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Objective

To find and state key open algorithmic
problems for future web technologies
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1 Intro: Criteria and Questionnaire
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4 Problem 3: Tag Propagation

5 Problem 4: Structure Discovery

3 / 33



Outline

1 Intro: Criteria and Questionnaire

2 Problem 1: Large-Scale Filtering

3 Problem 2: Large-Scale Matching

4 Problem 3: Tag Propagation

5 Problem 4: Structure Discovery

3 / 33



Outline

1 Intro: Criteria and Questionnaire

2 Problem 1: Large-Scale Filtering

3 Problem 2: Large-Scale Matching

4 Problem 3: Tag Propagation

5 Problem 4: Structure Discovery

3 / 33



Outline

1 Intro: Criteria and Questionnaire

2 Problem 1: Large-Scale Filtering

3 Problem 2: Large-Scale Matching

4 Problem 3: Tag Propagation

5 Problem 4: Structure Discovery

3 / 33



Outline

1 Intro: Criteria and Questionnaire

2 Problem 1: Large-Scale Filtering

3 Problem 2: Large-Scale Matching

4 Problem 3: Tag Propagation

5 Problem 4: Structure Discovery

3 / 33



INTRO

What are my personal criteria for choosing open
problems?

What kind of questions should I answer about proposed
problems?
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Criteria

Ultimate relation to technology challenge

Familiarity with the corresponding applied field

Interplay of several basic fields

Freshness (hence, badly formalized)

I do not use:

Difficulty

Popularity and age of the problem

Famous author

Your favorite criteria?
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Questionnaire

Technology challenge?

Sample formalization?

Basic fields involved?

Research workflow?

Your constructive feedback?

References? Similar Ideas? [To be done]
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Disclaimer

My style is

1 At first, think independently (e.g. pose new problems)

2 Only after that look into literature

Hence, the following problems might be already known
and heavily studied!
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PROBLEM 1

Large-Scale Filtering

What are the fastest algorithms for personal news
aggregation?
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1.1. Challenge

Personal news aggregation:
Every user has a preference profile:
specified information sources, keywords, tags(topics),
popularity, references to the preferences of others

Every news item has its own description:
text, votes and recommendations, tags,
author reputation, comments

Filtering problem:
To find, say, ten most appropriate news items
for every user
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1.2. Formalization

Every profile is a normalized red vector (point on
sphere) in n-dimensional space

As well, every news description is a normalized blue
vector in the same space

We use cosine measure (scalar product) for similarity

Computational problem: after preprocessing all blue
points, for every incoming red point compute quickly
ten closest blue points

Data structures for storing all profiles and all news?
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1.3. Fields Involved

Text classification, kNN algorithms

Computational Geometry

Data Structures

Compression (sparse sets)

Linear Algebra (singular decomposition trick)

What else?

11 / 33



1.4. Workflow

1 Find fast algorithms for all-to-all filtering problem

2 Suggest data structures for storing profiles and news

3 Study filtering in dynamic settings: with profiles and
descriptions quickly evolving in time

4 Describe spam prevention mechanisms for large
filtering systems
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1.5. Constructive Feedback

Do you know related results?

What is the most important theoretical question in this
problem?

How to make my formalization better?
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PROBLEM 2

Large-Scale Matching

What is the most effective algorithm for distributing
sponsored links among all websites?
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2.1. Challenge

Effective sponsored links (ads) distribution:
Every ad has a target description
Every website has an audience description

Business objective:
Maximize ratio clicks/displays
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2.2. Formalization

Every website’s audience profile is a normalized red
vector in n-dimensional space

As well, every ad target is a normalized blue vector in
the same space

We use cosine measure for similarity

Computational problem: compute matching between
ads and websites that satisfy some constraints and
minimize the sum of distances (ad - website)
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2.3. Fields Involved

Computational Geometry

Linear Algebra (singular decomposition trick)

Data Structures

Compression (sparse sets)

Game theory

Optimization

What else?
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2.4. Workflow

1 State ads distribution as an optimization problem

2 Find algorithms that can approximately solve this
problem faster than (#websites)×(#ads)

3 Introduce feedback to the model: after every click on
any ad we receive some additional knowledge about
the world and can use it for improvement of our
matching
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2.5. Constructive Feedback

Do you know related results?

What is the most important theoretical question in this
problem?

How to make my formalization better?
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PROBLEM 3

Tag Propagation

How to extend partial categorization of websites to the
whole web?
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3.1. Challenge

Web categorization:
People use millions of keywords (tags)
There are billions of webpages
We have very sparse training collection
of pairs (website,tag)

Goal:
Get a fast algorithm that can characterize
any given website

Applications:
Ads targeting
Search results annotations
Automatic web directories
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3.2. Formalization

We have the graph of hyperlinks

Fix a tag. For every initially labelled website let
T0(i) = 1, for others T0(i) = 0

Then we use recursive equation and take a limit:

Tk(i) = Tk−1(i) + α
∑

j links to i

Tk−1(j)

Computational problem: use some preprocessing for
initial tag distribution and then for every given website
compute quickly ten tags with the highest rank
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3.3. Fields Involved

Data Structures

Compression (sparse sets)

Numerical Analysis (speed of convergence)

What else?
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3.4. Workflow

1 Define formulas for tag “propagation”

2 Construct a fast algorithm for computing, say, ten
most relevant tags of arbitrary website
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3.5. Constructive Feedback

Do you know related results?

What is the most important theoretical question in this
problem?

How to make my formalization better?
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PROBLEM 4

Structure Discovery

Consider keywords we use in everyday life. Can we
suggest an algorithm that computes the most appropriate

hierarchy of these keywords?
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4.1. Challenge

We can collect many huge data sets:
call graphs, shopping histories, search histories
social networks, RSS subscription graph
HOW TO BENEFIT FROM THEM?

Example: hierarchy discovery
We have some folksonomy
How to compute “optimal” tags hierarchy?

Applications:
Visualization and better navigation
Solving synonymy problem
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4.2. Formalization

Every tag is characterized by corresponding set of
websites

We want to compute the optimal AND-OR tree of
tags

Optimal means minimal correctness violation

Correctness: sons of OR vertex should be disjoint,
parent set contains children sets, etc...
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4.3. Fields Involved

Computational Biology (phylogeny algorithms)

Approximate algorithms

What else?
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4.4. Workflow

1 Fix a format of tag description and define an
optimality criteria for hierarchy of tags

2 Construct a fast algorithm for computing optimal
hierarchy

3 Study interplay with algorithms for constructing
phylogeny tree
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4.5. Constructive Feedback

Do you know related results?

What is the most important theoretical question in this
problem?

How to make my formalization better?
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Voting

We discuss four problems. Which one do you like the
most?

1 Large-Scale Filtering

2 Large-Scale Matching

3 Tag Propagation

4 Structure Discovery
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Main points

My homepage: http://logic.pdmi.ras.ru/~yura/

Today we learn:

Technology challenges: personal aggregation, effective
ads, usage of huge data collection

Key algorithmic challenge: large-scale algorithms that
are faster than naive (usually quadratic) approaches

Next steps: (1) survey, (2) formalizations, (3) public
discussion

Thanks! Questions?
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