientations of the graph FG are congruent modulo 3 if
for each of its vertex the out-degree in one orientation is congruent modulo 3 to
the out-degree of the same vertex in the other orientation.

Let AG denote the event “pair of randomly selected orientations has the
same parity”. Let BG denote the event “pair of randomly selected orientations
is congruent modulo 3”.

It turns out that, for every two-connected planar threevalent graph G, the
events AG and BG are not independent, moreover, the coefficient of correlation
is closely related to χG(4), the number of 4-colorings of the map represented by
the G.

Theorem For every two-connected planar threevalent graph G with 3n edges

P(BG | AG)−P(BG) =
(

27
4096

)n

· χG(4)
4

. (1)

Corollary The Four Color Conjecture is equivalent to the statement that for
every two-connected planar threevalent graph G the events AG and BG are not
independent.

Proof. In order to represent all 212n possible selections of orientations
−→
F ′G

and
−→
F ′′G we will use generating functions. They will be polynomials in formal

variables x1, . . . , x3n, each of which corresponds to one element of the set EG

(which is both the set of edges of the graph G and the set of vertices of the
graph FG).

When constructing the generating function for possible selections of the ori-
entation

−→
F ′G, we will represent the two possible directions of the edge connecting

vertices ei and ej of the graph FG via the polynomial

xi − xj , (2)

where i < j, the monomial xk symbolizing that edge goes from the vertex ek.
Under this agreement, the 26n possible selections of orientation

−→
F ′G are in a
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natural one-to-one correspondence with 26n monomials resulting from removing
the brackets (but without combining similar terms) in

M ′ =
∏

eiej∈LG

(xi − xj). (3)

It is easy to see that orientations of equal parity correspond to monomials of
equal signs, and vice versa.

To be able to deal with congruences modulo 3 we introduce operator R
which replaces the exponent of every variable xk by its remainder from dividing
by 3. Respectively, orientations which are congruent modulo 3 are represented
by equal (up to the sign) monomials in the polynomial RM ′.

Possible selections of orientation
−→
F ′′G will be represented by a polynomial

similar to polynomial M ′. The distinction is as follows: instead of (2), the two
possible selection of the direction of the edge connecting verticies ei and ej are
now represented by polynomial

x2
i − x2

j ,

with monomial x2
k symbolizing that the edge goes from the vertex ek. Respec-

tively, polynomial M ′′ is defined by

M ′′ =
∏

eiej∈LG

(x2
i − x2

j ). (4)

Put
M = M ′M ′′ (5)

and let us calculate the free term m0 of the polynomial

RM = R(M ′M ′′) = R(R(M ′)R(M ′′))

in two ways.
The first way of calculation of m0 is connected with the left-hand side of

(1). Clearly, P(AG) = 1
2 , so this left-hand side is equal to

2P(AGBG)−P(BG). (6)

Whatever is a pair of orientations 〈−→F ′G,
−→
F ′′G〉, one of the three following cases

holds.
I. These orientations are not congruent modulo 3.
II. These orientations are congruent modulo 3 and have equal parity.
III. These orientations are not congruent modulo 3 but have different pari-

ties.
In the case I the contribution of the pair of orientations 〈−→F ′G,

−→
F ′′G〉 into (6) is

equal to 0, and the contribution of corresponding monomials into m0 is equal
to 0 as well; in the case II the contribution of these pair of orientations into (6)
is equal to 2−12n, while the contribution of corresponding monomials into m0
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is equal to 1; at last, in the case III the contribution of the pair of orientations
into (6) is equal to −2−12n, while the contribution of the monomials into m0 is
equal to −1. Hence,

m0 = 212n(P(BG | AG)−P(BG)). (7)

The second way of calculation of m0 is connected with the right-hand side
of (1).

Every coloring of the map presented by the graph G in four colors α, β, γ, δ
generates a coloring of the edges of this graph in three colors 1, 2, 3 known as
Tait coloring. Namely, if two neighboring contries are colored either in colors α
and β or in colors γ and δ then the edge separating these countries is colored in
color 0; if two countries are colored either in colors α and γ or in colors β and
δ then the edge is colored in color 1; at last, if the colors of the countries are
either α and δ or β and γ, then the color of the edge is 2. It is easy to see that
for every vertex the three edges incident to it are colored pairwise differently,
i.e., in all three colors 1, 2 and 3.

Vice versa, every Tait coloring can be generated in this manner from a suit-
able coloring of the map. We can start by coloring an arbitrary country in any
of the 4 colors and then proceed by coloring neighboring countries according to
the above described rules (it is easy to prove that there will be no contradiction
thanks to one-connectednes of the sphere). Thus, the number of Tait colorings
is equal to 1

4 χG(4).
The degree of the polynomial RM in each of its 3n variables is at most 2,

hence, this polynomial can be uniquely reconstructed from its values at suitable
33n choices of values of its variables. For these values we assign to each of the
variables x1, . . . , x3n the three values of the cubic root of 1:

1, ω, ω2, (8)

where ω = (−1 +
√−3)/2. By Lagrange interpolation

RM =
∑

µ

(RM)(ωµ(v1), . . . , ωµ(v3n))Pµ, (9)

where

Pµ =
3n∏

k=1

(xk − ωµ(vk)+1)(xk − ωµ(vk)+2)
(ωµ(vk) − ωµ(vk)+1)(ωµ(vk) − ωµ(vk)+2)

, (10)

and the summation is over all 33n maps of the form

µ : EG −→ {0, 1, 2}. (11)

Thanks to our choice of values (8) we can eliminate the operator R from the
right-hand side of (9):

RM =
∑

µ

M(ωµ(v1), . . . , ωµ(v3n)) Pµ. (12)
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It is easy to see that if for some edge eiej of the graph FG the equality
µ(ei) = µ(ej) holds, then M(ωµ(v1), . . . , ωµ(v3n)) = 0. Thus we can restrict
summation in (12) to those 1

4 χG(4) maps µ, which are Tait colorings. Let us
determine the value of M(ωµ(v1), . . . , ωµ(v3n)) in this case.

According to (5), (3), and (4), the polynomial M is the product of 12n
factors which can be groupped into 2n products of the form

(xi − xj)(xj − xk)(xi − xk)(x2
i − x2

j )(x
2
j − x2

k)(x2
i − x2

k) (13)

where i < j < k and corresponding edges ei, ej , ek of the graph G are incident
to the same vertex. In a Tait coloring these three edges are colored in the three
colors 0, 1 2, hence the value of the product (13) is always equal to

(1− ω)(ω − ω2)(1− ω2)(1− ω2)(ω2 − ω4)(1− ω4) = 27

and, respectively,

M(ωµ(v1), . . . , ωµ(v3n)) = 36n,

m0 = 36n
∑

µ

Pµ(0, . . . , 0), (14)

where the summation is taken over those 1
4 χG(4) maps µ which are Tait color-

ings.
According to (10),

Pµ(0, . . . , 0) =
3n∏

k=1

ωµ(vk)+1ωµ(vk)+2

(ωµ(vk) − ωµ(vk)+1)(ωµ(vk) − ωµ(vk)+2)

=
3n∏

k=1

1
(1− ω)(1− ω2)

= 3−3n.

Together with (14) and (7) we get the required equality (1).
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