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Some Linguistics

Obfuscate: tr.v. -cated, -cating, -cates. 1. a. To render obscure.
b. To darken. 2. To confuse: his emotions obfuscated his judgment.
[Lat. obfuscare, to darken : ob(intensive) + Lat. fuscare,
to darken < fuscus, dark.] -obfuscation n. obfuscatory adj

In German Obfuscation is

die Benebelung
die Trübung
die Verdunkelung
die Verschleierung - von Tatsachen
die Verwirrung
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Overview

Introduction:
Notion of obfuscation
Motivation and applications
Research history and commercial obfuscators

State-of-the-art:
Code tricks
Theoretical approach & provable security

Conclusions
Evaluation of current results and future research
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Notion of Obfuscation

An obfuscator: An algorithm O such that for any program P ,
O(P ) is also a program with following properties:

Functionality: The obfuscated program should have the
same functionality (that is, input/output behavior) as the
input program.

Efficiency: The obfuscated program shouldn’t be much
less efficient than the input program.

Obfuscation: This means that the code of the
obfuscated program should be hard to understand.
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Applications

Protection of constants and data of the program
Authentication schemes, e-money, license management

Protection from intelligent tampering
E-money, license management

Algorithms Protection
Defence against competitors

Viruses modification
Making old viruses unrecognizable

Private key cryptosystems → Public key cryptosystem
Basic idea: public key = obfuscated encrypting algorithm of private key cryptosystem
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Motivation to research

Practical necessity
Wide use of Java byte-code technology

New topic: not well developed yet
No single generally accepted formal definition of obfuscation exists

We hope: there are good obfuscation algorithms
Average code is very obfuscated; Rice’s theorem; Classically hard problems

Famous researchers and institutes are involved
Weizmann, Princeton, Stanford; O. Goldreich, P.C. van Oorschot

The International Obfuscated C Code Contest
http://ioccc.org

Can be approached both in theoretical & practical ways
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Research Highlights

1997 A taxonomy of obfuscating transformations –
C. Collberg, C. Thomborson, D. Low

2001 Impossibility result – B. Barak, O. Goldreich,
R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and
K. Yang.

2003 First attempt to survey – L. D’Anna, B. Matt, A. Reisse,
T. Van Vleck, S. Schwab and P. LeBlanc.

A series of Ph.D Dissertations: G. Wroblewski, D. Low, C. Wang . . .

=⇒ Good Ph.D. topic!
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Commercial Obfuscators

Most common techniques:
X name mangling

X control flow mangling
X strings encryption

SandMark
www.cs.arizona.edu/sandmark/

Cloakware, Retroguard, DashO, Klassmaster, yGuard &
many more . . .

http://dmoz.org/ → Computers→ Programming→ Languages→ Java→

Development Tools→ Obfuscators/
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State-of-the-Art

Code transformations
Pro et Contra
Basic tricks
Opaque predicates
Flat control flow

Theoretic approach
Pro et Contra
Blackbox security
Examples of obfuscation with cryptographic security

Other research directions
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Coding transformations

Advantages
Easy to implement
Universal
Good against static analysis

Disadvantages
No guaranteed security
Even no hope for that
Weak against dynamic attacks
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Simple tricks

Split & merge variables, constants, procedures,
modules

Increase & decrease dimension of arrays

Increase & decrease nesting

Addressing & dereferencing

Renaming

Reordering

Cloning

Strings encrypting
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Opaque predicates

Reordering of blocks execution

Dead code insertion

Inserting new IF operators

Opaque predicates: every time the same value.
Difficult to discover by automatical static analysis

If ((q + q2) mod 2) = 0 then do real work else
do dead code

If (any boolean expression) then do real work else
do just the same
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Control flow flattening

Write down a list of all basic blocks

Split and merge some of them

Enumerate them

Replace all calls by indirect pointing:
goto block name

goto block number-th block

goto v-th block

Write a single dispatcher to maintain all control flow
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Provable security

Good News

+ Guaranteed security!
based on computationally hard problems

+ Some positive results

Bad News

– Now: only protection of internal constants.
P computes f(x, p). Task: protect p.

– No hope for universal method
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Black-box security

Informally: an obfuscator should provide a virtual
black-box in the sense that giving a O(P ) code to someone
is equivalent to giving him a black box that computes P

Just the same: anything that can be learned from the
obfuscated form, could have been learned by merely
observing the programs input-output behavior (i.e., by
treating the program as a black-box).

This definition is impossible to meet!
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Interactive access control

Directed multi-graph G

Each node representing an access point
(some abstract secrets & local map inside)

Each edge has a password checking on it

S is predefined start access point (start node)

User: knows some passwords
No a priori knowledge about G

Begins his way from S
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IAC task for obfuscation

The user can reach an access point only by presenting
credentials that can take him from the start node to that
point.

The user gains complete access to a function or secret
available at an access point if and only if the user has
reached that access point.

The user does not learn anything about the structure of
the graph, except what is revealed by the secrets at the
access points he reached and the edges he traversed.

Result[2004]: Black-box security achieved!
Security based on (existence of) pseudorandom functions
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Hiding password checking

Program Π:
var x:string, y:bit;

input(x);

y:=0; output(y);

Family of Programs Πk:
var x:string, y:bit;

input(x);

if k = w then y := 1 else y := 0;

output(y);

Task: make these programs indistinguishable

Result[2001]: Any probabilistic polynomial algorithm can recognize

the actual case with at most 1/2 + neg(size of pass) probability.

Based on (existing of) one-way permutations.
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Not in this talk

Secure architectures approach
new presentation forms to distribute programs

Obfuscation in multiparty systems
splitting program to the set of communicating programs

Making disassembling harder
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Conclusions

Evaluation of the current results

Important research directions

Some useful links
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Has been already done

Many coding transformations

Obscuring static analysis

Some obfuscations with cryptographic security

First steps from general method to attack-dependent
obfuscation
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Necessary to do

Measuring quality of obfuscation algorithms
Evaluating of existing methods
Now: only code complexity metrics

Study of deobfuscation algorithms
Finding hard problems for code analysis

Universal mathematical model

Cryptographic (computational) security for obfuscation
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Best links to start with

L. D’Anna, B. Matt, A. Reisse, T. Van Vleck, S. Schwab and P. LeBlanc.
Self-protecting mobile agents obfuscation report. Technical Report
#03-015, Network Associates Labs, June 2003:
http://opensource.nailabs.com/jbet/papers/obfreport.pdf

“Code Obfuscation” presentation by Mayur Kamat & Nishant Kumat:
http://ee.tamu.edu/˜reddy/ee689_04/pres_mayur_nishant.pdf

Obfuscators subdirectory of Dmoz.org:
http://dmoz.org/Computers/Programming/Languages/Java/

Development_Tools/Obfuscators/

Resources on Obfuscation (huge collection of links to related papers,
books & companies):
http://www.scs.carleton.ca/˜hshen2/ (resources section)
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The End

Thanks for your attention!
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Question Time

? ? ? ? ? ? ?
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Not covered by the talk

Program Obfuscation as a part of Software Protection
Operations on obfuscated code
Micro-obfuscation: functions, procedures, data structures
Adversary knowledge about the program
Nonfunctional models of a program.
Cost of the obfuscation
Potential of obfuscation
What can obfuscation change in the program?
Different behavior on different runs (internal memory of the program).
Nondeterministic nature of the obfuscator
Efficiency of obfuscating transformations
Obfuscatable program properties (e.g. set of all possible output values)
Obfuscation by hiding small procedure in the big one (in steganographic style)
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