This page is in Russian. Sorry, but the author didn't submit the abstract of his talk in English.

Общеинститутский математический семинар


24 октября 2011 г. С. В. Дужин. Пересыпание песка.


Рассмотрим направленный граф и неотрицательную целочисленную функцию на его вершинах (по графу "рассыпаны песчинки"). Если в какой-то вершине число песчинок больше или равно ее исходящей степени, то песчинки по одной пересыпаются в соседние вершины в соответствии с ориентацией графа. Этот процесс однозначно стабилизируется в двух случаях: (1) если граф связный и бесконечный, а число песчинок конечно и (2) если граф связный, конечный, и в нем отмечена одна вершина ("сток"), попадая в которую весь песок исчезает. Во втором случае стабильные конфигурации песка образуют коммутативный моноид по сложению с последующей стабилизацией, и минимальный идеал этого моноида, согласно известной абстрактной теореме, является группой. Это и есть то, что называется "песочная группа графа". Этот термин ("sandpile groups") появился только 20 лет назад, но понятие оказалось связанным со многими классическими и не очень классическими объектами математики, такими как лапласиан графа, полином Татта, перечисление остовных деревьев, якобианы алгебраических кривых, автоморфизмы ожерелий. В докладе будет сделана попытка дать популярное введение в эту интересную и бурно развивающуюся область математики.


Предыдущие заседания семинара: список докладов.