
Introduction to Program Obfuscation

Yury Lifshits
Saint-Petersburg State University

http://logic.pdmi.ras.ru/˜yura/
yura@logic.pdmi.ras.ru

Introduction to Program Obfuscation – p. 1/26



Some Linguistics

Obfuscate: tr.v. -cated, -cating, -cates. 1. a. To render obscure.
b. To darken. 2. To confuse: his emotions obfuscated his judgment.
[Lat. obfuscare, to darken : ob(intensive) + Lat. fuscare,
to darken < fuscus, dark.] -obfuscation n. obfuscatory adj

In German Obfuscation is

die Benebelung
die Trübung
die Verdunkelung
die Verschleierung - von Tatsachen
die Verwirrung

Introduction to Program Obfuscation – p. 2/26



Overview

Introduction:
Notion of obfuscation
Motivation and applications
Research history and commercial obfuscators

State-of-the-art:
Code tricks
Theoretical approach & provable security

Conclusions
Evaluation of current results and future research

Introduction to Program Obfuscation – p. 3/26



Notion of Obfuscation

An obfuscator: An algorithm O such that for any program P ,
O(P ) is also a program with following properties:

Functionality: The obfuscated program should have the
same functionality (that is, input/output behavior) as the
input program.

Efficiency: The obfuscated program shouldn’t be much
less efficient than the input program.

Obfuscation: This means that the code of the
obfuscated program should be hard to understand.

Introduction to Program Obfuscation – p. 4/26



Applications

Protection of constants and data of the program
Authentication schemes, e-money, license management

Protection from intelligent tampering
E-money, license management

Algorithms Protection
Defence against competitors

Viruses modification
Making old viruses unrecognizable

Private key cryptosystems → Public key cryptosystem
Basic idea: public key = obfuscated encrypting algorithm of private key cryptosystem

Introduction to Program Obfuscation – p. 5/26



Motivation to research

Practical necessity
Wide use of Java byte-code technology

New topic: not well developed yet
No single generally accepted formal definition of obfuscation exists

We hope: there are good obfuscation algorithms
Average code is very obfuscated; Rice’s theorem; Classically hard problems

Famous researchers and institutes are involved
Weizmann, Princeton, Stanford; O. Goldreich, P.C. van Oorschot

The International Obfuscated C Code Contest
http://ioccc.org

Can be approached both in theoretical & practical ways

Introduction to Program Obfuscation – p. 6/26



Research Highlights

1997 A taxonomy of obfuscating transformations –
C. Collberg, C. Thomborson, D. Low

2001 Impossibility result – B. Barak, O. Goldreich,
R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and
K. Yang.

2003 First attempt to survey – L. D’Anna, B. Matt, A. Reisse,
T. Van Vleck, S. Schwab and P. LeBlanc.

A series of Ph.D Dissertations: G. Wroblewski, D. Low, C. Wang . . .

=⇒ Good Ph.D. topic!

Introduction to Program Obfuscation – p. 7/26



Commercial Obfuscators

Most common techniques:
X name mangling

X control flow mangling
X strings encryption

SandMark
www.cs.arizona.edu/sandmark/

Cloakware, Retroguard, DashO, Klassmaster, yGuard &
many more . . .

http://dmoz.org/ → Computers→ Programming→ Languages→ Java→

Development Tools→ Obfuscators/

Introduction to Program Obfuscation – p. 8/26



State-of-the-Art

Code transformations
Pro et Contra
Basic tricks
Opaque predicates
Flat control flow

Theoretic approach
Pro et Contra
Blackbox security
Examples of obfuscation with cryptographic security

Other research directions

Introduction to Program Obfuscation – p. 9/26



Coding transformations

Advantages
Easy to implement
Universal
Good against static analysis

Disadvantages
No guaranteed security
Even no hope for that
Weak against dynamic attacks

Introduction to Program Obfuscation – p. 10/26



Simple tricks

Split & merge variables, constants, procedures,
modules

Increase & decrease dimension of arrays

Increase & decrease nesting

Addressing & dereferencing

Renaming

Reordering

Cloning

Strings encrypting

Introduction to Program Obfuscation – p. 11/26



Opaque predicates

Reordering of blocks execution

Dead code insertion

Inserting new IF operators

Opaque predicates: every time the same value.
Difficult to discover by automatical static analysis

If ((q + q2) mod 2) = 0 then do real work else
do dead code

If (any boolean expression) then do real work else
do just the same

Introduction to Program Obfuscation – p. 12/26



Control flow flattening

Write down a list of all basic blocks

Split and merge some of them

Enumerate them

Replace all calls by indirect pointing:
goto block name

goto block number-th block

goto v-th block

Write a single dispatcher to maintain all control flow

Introduction to Program Obfuscation – p. 13/26



Provable security

Good News

+ Guaranteed security!
based on computationally hard problems

+ Some positive results

Bad News

– Now: only protection of internal constants.
P computes f(x, p). Task: protect p.

– No hope for universal method

Introduction to Program Obfuscation – p. 14/26



Black-box security

Informally: an obfuscator should provide a virtual
black-box in the sense that giving a O(P ) code to someone
is equivalent to giving him a black box that computes P

Just the same: anything that can be learned from the
obfuscated form, could have been learned by merely
observing the programs input-output behavior (i.e., by
treating the program as a black-box).

This definition is impossible to meet!

Introduction to Program Obfuscation – p. 15/26



Interactive access control

Directed multi-graph G

Each node representing an access point
(some abstract secrets & local map inside)

Each edge has a password checking on it

S is predefined start access point (start node)

User: knows some passwords
No a priori knowledge about G

Begins his way from S

Introduction to Program Obfuscation – p. 16/26



IAC task for obfuscation

The user can reach an access point only by presenting
credentials that can take him from the start node to that
point.

The user gains complete access to a function or secret
available at an access point if and only if the user has
reached that access point.

The user does not learn anything about the structure of
the graph, except what is revealed by the secrets at the
access points he reached and the edges he traversed.

Result[2004]: Black-box security achieved!
Security based on (existence of) pseudorandom functions

Introduction to Program Obfuscation – p. 17/26



Hiding password checking

Program Π:
var x:string, y:bit;

input(x);

y:=0; output(y);

Family of Programs Πk:
var x:string, y:bit;

input(x);

if k = w then y := 1 else y := 0;

output(y);

Task: make these programs indistinguishable

Result[2001]: Any probabilistic polynomial algorithm can recognize

the actual case with at most 1/2 + neg(size of pass) probability.

Based on (existing of) one-way permutations.

Introduction to Program Obfuscation – p. 18/26



Not in this talk

Secure architectures approach
new presentation forms to distribute programs

Obfuscation in multiparty systems
splitting program to the set of communicating programs

Making disassembling harder

Introduction to Program Obfuscation – p. 19/26



Conclusions

Evaluation of the current results

Important research directions

Some useful links

Introduction to Program Obfuscation – p. 20/26



Has been already done

Many coding transformations

Obscuring static analysis

Some obfuscations with cryptographic security

First steps from general method to attack-dependent
obfuscation

Introduction to Program Obfuscation – p. 21/26



Necessary to do

Measuring quality of obfuscation algorithms
Evaluating of existing methods
Now: only code complexity metrics

Study of deobfuscation algorithms
Finding hard problems for code analysis

Universal mathematical model

Cryptographic (computational) security for obfuscation

Introduction to Program Obfuscation – p. 22/26



Best links to start with

L. D’Anna, B. Matt, A. Reisse, T. Van Vleck, S. Schwab and P. LeBlanc.
Self-protecting mobile agents obfuscation report. Technical Report
#03-015, Network Associates Labs, June 2003:
http://opensource.nailabs.com/jbet/papers/obfreport.pdf

“Code Obfuscation” presentation by Mayur Kamat & Nishant Kumat:
http://ee.tamu.edu/˜reddy/ee689_04/pres_mayur_nishant.pdf

Obfuscators subdirectory of Dmoz.org:
http://dmoz.org/Computers/Programming/Languages/Java/

Development_Tools/Obfuscators/

Resources on Obfuscation (huge collection of links to related papers,
books & companies):
http://www.scs.carleton.ca/˜hshen2/ (resources section)

Introduction to Program Obfuscation – p. 23/26

http://opensource.nailabs.com/jbet/papers/obfreport.pdf
http://ee.tamu.edu/~reddy/ee689_04/pres_mayur_nishant.pdf
http://dmoz.org/Computers/Programming/Languages/Java/Development_Tools/Obfuscators/
http://dmoz.org/Computers/Programming/Languages/Java/Development_Tools/Obfuscators/
http://www.scs.carleton.ca/~hshen2/


The End

Thanks for your attention!

Introduction to Program Obfuscation – p. 24/26



Question Time

? ? ? ? ? ? ?

Introduction to Program Obfuscation – p. 25/26



Not covered by the talk

Program Obfuscation as a part of Software Protection
Operations on obfuscated code
Micro-obfuscation: functions, procedures, data structures
Adversary knowledge about the program
Nonfunctional models of a program.
Cost of the obfuscation
Potential of obfuscation
What can obfuscation change in the program?
Different behavior on different runs (internal memory of the program).
Nondeterministic nature of the obfuscator
Efficiency of obfuscating transformations
Obfuscatable program properties (e.g. set of all possible output values)
Obfuscation by hiding small procedure in the big one (in steganographic style)

Introduction to Program Obfuscation – p. 26/26


	Introduction to Program Obfuscation
	Some Linguistics
	Overview
	Notion of Obfuscation
	Applications
	Motivation to research
	Research Highlights
	Commercial Obfuscators
	State-of-the-Art
	Coding transformations
	Simple tricks
	Opaque predicates
	Control flow flattening
	Provable security
	Black-box security
	Interactive access control
	IAC task for obfuscation
	Hiding password checking
	Not in this talk
	Conclusions
	Has been already done
	Necessary to do
	Best links to start with
	The End
	Question Time
	Not covered by the talk

