
Window subsequence problems for compressed

texts?

Patrick Cégielski1, Irène Guessarian2, Yury Lifshits3, Yuri Matiyasevich3

1 LACL, UMR-FRE 2673, Université Paris 12, Route forestière Hurtault, F-77300
Fontainebleau, France,

cegielski@univ-paris12.fr
2 LIAFA, UMR 7089 and Université Paris 6, 2 Place Jussieu, 75254 Paris Cedex 5,

France; send correspondence to ig@liafa.jussieu.fr
3 Steklov Institute of Mathematics, Fontanka 27, St. Petersburg, Russia.

yura@logic.pdmi.ras.ru, yumat@pdmi.ras.ru

Abstract. Given two strings (a text t of length n and a pattern p) and
a natural number w, window subsequence problems consist in deciding
whether p occurs as a subsequence of t and/or finding the number of size
(at most) w windows of text t which contain pattern p as a subsequence,
i.e. the letters of pattern p occur in the text window, in the same or-
der as in p, but not necessarily consecutively (they may be interleaved
with other letters). We are searching for subsequences in a text which is
compressed using Lempel-Ziv-like compression algorithms, without de-
compressing the text, and we would like our algorithms to be almost
optimal, in the sense that they run in time O(m) where m is the size
of the compressed text. The pattern is uncompressed (because the com-
pression algorithms are evolutive: various occurrences of a same pattern
look different in the text).

1 Introduction

We are concerned with searching information in a compressed text without de-

compressing the text. We will search to decide whether a pattern occurs as a
subsequence of a text: pattern p = p1 . . . pk is said to be a subsequence of text
t if p1, . . . , pk occur in t, in the same order as in p, but not necessarily consec-
utively (they may be interleaved with other letters). It is also demanded that
the subsequences consisting of p be contained in text windows of (at most) a
fixed size w. Pattern matching in compressed texts has already been studied in
e.g. [R99,GKPR96]. Subsequence matching within windows of size w at most
is a more difficult problem, which emerged due to its applications in knowl-
edge discovery and datamining [M02], and as a first step for solving problems
in molecular biology. One quite important use of subsequence matching consists

? Support by grants INTAS–04-77-7173 and NSh–2203-2003-1 is gratefully acknowl-
edged.

in recognizing frequent patterns in large sequences of data. Knowledge of fre-
quent patterns is then used to determine association rules in databases and to
predict the behavior of large data. Consider for instance a text t consisting of
a university WWW-server logfile containing requests to see WWW pages, and
suppose we want to see how often, within a time window of at most 10 units of
time, the sequence of events e1e2e3e4 has occurred, where: e1 = ‘Computer Sci-
ence Department homepage’, e2 = ‘Graduate Course Descriptions’, e3 = ‘CS586
homepage’, e4 = ‘homework’. This will be achieved by counting the number of
10-windows of t containing p = e1e2e3e4 as a subsequence.

Most efficient compression algorithms are evolutive, in the sense that the text
represented by each compression symbol is determined dynamically, hence the
encoding of a subword is different for different occurrences of this subword in the
text. It is thus less useful for the search to encode the pattern. Moreover, pattern
sizes are usually smaller than text sizes by several orders of magnitude. We will
thus search for a plain (not encoded) pattern in an encoded (compressed) text.

We address several window subsequence problems in three models of com-
pression: Lempel-Ziv (in short LZ [LZ77]), Lempel-Ziv-Welch (in short LZW
[LZ78,W84]), and straight-line-programs (in short SLP [R03]). We show that,
for all three models, as soon as there is a significant (say quadratic) difference
in size between the compressed text and the original text, searching directly
in the compressed text is more efficient than the naive decompress-then-search
approach.

The paper is organised as follows: in Section 2, we recall the compression
models, in Section 3 we define five window subsequence problems, in Section 4
we describe auxiliary data structures, and show how to compute them, yielding
algorithms for the window subsequence problems.

Related results

Different versions of pattern-matching and subsequence problems have been con-
sidered. Subsequence problems are different from pattern-matching problems in
two respects: 1. the letters of the pattern need not be consecutive in the text,
and 2. the size of the text window where the pattern occurs is bounded. Some
related problems are as follows.

It was shown in [GKPR96] that the pattern matching problem can be solved
in polynomial time, even if both text and pattern are given in LZ compressed
form.

It was shown in [L05,LL05] that problem 1 below (Section 3), is both NP
and co-NP-hard if both text and pattern are given in LZ compressed form.

It was shown in [ABF95] that finding the first occurrence of the pattern
(pattern matching with compressed text and uncompressed pattern) in an LZW-
style compressed text can be done in time O(m + k2) or O(m log k + k).

Next, we should mention [BKLPR02], where Compressed Pattern Matching

problems were extended to the two-dimensional case: it was shown that com-
plexity increases in this setting. Compressed Pattern Matching is NP-complete
while Fully Compressed Pattern Matching is ΣP

2 -complete.

Recently, applications for algorithms on compressed texts in analysis of mes-
sage sequence charts were found, see [GM02].

Besides pattern matching the membership of a compressed text in a formal
language was studied. In [GKPR96], the authors presented a polynomial algo-
rithm for deciding membership in a regular language. Recently, [MS04] showed
that this problem is P-complete. On the other hand, it was shown in [Loh04]
that deciding membership in a context-free language is PSPACE-complete.

2 Compression algorithms

2.1 Notations

An alphabet is a finite non-empty set A = {a1 . . . , ai}. We will also use an extra
letter a0. A word t on A is a sequence t[1]t[2] · · · t[n] of letters from A (also
denoted by t1t2 · · · tn and called the text). The number n is called the length

of t and will be denoted by |t|. The only length zero word is the empty word,
denoted by ε. Given integers k ≤ n, i < j ≤ n and t a length n word, let t[k]
(resp. t[−k], t[i..j]) denote the kth leftmost letter of t (resp. the kth rightmost
letter, the subword t[i]t[i + 1] · · · t[j] of t).

Let t be a word from A∗.

2.2 Lempel-Ziv-Welch algorithm

Compression

1. Let T0 = ε
2. Assume words T0, T1, . . . , Tk−1 were defined, and

ta0 = T0T1 . . . Tk−1s (1)

with s non-empty. Let Tk be the shortest prefix of s which is not among
T0, T1, . . . , Tk−1; there exists a unique pair consisting of a number rk and a
letter ck ∈ A ∪ {a0} such that rk < k and Tk = Trk

ck.

ta0 =

T1

︷ ︸︸ ︷
∗ · · · ∗
︸ ︷︷ ︸

Tr1

c1

T2

︷ ︸︸ ︷
∗ · · · ∗
︸ ︷︷ ︸

Tr2

c2 ∗ · · · ∗

Tm
︷ ︸︸ ︷
∗ · · · ∗
︸ ︷︷ ︸

Trm

cm (2)

The LZW–compression of t is the sequence of elements r1, c1, r2, c2, . . . , rm, cm

from A ∪ IN where m is defined by the condition cm = a0.

Decompression

1. Let T0 = ε
2. Repeat Tk = Trk

ck until ck = a0

3. Let t = T0T1 . . . Tm−1Tm

2.3 Lempel-Ziv algorithm

Compression

1. Let T0 = ε
2. Assume words T0, T1, . . . , Tk−1 were defined, and

t = T0T1 . . . Tk−1s (3)

with s non-empty. Let Tk be the longest prefix of s which is a subword of
T0T1 . . . Tk−1, if such a prefix exists, otherwise let Tk = aj where aj is the
first letter of S; in the former case there exists a unique pair of numbers qk

and rk such that 1 ≤ qk < rk ≤ |T0T1 . . . Tk−1| and Tk = t[qk..rk]; in the
latter case, we define formally qk = rk = −j.

t =

T1

︷ ︸︸ ︷
∗ · · · ∗ ∗ . . . ∗ t[qk] · · · t[rk]

︸ ︷︷ ︸

Tk

∗ . . . ∗

Tk−1

︷ ︸︸ ︷
∗ · · · ∗

Tk
︷ ︸︸ ︷
∗ · · · ∗ ∗ . . . ∗ (4)

The LZ–compression of t is the sequence of numbers q1, r1, q2, r2, . . . , qm, rm

where m is such that t = T1 . . . Tm.

Decompression

1. Let t = ε
2. For k = 1 to m do : if qk < 0 then let t := t a−qk

else let t := t t[qk..rk]

2.4 Straight-line programs

A straight–line program compression (in short SLP) P of size m is a sequence
of assignments: Xi := expi for i = 1, . . . , m, where each Xi is a non-terminal

and each expression expi is either expi = a with a ∈ A, or expi = XjXk with
k, j < i. A straight–line program can be viewed as a context-free grammar with
initial symbol Xm generating a single word val(P) = val(Xm) which is the
decompression of the text represented in compressed form by the SLP.

2.5 Comparison of compression models

The Lempel–Ziv–Welch (resp. Lempel–Ziv) algorithm is usually called LZ78
(resp. LZ77). According to [R99] “LZ78 is less interesting [than LZ77] from the
theoretical point of view, but much more interesting from the practical point
of view”. The size of the LZ compression of a text is smaller than the size of
its LZW compression. The drawback is that the LZ compression is harder to
compute.

More specifically, LZ–decompression can yield an exponential blow-up, while
LZW–decompression is bounded by a quadratic growth of text size. Given an
LZW–compressed text of length m, we can easily construct in time O(m) an
SLP of size O(m) generating the decompression. Given an LZ–compressed text
of length m, and of original length n, we can construct in time O(m log n) an
SLP of size O(m log n) generating the same decompressed text [R03].

3 The problems

Let t = t1t2 · · · tn ∈ A∗ be the text and P = p1p2 · · · pk be the pattern also in A∗.
A size w window of t, in short w-window, is a size w subword ti+1ti+2 · · · ti+w

of t; words corresponding to different values of i are considered to be different
windows, even if they are equal as words; thus, there are n−w+1 such windows
in t. The word p is a subsequence of t iff there exist integers 1 ≤ i1 < i2 <
· · · < ik ≤ n such that tij

= pj for 1 ≤ j ≤ k. If moreover, ik − i1 < w, p is
a subsequence of t in a w-window. A window containing p as a subsequence is
said to be minimal if neither ti+2 · · · ti+w nor ti+1ti+2 · · · ti+w−1 contain p.

Example 1 If t = “dans ville il y a vie” (a French advertisement), then “vie”
is a subword and hence a subsequence of t. “vile” is neither a subword, nor a
subsequence of t in a 4-window, but it is a subsequence of t in a 5-window. “ville”
and “vie” are two minimal windows containing the pattern “vie”. See figure 1.ut

ylisnad v i l l i eve a

Fig. 1. A text with two 5-windows containing “vie” (in gray), and a single 5-window
containing “vile”.

Given an alphabet A, a text t on A∗ and a pattern P , we consider five window
problems:

– Problem 1. Given a compression of t and a pattern P , to decide whether
pattern P is a subsequence of text t.

– Problem 2. Given a compression of t and a pattern P , to compute the
number of minimal windows of t containing pattern P as a subsequence.

– Problem 3. Given a compression of t and a pattern P , to decide whether
pattern P is a subsequence of a w-window of text t.

– Problem 4. Given a compression of t, a pattern P , and a number w, to
compute the number of w-windows of t containing pattern P as a subse-
quence.

– Problem 5. Given a compression of t, a pattern P , and a number w, to
compute the number of minimal windows of t which are of size at most w
and which contain pattern P as a subsequence.

4 The Window Subsequence Algorithm

4.1 Auxiliary data structures we are using

From now on we will consider a text t compressed by an SLP P of size m. Let
|P | = k, and let P1, . . . , Pl (by convention P1 = P) be all the different subwords
of pattern P . We may note that l = 1 + 2 + · · · + k = k(k + 1)/2 ≤ k2.

We introduce two basic and three problem-oriented data structures.

The basic structures are two m × l arrays.

Left inclusion array. For every non-terminal Xi of program P and every
subword Pj of pattern P , denote by Li,j the length of the shortest prefix of
val(Xi) containing Pj . If there is no such prefix we set Li,j = ∞.

val(Xi) =

Li,j symbols
︷ ︸︸ ︷
∗ . . . ∗ pα ∗ . . . ∗ pα+1 ∗ . . . ∗ pα+lj ∗ . . . ∗ (5)

Fig. 2. Li,j for Pj = pαpα+1 . . . pα+lj .

Right inclusion array. For every non-terminal Xi of program P and every
subword Pj of pattern P , denote by Ri,j the length of the shortest suffix of
val(Xi) containing Pj . If there is no such prefix we set Ri,j = ∞.

The data structures we will use to solve the problems are the following three
one-dimensional integer arrays:

Minimal windows. For every non-terminal Xi of program P , we denote by
MWi the number of minimal windows of val(Xi) containing P .

Windows of constant size. For every non-terminal Xi of program P , we
denote by FWi the number of w-windows of val(Xi) containing P .

Bounded minimal windows. For every non-terminal Xi of program P , we
denote by BMWi the number of minimal windows of val(Xi) which contain P
and have size at most w.

4.2 Efficient computation of these data structures

Let us show how to efficiently compute the above five arrays.

Left inclusion array. We use structural induction over non-terminals of the
SLP in order to compute the left inclusions array; the algorithm is as follows:

Basis. If expi = a, then

Li,j =
{

1 if Pj = a,
∞ otherwise.

Induction. If expi = XpXq, two cases can occur:

(i) either Pj is contained in val(Xp), i.e. Lp,j 6= ∞; in that case we have Li,j =
Lp,j ,

(ii) otherwise, let Pu be the longest prefix of Pj such that Lp,u < ∞; in this case
Li,j = |val(Xp)| + Lq,v where Pv is such that Pj = PuPv .

∗.. ∗

Pu subsequence
︷ ︸︸ ︷
piu

∗ .. ∗ piu+1 ∗ .. ∗ piu+lu ∗..∗
︸ ︷︷ ︸

val(Xp)

Lq,v symbols
︷ ︸︸ ︷

∗.. ∗

Pv subsequence
︷ ︸︸ ︷
piv

∗ .. ∗ piv+1 ∗ .. ∗ piv+lv ∗ ..∗
︸ ︷︷ ︸

val(Xq)

(6)

Using binary search to find Pu, the complexity of one inductive step will be
O(log k), and the overall complexity will be O(ml log k) ≤ O(mk2 log k).

Right inclusion array. Analogous to the left inclusions.

Minimal windows. We will use left and right inclusion arrays together with
structural induction on the SLP structure. Let us first describe the intuitive
idea. Minimal windows in val(Xi) for Xi := XpXq are of one of three types: (i)
either they are entirely inside val(Xp), (ii) or they are entirely inside val(Xq),
(iii) or they are overlapping on both val(Xp) and val(Xq). Type (iii) minimal
windows will be called boundary windows (see Figure 3). To count the number
of minimal windows in Xi we add the already counted numbers for Xp and
Xq together with the number Bp,q of boundary windows. Notice that for every
decomposition P = PuPv there is at most one boundary minimal window in
which Pu is inside val(Xp) and Pv is inside val(Xq). Using left and right inclusion
arrays we can determine decompositions of P for which such a boundary minimal
window exists. However, counting must be done carefully: the same boundary
window may correspond to several decompositions of P . So we run over all
decompositions from |Pu| = k−1 to |Pu| = 1 and update our counter only when
the following two conditions hold: 1) Pu (resp. Pv) is embedded in Xp (resp. Xq)
and 2) the window is shifted from the previous successful embedding. To check
these conditions, we will use a marker α in the program computing Bp,q: α will
be set to 1 if we know that the next-to-be-studied window cannot be minimal.
For the first and last boundary windows, we must also check that they do not
contain a minimal window of type (i) or (ii), and this is also taken care of by
marker α.

∗.. ∗

Rp,u symbols
︷ ︸︸ ︷

Pu subsequence
︷ ︸︸ ︷
p1 ∗ .. ∗ p2 ∗ ... ∗ pl ∗..∗

︸ ︷︷ ︸

val(Xp)

Lq,v symbols
︷ ︸︸ ︷

∗.. ∗

Pv subsequence
︷ ︸︸ ︷
pl+1 ∗ .. ∗ pl+2 ∗ .. ∗ pk ∗ ..∗

︸ ︷︷ ︸

val(Xq)

(7)

Fig. 3. A boundary window of length Rp,u + Lq,v for P = PuPv, Pu = p1 . . . pl, Pv =
pl+1 . . . pk.

The algorithm is as follows.
Basis. If expi = a, then

MWi =
{

1 if P = a,
0 otherwise.

Induction. If expi = XpXq, then MWi = MWp + MWq + Bp,q .

Bp,q is determined by the following FOR loop (by convention “advance” is a
shorthand for u := u′; v := v′; and we write u (resp v) instead of Pu (resp.
Pv)):

B := 0; α := 0; u := p1 . . . pk−1; v := pk;
IF (Rp,u = Rp,P < ∞) THEN α := 1; ENDIF
FOR l = k − 1 TO 1 DO

l := l − 1; u′ := p1 . . . pl; v′ := pl+1 . . . pk;
IF (Lq,v′ = Lq,v ∧∞ > Rp,u ≥ Rp,u′) THEN α := 0; advance; ENDIF
IF (∞ > Lq,v′ > Lq,v ∧ Rp,u = Rp,u′) THEN

IF α 6= 1 THEN B := B + 1; α := 1; ENDIF advance; ENDIF
IF (∞ > Lq,v′ > Lq,v ∧∞ > Rp,u > Rp,u′) THEN

IF α 6= 1 THEN B := B + 1; ENDIF α := 0; advance; ENDIF
ENDFOR
IF (Lq,P > Lq,v′ ∧ α 6= 1) THEN B := B + 1; ENDIF
Bp,q = B;

Thus the complexity of computing each Bp,q is O(k) and the overall com-
plexity of computing the MW structure is O(mk).

Minimal windows of size bounded by w. Computing this structure is the
same as computing minimal windows. We just ignore boundary minimal windows
of size more than w (i.e. increment B only if (Rp,u + Lq,v) ≤ w).

Windows of constant size w. The main observation is that any w-window
containing P also contains a minimal window containing P . Again w-windows of
val(Xi) (with expi = XpXq) containing P are (i) either entirely inside val(Xp),
(ii) or entirely inside val(Xq), (iii) or overlapping on both val(Xp) and val(Xq).
Thus we only need to explain how to count boundary windows. In the same way
as in the previous section we run over all decompositions of P , starting from
P entirely contained in val(Xp) to finish with P entirely contained in val(Xq).
For every decomposition, using information from left and right inclusion arrays,
we find a minimal window corresponding to this decomposition. In counting the
number of boundary w-windows, we have to be careful, because several minimal
windows can be included in the same w-window containing P as a subsequence;
hence we cannot just count the number of w-windows containing a minimal
window: we have to only count the new w-windows contributed by the current
minimal window.

The number FBp,q of boundary w-windows is determined by a FOR loop
quite similar to the previous one; we replace the statement B := B + 1; by a
subprogram called “update” which is defined by:

IF (Rmin + Lq,v) ≤ w
THEN B := B + Rmin − Rp,u;
ELSE IF (Rp,u + Lq,v) ≤ w THEN B := B + w − (Rp,u + Lq,v) + 1; ENDIF

ENDIF
Rmin := Rp,u;

The number FBp,q boundary w-windows is defined by the following FOR loop:

B := 0; l := k; u := P ; Rmin := Rp,P ; // w-windows with P in val(Xp)

IF (Rmin < w) THEN B := B + w − Rmin; ENDIF
α := 0; u := p1 . . . pk−1; v := pk;
IF (Rp,u = Rp,P < ∞) THEN α := 1; ENDIF
FOR l = k − 1 TO 1 DO // w-windows with P in val(Xp) and val(Xq)

l := l − 1; u′ := p1 . . . pl; v′ := pl+1 . . . pk;
IF (Lq,v′ = Lq,v ∧∞ > Rp,u ≥ Rp,u′) THEN α := 0; advance; ENDIF
IF (∞ > Lq,v′ > Lq,v ∧ Rp,u = Rp,u′) THEN

IF α 6= 1 THEN update; α := 1; ENDIF advance; ENDIF
IF (∞ > Lq,v′ > Lq,v ∧∞ > Rp,u > Rp,u′) THEN

IF α 6= 1 THEN update; ENDIF α := 0; advance; ENDIF
ENDFOR
IF (Lq,P > Lq,v′ ∧ α 6= 1) THEN update; ENDIF
IF (Rmin+Lq,P) ≤ w // w-windows with P in val(Xq)

THEN B := B + Rmin − 1;
ELSE IF Lq,P ≤ w THEN B := B + w − Lq,P ; ENDIF

ENDIF
FBp,q = B;

So we can estimate the complexity of this step by O(k) and and the overall
complexity of computing the FW structure is O(mk).

4.3 Final algorithm and its complexity

Our structures contain answers to all five problems:

1. Pattern P is a subsequence of text t iff Lm,1 6= ∞ (letting P1 = P),
2. The number of minimal windows of t which contain P is equal to MWm,
3. Pattern P is a subsequence of some w-window iff FWm 6= 0,
4. The number of w-windows containing P is equal to FWm,
5. The number of minimal windows of size at most w and which contain P is

equal to BMWm.

So the final complexity of our algorithm in the case of compression by
straight-line program is O(mk2 log k), where m is the size of the compressed
text and k is the pattern size.

Since LZW is easily converted to SLP, for LZW compression the complexity
of our algorithm is O(mk2 log k), where m is now the size of the LZW-compressed
text.

For LZ compression we also can convert it to SLP. That gives as complexity
O(mk2 log k log n). Here m is the size of the LZ-compressed text, n is the original
text size and k is the pattern size.

5 Conclusions

We introduced in the present paper a new algorithm for a series of window subse-
quence problems. We showed that for SLP and LZW compression our algorithm
is linear in the size of the compressed text. In the case of LZ compression it
is only log n times worse than linear. These results show that all subsequence
search problems can be done efficiently for compressed texts without unpacking.

An open question we have is the following. Is it possible to reduce the k-
dependant factor in our algorithm complexity?

References

[ABF95] A. Amir, G. Benson, M. Farach, Let sleeping files lie: pattern matching in
Z–compressed files, J. Comput. Syst. Sci., Vol. 52 (2) (1996), pp. 299–307.

[BKLPR02] P. Berman, M. Karpinski, L. Larmore, W. Plandowski, W. Rytter, On the
Complexity of Pattern Matching for Highly Compressed Two-Dimensional
Texts, Journal of Computer and Systems Science, Vol. 65 (2), (2002), pp.
332–350.

[C88] M. Crochemore, String-matching with constraints, Proc. MFCS’88, LNCS
324, Springer-Verlag, Berlin (1988), pp. 44–58.

[GKPR96] L. Gasieniec, M. Karpinski, W. Plandowski and W. Rytter. Efficient Algo-
rithms for Lempel-Ziv Encoding (Extended Abstract), Proceedings of the
5th Scandinavian Workshop on Algorithm Theory (SWAT 1996), LNCS
1097, Springer-Verlag, Berlin (1996), pp. 392–403.

[GM02] B. Genest, A. Muscholl, Pattern Matching and Membership for Hierar-
chical Message Sequence Charts, In Proceedings of the 5th Latin Amer-
ican Symposium on Theoretical Informatics (LATIN 2002), LNCS 2286,
Springer-Verlag, Berlin (2002), pp. 326–340.

[LZ77] G. Ziv, A. Lempel, A universal algorithm for sequential data compresssion,
IEEE Transactions on Information Theory, Vol. 23 (3), (1977), pp. 337–
343.

[LZ78] G. Ziv, A. Lempel, Compresssion of individual sequences via variable-rate
coding, IEEE Transactions on Information Theory, Vol. 24, (1978), pp.
530–536.

[L05] Yu. Lifshits, On the computational complexity of embedding of com-
pressed texts, St.Petersburg State University Diploma thesis, (2005);
http://logic.pdmi.ras.ru/~yura/en/diplomen.pdf.

[LL05] Yu. Lifshits, M. Lohrey, Querying and Embedding Compressed Texts, to
appear (2005).

[Loh04] M. Lohrey, Word problems on compressed word, ICALP 2004, Springer-
Verlag, LNCS 3142, Berlin (2004), pp. 906–918.

[M02] H. Mannila, Local and Global Methods in Data Mining: Basic Techniques
and open Problems, Proc. ICALP 2002, LNCS 2380, Springer-Verlag,
Berlin (2002), pp. 57–68.

[MS04] N. Markey, P. Schnoebelen, A PTIME-complete matching problem for
SLP-compressed words, Information Processing Letters, Vol. 90 (1),
(2004), pp. 3–6.

[Ma71] Yu. Matiyasevich, Real-time recognition of the inclusion relation, Zapiski
Nauchnykh Leningradskovo Otdeleniya Mat. Inst. Steklova Akad. Nauk
SSSR, Vol. 20, (1971), pp. 104–114. Translated into English, Journal of
Soviet Mathematics, Vol. 1, (1973), pp. 64–70; http://logic.pdmi.ras.
ru/~yumat/Journal.

[R99] W. Rytter, Algorithms on compressed strings and arrays, Proc. SOF-
SEM’99, LNCS 1725, Springer-Verlag, Berlin (1999), pp. 48–65.

[R03] W. Rytter, Application of Lempel-Ziv factorization to the approximation
of grammar-based compression, TCS 1-3(299) (2003), pp. 763–774.

[S71] A. Slissenko, String-matching in real time, LNCS 64, Springer-Verlag,
Berlin (1978), pp. 493–496.

[W84] T. Welch, A technique for high performance data compresssion, Computer,
(June 1984), pp. 8–19.

