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Calculation of Riemann’s zeta function
via interpolating determinants

YURI MATIYASEVICH

Steklov Institute of Mathematics
at St.Petersburg

Abstract

Using intensive computer calculations, the author empirically discov-
ered unusual methods for calculating high-precision approximations to the
non-trivial zeroes of Riemann’s zeta function, its values and values of its
derivative on the whole complex plane. So far no theoretical explanation
to these phenomena is known.

This paper is a slightly extended presentation of a talk given by the
author on March 15, 2013 at the Number Theory Lunch Seminar in the
Max Planck Institute for Mathematics at Bonn; more information related
to this talk and the whole ongoing research can be found at http://
logic.pdmi.ras.ru/"yumat/personaljournal/artlessmethod.

1 General settings

1.1 The Questions

Suppose that we have some function F' from any set into some com-
mutative ring R and have found N — 1 distinct zeroes of F':

F(l‘l):---:F(mN_l):O. (1)

Question 1. Knowing only z1,...,znx—-1, how could we construct
some function Fiy(z) defined on the domain of F' with values in the same
ring R such that ~ ~

F(z,)=---=F(zny-1) =07 (2)

Question 2. What are other zeroes of Fy(x)? In particular, could

some of them be close to some zeroes of F(z)?

Question 3. Could Fy be used for calculating the values of F at
other points?

1.2 Interpolating determinants

One way to answer Question 1 above is as follows. Let us select any
N functions

Hi(@),... fn(@) ®3)


http://logic.pdmi.ras.ru/~yumat/personaljournal/artlessmethod
http://logic.pdmi.ras.ru/~yumat/personaljournal/artlessmethod

defined on the domain of F' with values in the same ring R and take for
the role of the function Fn(z) the interpolating determinant

filz) ... filen-1)  fi(w)
Ay(@)=| ; S (4)
fn(x) ... fn(ev-1)  f(o)
Clearly,
AN(ml)Z"‘ZAN(mN—l):O (5)

1.2.1 An example

With such a definition of FN(:U) the possibility to give answers to
Questions 2 and 3 above depends heavily on our choice of functions .
If we define f,(z) = "', then the function Fi(z) will be simply the
well known interpolating polynomial

evidently having no further zeroes.

1.2.2 Case when it works

If
F(z) = fi(z) +--- + fn(z) (7)
then the determinant (4) vanishes at every zero of F(z) because in such
a case summing up all the rows results in the row containing only zeroes.

1.3 Generalization

The main interest for us are situations where instead of we have
an infinite sequence of functions

fi(@),..., fn(x), fnsa(), ... (8)

and the finite sum from is replaced by the infinite sum:
Fz) ~ fi(x) + -+ fv(@)+ v (@) + .. (9)

In the case when ~ is the equality, i.e., when the series converges, we
might hope that the determinants will still have extra zeroes close to
certain zeroes of F'(z) because each column would sum up to a small value
approaching zero with the growth of V.

However, most interesting (and surprising) are the cases when the se-
ries in @D diverges so the ideograph ~ has only some symbolic meaning.
Two choices for F(z),x1,...,2n-1, and f1(z), f2(z),... will now be con-
sidered.



2 First example: Riemann’s zeta function

2.1 Definitions

Riemann’s zeta function can be defined by Dirichlet series
C()=1""+2"543"°+ ... (10)

The series converges only for Re(s) > 1 but the function defined by it in
that half-plane can be analytically extended to the whole complex plane
except the point s = 1 which is its only pole.

Negative even integers are known as trivial zeroes of the zeta function;
they won’t be used for constructing the determinants .

All others, the non-trivial zeroes, come in conjugate pairs:

< =((p3) = C(p2) = C(p1) =0 =C(p1) = C(p2) = C(ps) = ... (11)

Assuming that all zeroes satisfy Riemann’s Hypothesis and are simple, we
write

1 .
pn =5 +imm (12)
where
O<m<y2<7v3... (13)

We will always select an odd value for N, N = 2M + 1, and use 2M
non-trivial zeroes with the smallest (in absolute value) imaginary parts:

1 1 1 1 1
An(s)=|n"Pt n=ft .. pPM  pTPM T (14)
]\/';H N;p1 N;W N;F'M ]\/';S

2.2 Numerical examples

It turns out that the determinants (14) indeed have zeroes very close
to the zeroes of the zeta function pary1, par+2, ... not used in (14).

2.2.1 Case N =17

We have:
0 = Aur(pg —4.39...-107° +5.711...-10" %) (15)
0 = Aur(pio—1.141...-107% = 3.345...-107%) (16)
0 = Ar(pin—1498...-107° 41.762...- 10 %) a7)
0 = Aur(piz—1.158...-107> +2.264...- 10" %) (1)
0 = Aur(piz —1.317...- 1072 4+7.545. .. - 10*21) (19)
0 = Ar(pa—7.400...-107% = 5.559...-107") (20)
0 = Aur(pis +4.486...-107> +8.379...-10 %) (21)



2.2.2

Case N =101

For larger N the approximation is better and we can approximate more
zeroes of the zeta function:

O O O O O O O O O O O O O O O O O O o0 O oo o o o o o o o o o

A1o1(ps1 +3.469.. . -
A1o1(ps2 +1.472. .. -
A1o1(pss —3.949.. .-
A101(psa —4.684. .. -
A101(pss — 5.303.. . -
A101(pse +2.104. .. -
A1o1(ps7 +1.054. .. -
A1o1(pss +1.081.. .-
A101(pse +6.849. . . -
A1o01(peo + 5.453. .. -
Aio1(ps1 — 5.038... -
A1o1(pe2 —2.178. .. -
Aqo1(pes —8.237... -
Aqjo1(pea — 1.142. .. -
pes +1.023.. .-
pes — 6.315. .. -
Aq1o1(pe7r +5.274 . . . -
pes +2.072...-
A101(pes +4.560. . . -
Aio1(pro +9.541.. .-
A1o1(pr1 —2.469.. .-
A1o1(pr2 +1.104. .. -
A1o1(prs — 5.557. ..
Aq01(pra — 6.747. . .-
Aio1(prs —1.254. .. -
A1 (pre — 1.437...-

(

(

(

(

A101

(
(
(
Aqo1(
(
(

Aqo1(prr —2.782... -
Aqo1(prs +9.818.. .-
A101(p79 —2.381 ... -
Aio1(pso +6.954 ... -

1071 —1.283...-
107" —4.170. . .-
1078 +1.223...-
1071% —9.387...-
1072 +2.129...-
107 +4.691...-
107 +1.430...-
1071 +2.883...-
1071 —9.371...-
1072 —8.730... -
1077 - 9.649. ..
1078 - 1.230...-
107% +6.583... -
1077 —8.478...-
1077 +5.621...-
107% +7.740.. .. -
1077 +8.361... -
107%-4.269.. .-
107 -1.954. ...
107%-2.034...-
107° - 9.102... -
107° —3.538...-
1075 -2.750. .. -
107° +8.847. .. -
107* +7.809. . .-
107* —4.558...-
107° 4+ 1.655. .. -
107° +3.774...-
107%+4.799. ..
107* 4+2.673...

N
)
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2.2.3 Case N = 3001

0 = Asooi(pisor —4.005...-107"3 £ 1.113...-107""%1) (52)
0 = A3001(p1601 —5.155...- 10_952 —3.960...- 10_9521 (53)
0 = Asoor(piror — 7.652...-107%% 4 1.788....107%%1)  (54)
0 = Asoor(pisor +1.966...-1077°° +3.803...-107 ")  (55)
0 = Asoor(pioon +1.044...-107%% —4.253...-107%%)  (56)
0 = Asoo1(po01 +1.021...-107%% —8.184...-107%%)  (57)
0 = Asoor(paior —5.402...-107°% +8.070...-107°%1)  (58)
0 = Asoor(pazor +9.843...-107°% £5.380...-107°%1)  (59)
0 = Asoor(pasor —7.327...-107*% = 5.590...-10"*'1)  (60)
0 = Asoor(p2aon +6.471...-107*% +8.088...-10"*%)  (61)
0 = Asoor(psor +1.523...-107"% —2.324....107*"%)  (62)
0 = Asooi(pasor —6.612...-107°% —2.011...-107°%%)  (63)
0 = Asoor(p2ror +6.698...-107%* +3.094...-107%%)  (64)
0 = Asoor(pasor +5.714...-107°*° 46.670...-107°%%)  (65)
0 = Asoor(poo +6.513...-107°°° —2.414...-107%%)  (66)
0 = Asoor(psoor —5.997...-107%"7 —2.977....1072"%)  (67)
0 = Asoor(psior —5.538...-1072%° —7.989...-1072°*)  (68)
0 = Asoor(psaon —2.033...-1072*% —9.025...-10" %)  (69)
0 = Asooi(pszor —8.552...-107%"° 42.085...-107*")  (70)
0 = Asooi1(psaor —1.457...-107"%° +3.140...-107""1)  (71)
0 = Asoor(pssor +5.426...-107"%0 —4.737....107"%)  (72)
0 = Asoor(pssor +1.967...-107"%" 42.281...-107'%%)  (73)
0 = Asoor(psror +2.146...-107° —4.669...-107 %)  (74)
0 = Asgor(pssor +1.289...-107 3¢ 4 1.372....107 %)  (75)
0 = Asoor(psgor —3.114...-107"* +1.867...-107 %)  (76)
0 = Asoo1(paoor +5.678...-107"% +1.233...-107""%1)  (77)
0 = Asooi(paior —6.271...-107'%% —1.398....107'%1)  (78)
0 = Asooi(pazor —1.532...-107% —1.135...-10"") (79)
0 = Asoo1(pazor +6.145...-107% +5.745. ... 107 %) (80)
0 = Asoo1(paaor +3.781...-107™ = 5.207...-107 ) (81)
0 = Asoor(pasor +4.241...-107% —2.521...-107 %) (82)

The author does not have a full explanation for the high accuracy of the
zeroes of determinants An(s) as approximations to the zeroes of ((s).
Two heuristic hints will be presented below.



2.3 First partial explanation
Each determinant can be expanded according to the last column:

AN(S) = Z SN,nnis. (83)

Clearly, the numbers SN,n can be calculated from the initial zeroes of the
zeta function as signed minors:

SN,H = (—1)n+1 X

1 1 1 1
(n—1)""1 (n—1)"" (n—1)"PM (n—1)7FM (84)
(n+1)—T (n+ 1)—01 (n+1)—91v1 (n_|_1)—PM .

N;PT N;P1 N*.W N*.PJVI

Since at the moment we are interested only in the zeroes of An(s), we
can perform the normalization

SN = Onm (85)
ON1

and deal with the finite Dirichlet series

An(e) = 3 dyan = 220 (86)

dn,1

having the same zeroes as Ax (s).
The coefficients v, turn out to be very interesting numbers encoding
a lot of information about Riemann’s zeta function and prime numbers.

1O o o o e e u .
0.8
0.6
0.4

0.2

5 10 15
Figure 1: Coefficients 017,

Figure [I] justifies our writing

17 oS}
Air(s) = diran "= 00 =((s) (87)
n=1 n=1



with the ideograph = having here and the sequel a very weak sense: a
few intial coefficients of the two Dirichlet series are approzimately equal.

We see from Figure [1| that A17(s) is not a sharp but a smooth trun-
cation of the divergent series . It is known that smooth truncations
can accelerate convergence of a series and can even transform a divergent
series into a convergent one. The smoothness of the truncation might be
the first “reason” why the summands of the divergent series are useful
for calculation of the zeroes.

Usually a smooth truncation is to be invented and it isn’t evident in
advance what smooth truncation will turn out to be suitable; the num-
bers dn,» seem to give a natural smooth truncation.

2.4 Approximations at other points on the criti-
cal line

2.4.1 Case N =17

Figure [2f shows that Ai7(3 + it) approximates ((3 + it) very well be-
tween the eight zeroes used for constructing the former function, and a
bit further.

Figure 2: Re and Im of (5 + it) and Ay7(5 + it)



2.4.2 Case N =101

According to (15)—(21) and (22)-(51), the extra zeroes of Ao1(5 +it)
are much closer to certain zeroes of ¢ (% + it) than the extra zeroes of
Ai7(% + it); however, Figure [3| shows that Ajo1(5 + it) doesn’t give a
good approximation to (% + it) at points that aren’t in the vicinity of
points t = 1,72, . ... How is it possible?

Figure 3: Re and Im of C(% +it) and Awl(% +it)

An explanation comes from Figure [l It shows that for N = 101,
instead of , we should write

101 oo
Aro1(s) = Z S101,an " = z:(—l)nﬂrf5 =(1-2-27°)¢(s). (88)
n=1 n=1
1.0lcoccscosssencscenssescasconscancanas .
0.5
20 40 60 RS T
-0.5
B 1 .

Figure 4: Coeflicients 9191, for even n and odd n



Respectively, Figures [5|and |§| show that A1o1 (é +it) approximates the
product (1 —2- 27%7“)«% + it) very well indeed.

Figure 6: Re and Im of (1 —2- 2_%_”)4(% +it) — A1 (5 +1it)



2.5 Second partial explanation

The factor 1 —2-27° from was used already by Euler for assigning
values to ((s) for s < 1. The alternating series in converges for
Re(s) > 0, and this can be viewed as the second “reason” for the high
quality of approximation demonstrated by A1o1(s).

However, in the next two section we’ll see that alternation does not
play such an important role.

2.6 Convergence on the real axis

Figures m and [8[ show that determinants Ay (s), constructed from non-
trivial zeroes of the zeta functions, “know” also about the existence and
positions of some trivial zeroes and give good approximations to the values
of ¢(o) for not too small negative values of o where the alternating series

from diverges.

200

4L

Figure 8: (1 —2-277)((0) and A2 (0)

10



2.7 Alternation

Two “reasons” for the efficiency of An(s) as an approximant were
indicated above:

e the smoothness of truncation,

e convergence of the alternating series in (88)).

1.0
0.8
0.6 .
0.4 '
0.2 .
20 40 60 20 TT60"

Figure 9: Alternating coefficients (—1)”*1(5101’nf0r even n and odd n

Now we are to get rid of the second “reason”. Figure |§| shows that

101 >
Z(—l)n+15101,nn_s = Zn_s = ((s), (89)
n=1 n=1
so we define
N
Vn(s) =Y (=) onnn " (90)
n=1

in the hope that values of ((s) will be well approximated by Vx (s). Figure
shows that this is indeed so for N = 101 but the approximation isn’t
as good as it was in the case of A1o1(s) (see Figure [3). However, if we
compare Figures |§| with the plot of the analogous difference for V (s) on
Figure we shall see much more regular curves. Moreover, Figure
shows that the absolute value of the difference doesn’t oscillate at all (for
not too big values of t).

The plots on Figurelook similar to plots of several classic functions
but so far the author wasn’t able to identify the difference (3 + it) —
Vioi( % + it) as an approximation to any such function.

11



Figure 10: Re and Im of (($ + it) and V0, (5 + it)

H

MMMﬂﬂﬂnﬁnnnMMj

Wen

T

J U 1l UU%%“U”**WMWM% ’

Figure 11: Re and Im of ((3 +it) — Vio1(2 + it)
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Finer structure of the coefficients oy,

We now look at the finer structure of dn,, in the case N = 3001.
Similar to , for small n these numbers are very close to (—1)""'.
Figure@exhibits differences ds3001,1 — 1, . . ., d3001,300 — 1 with logarithmic

scale.

-1300 |-

Figure 13: logy |03001,n — 1|

The top row corresponds to even values of n for which d3001,» is close

to —1.

The second row corresponds to odd values of n divisible by 3.

13



. - - - - - - . - - .
o 253 5 85 95 115125 145155 175185 205215 235245 2652 203
-500 -
-1000 -
-
-1500 - e
- -

Figure 14: logyq [95001,n — 1

The third row corresponds to those values of n that are divisible by 5
but are relatively prime to 2 - 3 (see Figure .

=500 -

-1000 |-

-1

Figure 15: loglo ‘53001,n — 1‘

The fourth row corresponds to those values of n that are divisible by
7 but are relatively prime to 2-3 -5 (see Figure .

14



—soo b

—1000 |-

-1500 T

Figure 16: logyg [95001,n — 1

The fifth row corresponds to those values of n that are divisible by 11
but are relatively prime to 2-3-5-7 (see Figure.

=500 -

=100 |-

-1500 I

Figure 17: loglo ‘53001,n — 1‘

The sixth row corresponds to those values of n that are divisible by
13 but are relatively prime to 2-3-5-7-11 (see Figure .

15



—soo b

—1000 |-

-1500

Figure 18: logyq [03001,n — 1]

The seventh row corresponds to those values of n that are divisible by
17 but are relatively prime to 2-3-5-7-11-13 (see Figure .

L R T L N R L L L L L L
3.13.23 37T 47 o T1 83 o7 107 127 137 140 163 173 121 211 223 233 251 263 277 203

=500

-1000 |-

-1300 |

Figure 19: log,, ‘53001711 - 1‘

The remaining dots correspond to prime values of n (see Figure. So
we can say that the initial part of the plot of log; [03001,n — 1| represents
the Sieve of Eratosthenes.
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L L P - L L
500 1000 1500 2000 2500 3000

—soo |

= 1000 n

_1500 -4

Figure 20: logyq [03001,n — 1]

Figure 20] extends Figure [[3] up to n = 3001. We see that horizontal
rows corresponding to values of n divisible by 2, by 3, ...break off when
they touch a “smooth curve” of increasing values of log;, |d3001,n — 1.
These horizontal rows will be called Eratosthenes levels.

L L L
39 a7 3@ 35 6 Bl 93 111 123 141 133 171 183 201 213 237 240 261 79 201

—=1000 |-

—2000 |-

—=3000 |-

5000 -

Figure 21: 10g10 ‘57999737” - 5799973

Closer examination reveals that each Eratosthenes level in its turn
contains sublevels corresponding to a slightly modified Sieve of Eratos-
thenes. Figure shows such sublevels for the main Eratosthenes level
corresponding to prime p = 3 in the case N = 7999. These sublevels
correspond to deleting composite numbers according to their divisibility
at first by 2, then by 5, 7, 3, 11, 13, ....

In the general case deleting composite numbers divisible by p happens
between deleting composite numbers divisible by consecutive primes ¢

17



and g2 such that 1 < p? < ¢2. It seems that the sublevels contain
subsublevels and so on.

2.9 Calculation of values of ((s)

The factor 1 — 2 - 27° appeared in from the visual observation
(made from Figure [4) that initial coefficients are close to (—1)""*. Now
we know that they have a finer structure and wish to replace 1 —2-27°
by a “correct” factor. Namely, we define numbers pn,» via formal division
of Dirichlet series:

An(s) XN SnanT" & .
= =n= = E . 91
C(S) >~ n—s — KN ( )

By Mobius inversion, we can give explicit expressions for these numbers
m|n

where p(k) is the Mobius function and we assume that dn,, = 0 forn > N.
Defining

vn(s) = Z PNnn” (93)
n=1
we have the equality
An(s) = vn(s)¢(s) (94)

where the right-hand side is understood as the formal product of the two
Dirichlet series. Shouldn’t we expect that numerically

An(s) = vn,m((s) (95)
where v
vn,m(s) = Z UNnn° (96)

is a truncation of ? In other words, can ((s) be well approximated by
the ratio of two finite Dirichlet series:
An(s fo, ONmn~*
()~ ) 2 . (07)

VN, (5) fozl HN,nT "

18



To begin with, let us look at Figures and exhibiting the values
of log,, |#43001,n|. These plots look similar to the plots on Figures [13] and
Indeed, according to , for a prime n we have unn = dnpn — 1
so points corresponding to the prime n occupy the same positions. For
composite n corresponding to points not lying on the Eratosthenes levels,
the differences pn,» — (dn,» —1) are very small so the right parts on Figures
and are visually the same. But points lying on the Eratosthenes
levels and corresponding to composite n on Figures [[3] and 20| drop down
to fit, on Figures [22] and onto a “smooth curve” with the other points.

-1500 |-

\_ -

Figure 22: log,, |13001,n|

—soo |

71030:

—-1504 |-

2500 3000

Figure 23: log;, |¢3001,n]
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Table 1: Calculation of ((s) at s = 1 + 1000i for N=3001

M HUN,M C(S) — Al

VN)M(S)

2| —241.43...-107127 | 2.24128...-107127
3| —2.14787...-107127 | 1.57968...- 107299
4| —1.62673...-107299 | 4.85859...- 1048
5| 45.29034...-10~%% | 1.00748...-107°69
6 | —1.14817...-1075%9 | 1.83153... 10672
7| 42.16930...-107672 | 3.15150...-10~7%6
8 | —3.85941...-107756 | 2.34266... 10529
9 | —2.95462...-107829 | 3.17791....1078%
10 | +4.11503...-107891 | 6.45307... 107946
11 | —8.55748...-107946 | 6.55682... 107994
12 | +8.88627...-10799% | 1.00011...-1071036
13 | +1.38282....1071036 | 2.32048....10~1074
14 | —3.26844...-1071074 | 1.18994....10~1108
15 | +1.70521...-10~1108 | 7.70890...- 10~ 1142
16 | —1.12267...-1071141 | 7.13768...- 101168
17 | —1.05536...- 1071167 | 1.30877...-10~1193
18 | —1.96297...-10~1193 | 2.02873... 101217
19 | —3.08422...-1071217 | 4.26737...-1071239
20 | —6.57127...-1071239 | 2.13752.... 1071259
21 | —3.33194...-10712%9 | 4.48286...-10~1278
22 | —7.06955...-101278 | 5.73053.... 107129
23 | 49.13814...-107129 | 8.80688.... 101311
24 | +1.41940...-1071310 | 1.24696...- 101325
25 | —2.03034...-1071325 | 1.15887....10"1339
26 | —1.90550...-1071339 | 547316...- 1071353
27 | 4+9.08470...-1071353 | 1.16240... 101365
28 | +1.94705...-1071365 | 481799 ... .10~ 1377
29 | —8.14135...-1071377 | 573845 .... 101388
30 | 4+9.77926...-1071388 | 5.76237... 1071398
31 | —9.90086...- 1071398 | 1.22940... 101407
32 | —2.12919...-1071407 | 1.65327....10~1416
33 | —2.88538...- 1071416 | 462738 ... 101425
34 | +8.13647...-1071425 | 522887 ... .10 1433
35 | —9.26096...- 1071433 | 1.53755.... 101440
36 | —2.74243...-1071440 | 3.53025.... 101448
37 | +6.33998...- 1071448 | 1.28345... .10~ 1454
38 | —2.32037...-1071454 | 955684 ... 101461
39 | +4.65266... 1071461 | 4.67633.... 101468
40 | —8.56354...- 1071468 | 249671 ....10~1473

20



Table [I] shows that taking larger and larger values of M we get better
and better approximations of ¢(s) via (97). Probably, the situation here
is similar to what we have with asymptotic expansions: one has to stop
at a certain optimal number of summands.

2.10 Special values of vy y(s)
Let

M =LCM(1,2,3,4,5,6,7,8,9,10) = 2520, N = M+1 = 2521. (98)

We have the following interesting expansion into a simple continued frac-
tion:

OM - vy .ar(1) = 0.9998015873172093... (99)
1
= . (100)
1+ — T
5039+ .
2520+ .
1680+ I
1260+ oo I
840+ 1
7204 —— L
630+ T — I

It is rather unusual that the partial quotients have such big values (ac-
cording to Gauss-Kuzmin distribution partial quotients of a “random” real
number are mainly rather small). Moreover, these large partial quotients
have the following structure motivating our choice of values in :
5039 = 2M — 1, 2520 = 231, 1680 = 231, 1260 = 2}1,1008 = 2},

840 = 2L 720 = 2¥ 630 = 231, 560 = 21, 504 = 24, (101)

The continued fraction (100) suggests consideration of the function

1 1
M) = —.
pM) = 5o : (102)
1+ 1
2M — 1+ 1
zéw+ -
2éVI+ :
24
2+
It seems that
1 (M 1 (M+1
o0 = o (4 +1) - 5o (M) (103)
where, as usual,
I'(2)
= 104
v = T (104)
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Function (103)) turns out to be a good approximation to vn (1) with
M and N from (98]) and for other values of these parameters as well:

2521 2520(1) —108

s = 1 — 1. 1 2...-1 1
5(2520) 06306651353 0 (105)

v3001,3000(1) 128

— . = 1 1 18...-1 1
$(3000) + 7.158776770618 0 (106)

V6001,6000 (1) —259

—_ 7 = 1 411 41 U | 1
$(6000) +5 860996641659 0 (107)

It seems that among the two arguments of v, the second is more impotant:

V7001,6000 (1)

14+5.2 2 2606... - 107299 1
4(6000) + 5.258535208832606 0 (108)

The author came to the expected equality by calculating a few
initial coefficients of expansions of the both sides into series over 4;
D. Zagier [2] verified that all coefficients coincide by giving yet another
representation for ¢ via a continued fraction studied in [I]:

oM) = z—=x- 5 (109)

=1
where = 537.
The question about the convergence of the continued fractions remains
open.

3 Second example: Riemann’s xi function
It is well-known that Riemann’s zeta function and gamma function
have a close relationship; however, the appearance (via (103)) of the

gamma function in (105)—(108]) seems to be new. Traditionally, the gamma
function is used for defining the function

£(s) = g(s)¢(s) (110)

where

g(s) =m 2(s— 1)L (5 +1). (111)

In terms of the function £(s) the functional equation takes the simple form

§(s) =&(1— ). (112)
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3.1 Coefficients of new interpolating determinants

In order to use &(s ) in the role of F(x) in ([9), we need to select new

functions f1(s), f2(s),.... According to (10) and (110)
Es)= g(s)C(s) =D gls)n™". (113)
Due to we also have:

€)= g(l—s)((1—s) =D g(l—sn" " (114)

n=1

The series in (113]) converges only for Re(s) > 1, the series in ((114) con-
verges only for Re(s) < 0, nevertheless we define

n”° 4 g(1 — s)n*"!

_g(s)
fals) = 5

(115)

and formally write

)~ > fals). (116)

The zeroes of £(s) are exactly the non-trivial zeroes of the zeta
function, and (assuming the Riemann hypothesis, as in Section 2)

Bn=1— pn. (117)
Functions (115)) trivially satisfy a counterpart of the functional equation:
fals) = a1 = 5). (118)

Due to (117) and (118]), we need not (and cannot!) use zeroes with nega-
tive imaginary parts and we define

filpr) o filen—1)  fi(s) N
AR =| . : D= ONafals).  (119)
fn(pr) oo fn(pn-1)  f(s)] "7
Clearly,
AN@r1) = =AN@D) =0=AN(p1) = = AN (pn-1).  (120)

Similar to and we define

ONm = O (121)
N,n SgJ
and
N
Zéwnn ’ (122)
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Notice that Ak (s), as so defined, is not a normalization of AN(S), they
are related in the following way:

ARn(s) = 0 (9(8)AK () + 9L = )AR (1= 9)) . (123)

200

50 100 150 200 250 300

—400l-,

-600[ *

—_mool

Figure 24: 10g10(|5gooo,n = 1)

3.2 Sieve of Eratosthenes

Coefficients 6]1:&" behave similar to coefficients dn,, but there are cer-
tain distinctions. The plot of 1og10(\55000,n — 1|) for initial values of n
looks as if construction of the sieve of Eratosthenes has been broken at
some stage-on Figure 24 we see only four Eratosthenes levels. In the case
N = 3000, the lowest row contains both prime and composite numbers.

3.3 Calculation of values of ((s)

Similar to we define

AR(s) Xl Onan® & i
= nioo ; s = HN,nT 124
ORI Y (124
or directly
e = 1 (%) dNn (125)

by assuming that 511:7,71 = 0 for n > N. Further, similar to we define

M
v (8) = Y pvan (126)
n=1
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and consider approximations of {(s) by the ratio

N T —s
anl 5N,nn

by

Table 2: Calculation of ((s) at s = 1 4 1000i for N=3000

M

r —s’
n=1 /"LN,nn

M s cts) - 2
’ VNYM(S)
2| —2—-4.93...-107126 | 7.72773....107126
3| +7.40565...-107126 | 2.77621...- 107284
4| 42.85890...-10728% | 1.70620...-10~411
5| —1.85782...-10~41 | 2.24778...-107°%9
6 | —2.56167...-107599 | 4.24006... 107585
7 1 —5.02202...-107585 | 3.59049...-10~64!
8 | +4.39701...-107%4 | 6.70503... 107681
9 | +1.08444...-107%8 | 6.85250... 107681
10 | +1.90599...-10"716 | 6.85250...-1068!
11 | +2.37291...-107%%1 | 8.03260... 107981
12 | —8.19041...-1077%3 | 8.03260... 10781
13 | +2.53822...-107%1 | 7.77032.... 107681
14 | —8.82811...-1077° | 7.77032...- 107681
15 | +7.90462...-10-7%6 | 7.77032....107%8!
16 | +6.85925...-107%%2 | 7.90768... 107681
17 | +2.80369...-107%1 | 6.13061... 107981
18 | 49.79035...-1077° | 6.13061...- 10981
19 | +2.91376...-107%%1 | 7.51911...-10-9%1
20 | +8.85123...-10~75 | 7.51911...-107681
21 | —1.28032...-1074 | 7.51911...-107681
22 | —1.44488...-10774 | 7.51911... 107681
23 | +3.10282...-107681 | 5.58306... 10681
24 | —5.83115...-107755 | 5.58306... 107681
25 | +1.59266...- 107681 | 5.89767...- 10681
26 | —7.27060...-1077%% | 5.89767...-10681
27 | +1.08716...-107%81 | 6.50614... 107681
28 | —1.61246...-107755 | 6.50614 ... 107681
29 | +3.33221...-107681 | 4.79343....10768!
30 | +1.00523...-107755 | 4.79343....107681

(127)

Table [2| shows that for N = 3000 increasing the value of M stops to
improve the accuracy of the approximation rather soon in contrast to the
case of Table Indeed, numbers p;\,’n behave differently from numbers
[N n, Damely, Table@ and Figureshow that after n = 11 the values of

MR,," begin to oscillate between values of orders 107% and 10774,
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Figure 25: log |1t5000.,|, magenta, if plyog,, > 0, green otherwise

What is remarkable is the way in which this splitting happens: values

close to 107681

correspond to those values of n that are either primes

or powers of primes. Figure demonstrate futher splitting—the upper
“curve” correspond to genuine prime values of n.

5.10-681

4107581 )

e -

2.10-681 g .

110881 |
; 1; 233 259 3‘7 4; 4;

59 67 73 79

89 97 103 109 121 127 n

Figure 26: /’1’5000,717 magenta, if ugoooﬁn > 0, green otherwise

The “curve” on Figure looks like a plot of the logarithmic func-
tion, and indeed after divison by log(n) points on Figure [27]lie on several

horizontal lines.
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r
Figure 27: ‘fggz‘:;, magenta, if 500, > 0, green otherwise

This further suggests that we should divide Ml;v,n not by log(n) but by
the von Mangoldt function A(n), and this results in points corresponding
to prime and prime power values of n lying on the same line on Figure
Indeed, let

r
H3000,13 —682
= ——— =9.895811... - 10 128
w3000 In(13) ) (128)
then for a prime p such that 13 < p* < 419 we have
/‘gooo »/ In(p) 73
=Pt T 1) < 3.85...-10 (129)
w3000
and
NF k
Z200PT _ a000| < 3.81...- 107774 (130)
In(p)
W3000 gee e oo . ¢ ee 0 . ¢ e oo o o
T z; YD 45 % 6:7 3 79 8; 9:7 1(;3 189 151 mon

r
Figure 28: =30
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Figure 29: Modified series

3.4 Calculating zeta derivative

By modifying the first 11 summands in (see Figure [29) we can
write

11 oo

s AL s
S (ws000A(m) — oo )" + T)U =3 waooA(m)n =", (131)
n=1 n=1

For Re(s) > 1 the values of the right hand side in ((131]) are well-known:
Z waoooA(n)n~° = —w3000@. (132)
2 &)

So shouldn’t we expect that

11
¢(s) Z (WSOOOA(”) - Mgooo,n)n_s + Agooo(s)% — ws000¢' (), (133)
n=1

and even if s is inside the critical strip? At first, this seem to be rather
implausible because the ideograph = in has a very weak meaning:
Figure [30| shows that from some n the values of the coefficients in the left
hand side (equal to Mgooom) become in absolute value many orders larger
than the coefficients in the right hand side (having the absolute value at
most |wsoo0A(n)]). Nevertheless, the left hand side of produces very
good approximations to the right hand side.

3.4.1 Calculating zeta derivative at zero

We start by choosing for s a zero of {(s)—in this case (133) simplifies
to

Agooo(ﬂk) ~  —ws000¢ k) (134)
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Figure 30: log;, |M§ooo,n|

(but the right hand side in (132)) turns into oo for such s). Indeed, we
have:

r

‘M —'(p100)| = 4.092... - 1073, (135)
—W3000
r

‘A?’L(pm) — ' (pso0)| = 1.063...- 107", (136)
—W3000

3.4.2 Calculating zeta derivative inside the critical strip

For s = i + 1000i we have:

¢(s) Zilzl (WBOOOA(N) - Mgooo,n)nis + Agooo(s)

—W3000

= ¢ (s)

1.61...-107"".  (137)

3.4.3 Calculating both zeta and its derivative. I

Using (133) for calculating ¢’(s) requries knowledge of ((s) with great
precision. Instead of this, we can use two copies of ((133]) with sufficiently
different values of N. For example, solving the system

11
C(S) Z ((dgoooA(n) — ugoooyn)n_s =+ Agooo(s)% — (dsooogl(s) (138)

n=1

11
() > (wss00A(n) = p3500,0 )0 ° + Agsoo(s)~ — wasooC'(s)  (139)

n=1

for s = i + 1000i produces 908 correct decimal digits for ((s) and 72
correct decimal digits for ¢’(s).
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3.4.4 Calculating both zeta and its derivative. II

We can avoid the necessity to calculate dn,, for two different values of
N by using a copy of (133 with s replaced by 1 — s:

11

C(1—5) Y (ws000A (1) — p3000,0)7° " + Aggoo(1 — 5)~

n=1

— w3000C/(1 — S) (140)
Then we can differentiate both sides of the functional equation

9(s)C(s) = g(1 —s)C(1 — s) (141)

and get a fourth relation

g'(5)¢(s) + 9(s)¢"(s) = —g'(1 = 5)C(1 —5) —g(1 = )¢ (1 —5)  (142)

between ((s), (1 — s), ¢'(s), and ¢'(1 — s). Solving the system of four
equations (133]), , (141), and (142) for s = 7 + 1000i produces 752

correct decimal digits for {(s) and 72 correct decimal digits for ¢’(s).

3.5 Approximation of V}:[,M(l)

It turns out that the same function (103]) gives a good approximation
not only to v, (1) but to vy (1) as well:

V2520 2520 1)

(2520 = 1+ 3.822274405191727... - 10~ '%° (143)

$(3000

V6000 6000 1)

$(6000

(
)
1
5§9¥l@¥9§42 = 1—2.468278393149214...-107'%°  (144)
§ = 1+ 2.663814892833696... - 10~ >°? (145)
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