Tiling Periodicity

Juhani Karhumäki¹, Yury Lifshits² and Wojciech Rytter³

¹University of Turku, ²Steklov Institute of Mathematics at St.Petersburg, ³Warsaw University

Combinatorial Pattern Matching 2007

The string S has a **full period** if

$$S = W^k = W \dots W$$

Equivalently,

$$\forall \quad 1 \leq i < i + p \leq n : \quad s_i = s_{i+p}$$

The string *S* has a **full period** if

$$S = W^k = W \dots W$$

Equivalently,

$$\forall \quad 1 \leq i < i + p \leq n : \quad s_i = s_{i+p}$$

Does the following string have full period?

AABBAABBCCDDCDD

The string *S* has a **full period** if

$$S = W^k = W \dots W$$

Equivalently,

$$\forall \quad 1 \leq i < i + p \leq n : \quad s_i = s_{i+p}$$

Does the following string have full period?

AABBAABBCCDDCCDD

Not in the classical sense. But...

Outline of the Talk

1 Notion of Tiling Periodicity

Properties of Tiling Periodicity

Finding Tiling Periods of Minimal Size

Notion of Tiling Periodicity

AABBAABBCCDDCCDD

The string above is not periodic, but the red structure

A A B B A A B B C C D D C C D D

is a kind of period, since we can cover initial string by **four parallel copies** of it:

AABBAABBCCDDCCDD

The string above is not periodic, but the red structure

A A B B A A B B C C D D C C D D

is a kind of period, since we can cover initial string by **four parallel copies** of it:

A A B B A A B B C C D D C C D D

The simplest example:

Formal Definition

A partially defined word (tiler) is a string over $\Sigma \cup \diamond$ alphabet, where \diamond is a special transparent (undefined) letter.

Formal Definition

A partially defined word (tiler) is a string over $\Sigma \cup \diamond$ alphabet, where \diamond is a special transparent (undefined) letter.

A tiling string S is called the **tiling period** of (ordinary) string T if we can cover T by parallel copies of S satisfying the following:

- All defined (visible) letters of *S*-copies match the text letters
- Every text letter covered by **exactly one** defined (visible) letter

• Natural generalization of the classical notion

- Natural generalization of the classical notion
- New tool for text compression

- Natural generalization of the classical notion
- New tool for text compression
- New structural properties of texts
 Conjecture: tiling periodicity is not expressible in word equations

- Natural generalization of the classical notion
- New tool for text compression
- New structural properties of texts
 Conjecture: tiling periodicity is not expressible in word equations
- Relations to multidimensional periodicity

- Natural generalization of the classical notion
- New tool for text compression
- New structural properties of texts
 Conjecture: tiling periodicity is not expressible in word equations
- Relations to multidimensional periodicity
- Pattern discovery

- Natural generalization of the classical notion
- New tool for text compression
- New structural properties of texts
 Conjecture: tiling periodicity is not expressible in word equations
- Relations to multidimensional periodicity
- Pattern discovery. At least my talk is in "pattern discovery" session :-)

Partial Order on Tilers

Definition: a tiler S is **smaller** than a tiler Q iff Q can be splitted into several parallel copies of S satisfying the following:

- All defined (visible) letters of *S*-copies match the visible *Q* letters
- Every *Q* letter covered by **exactly one** defined (visible) letter

Partial Order on Tilers

Definition: a tiler S is **smaller** than a tiler Q iff Q can be splitted into several parallel copies of S satisfying the following:

- All defined (visible) letters of *S*-copies match the visible *Q* letters
- Every *Q* letter covered by **exactly one** defined (visible) letter

AABBAABBCCDDCCDD

is less than

AABBAABBCCDDCCDD

Primitive Tiling Period Conjecture

Conjecture: For every ordinary string there exists a unique primitive tiling period (it is less than any other tiling period).

Reformulation: Any two tiling periods have a common tiling "subperiod"

Primitive Tiling Period Conjecture

Conjecture: For every ordinary string there exists a unique primitive tiling period (it is less than any other tiling period).

Reformulation: Any two tiling periods have a common tiling "subperiod"

Surprisingly, the conjecture is wrong! Look at the (minimal known) counterexample:

Properties of Tiling Periodicity

How Many Tiling Periods? (1/2)

Bodini & Rivals (CPM'06) studied number of tilings L(n) of **unary** word of length n:

•
$$L(1) = 1$$
, for every $n > 1$
 $L(n) = 1 + \sum_{d \mid n, d \neq n} L(d)$

• *L*(36) = 52

How Many Tiling Periods? (2/2)

Our result:

Theorem

There is one-to-one correspondence between tiling of unary word of length nand factorizations $n = n_1 \cdots n_k$ where $n_2, \ldots, n_k \ge 2$

Tiling Periods Live Inside

Theorem

Take any pair of tiling period and classical period. Then they have a common "tiling subperiod"

Tiling Periods Live Inside

Theorem

Take any pair of tiling period and classical period. Then they have a common "tiling subperiod"

Reformulation

Any primitive tiling period of string T is also a tiling period of any classical period of T

Finding Tiling Periods of Minimal Size

Auxiliary Definition: Multi-Period

A word has **multi-period** (a, b) iff a|b and for every k a [kb+1, (k+1)b] block has the full period a

Auxiliary Definition: Multi-Period

A word has **multi-period** (a, b) iff a|b and for every k a [kb+1, (k+1)b] block has the full period a

AABBAABBCCDDCCDD

The text above has multi-periods (1, 2) and (4, 8)

Auxiliary Definition: Multi-Period

A word has **multi-period** (a, b) iff a|b and for every k a [kb+1, (k+1)b] block has the full period a

AABBAABBCCDDCCDD

The text above has multi-periods (1, 2) and (4, 8)

Definition: multi-period (a, b) is **embedded** into another one a', b' iff b|a'

Tiling Period and "his" Multi-Periods

Multi-Period Lemma

Every tiling period corresponds to some sequence of embedded multi-periods $(a_1, b_1) \dots (a_k, b_k)$. The size of period is equal $n \prod_{i=1}^k \frac{a_i}{b_i}$

Preprocessing Step

Preprocessing Lemma There is $\mathcal{O}(n \log n \log \log n)$ preprocessing of the text such every query "is (a, b) a multi-period" can be answered in $\mathcal{O}(\log n)$ time

Preprocessing Step

Preprocessing Lemma There is $\mathcal{O}(n \log n \log \log n)$ preprocessing of the text such every query "is (a, b) a multi-period" can be answered in $\mathcal{O}(\log n)$ time

Trick: Karp-Miller-Rosenberg algorithm

Finding Tiling Periods of Minimal Size

Theorem There is $\mathcal{O}(n \log n \log \log n)$ algorithm for finding a tiling period of minimal size

Conclusions and Future Work

Directions for Further Research

- Whether all primitive tiling periods have the same number of visible letters?
- How often strings are tiling periodic?
- Introduce **not full** tiling periods. How to find the one of minimal size?
- Find natural sources of tiling periodicity

A A B B A A B B C C D D C C D D

• **Result 1:** the primitive tiling period is not necessary unique

- **Result 1:** the primitive tiling period is not necessary unique
- Result 2: tiling periods live "inside" classical

- **Result 1:** the primitive tiling period is not necessary unique
- Result 2: tiling periods live "inside" classical
- **Result 3:** there is bijection between tiling periods of unary words and length factorizations

- **Result 1:** the primitive tiling period is not necessary unique
- Result 2: tiling periods live "inside" classical
- **Result 3:** there is bijection between tiling periods of unary words and length factorizations
- **Result 4:** $O(n \log n \log \log n)$ algorithm for tiling periods of minimal size

Last Slide

Search "Lifshits" or visit http://logic.pdmi.ras.ru/~yura/

Juhani Karhumäki, Yury Lifshits and Wojciech Rytter

Tiling Periodicity

CPM'07 // on-line version

Last Slide

Search "Lifshits" or visit http://logic.pdmi.ras.ru/~yura/

Juhani Karhumäki, Yury Lifshits and Wojciech Rytter

Tiling Periodicity

CPM'07 // on-line version

Thank you for your attention! Questions?