14 февраля 2011 г. Л. О. Чехов (МИАН). Матричные модели: асимптотические разложения и алгебро-геометрические методы их решения.
Асимптотические методы построения решений для корреляционных функций и свободной энергии разнообразных матричных моделей, как было обнаружено в последнее десятилетие, оказались тесно связаны со структурами алгебраической геометрии. Сами по себе эти методы оказались полезными при построении асимптотических разложений во многих других областях математики и математической физики (индексы пересечений на пространствах модулей алгебраических кривых, числа Гурвица, плоские разбиения и пр.) Я опишу эти методы и возникающие при этом уравнения Зайберга–Виттена и Уизема–Кричевера на примере решений для одноматричной (L.Ch., B.Eynard'05) и двужматричной (L.Ch., B.Eynard, N.Orantin'06) эрмитовых моделей и представлю обзор последних достижений при построении пертурбативных и непертурбативных решений для вигнеровских бета-ансамблей. Последние связаны с понятием квантовых римановых поверхностей, введенных Эйнаром, Маршаллом и автором в работах 2010 года, а сами эти ансамбли играют определяющую роль в недавно предложенной Alday, Gaiotto и Tachikawa гипотезе соответствия инстантонных функций Некрасова и Шаташвили конформным блокам теории Лиувилля.
Предыдущие заседания семинара: список докладов. |