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Testing low-degree trigonometric polynomials

Introduction

Real number model developed by Blum, Shub and Smale in 1989.

The BSS model focusses on algebraic algorithms.

Basic entities: Real numbers

Operations: +, −, ∗, :

Test: x ≥ 0?

Alternative approach: recursive analysis
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Testing low-degree trigonometric polynomials

Introduction

Definition

The class NPR is the set of languages L ⊂ R∗ :=
⋃

n≥1Rn for

which there exists a verifier V with the properties

if x ∈ L then there exists y ∈ R∗ such that V accepts (x , y)

in time polynomial in the size of x

if x 6∈ L then V rejects (x , y) for every y ∈ R∗

Theorem

The problem whether a system of quadratic polynomials has a real

common zero (QPS) is NPR-complete
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Testing low-degree trigonometric polynomials

Introduction

Line of research: how do important classical theorems behave in

the BSS model? What happens to the proofs?

Better understanding of the relationship between both models.

New questions which can be interesting on their own.

Example

NPR is decidable in single exponential time (Grigoriev &

Vorobjov, Renegar, Heintz et al, ...)

Toda’s theorem (Basu & Zell)

PCPR theorem (Baartse & Meer 2013)
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Introduction

Theorem (ALMSS 1992, Algebraic proof)

Every L ∈ NP has a probabilistic verifier that uses O(log(n))

random bits to make O(1) queries to the certificate such that

for all x ∈ L there is a certificate that is accepted and

for all x 6∈ L every certificate is rejected with high probability.

In short: NP = PCP(log n, 1).

Theorem (Dinur 2005, Combinatorial proof)

NP = PCP(log n, 1)
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Introduction

Theorem (Baartse, Meer 2013, along the lines of Dinur)

NPR = PCPR(log n, 1)

Question

Can the PCPR theorem also be proven along the lines of ALMSS?

To what extend can the coding techniques used by ALMSS be

applied in the BSS model? Are there alternatives?
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Testing low-degree trigonometric polynomials

Low degree tests and the benefit of trigonometric polynomials

Essential in ALMSS:

Given g : F k → F (finite field),

is there a polynomial P with low degree

such that for most x ∈ F k ,

g(x) = P(x)?
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Low degree tests and the benefit of trigonometric polynomials

Essential in ALMSS:

Given g : F k → F (finite field),

is there a polynomial P with low degree

such that for most x ∈ F k ,

g(x) = P(x)?

Line test:

Does g agree with pLi
on x?

Fk

Li

x
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Low degree tests and the benefit of trigonometric polynomials

Theorem (Rubinfeld, Sudan)

If there exist univariate polynomials pL1 , . . . , pLm with low degree

such that Pr[pLi
agrees with g on x ] ≥ 1− δ, then there exists a

polynomial P : F k → F with low degree that agrees with g on all

but a 2δ fraction of arguments.

Theorem (Friedl, Hatsagi, Shen)

Let A ⊆ R be finite. Given g : Ak → R, performing O(k) line tests

establishes that g is close to a low-degree polynomial.
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Low degree tests and the benefit of trigonometric polynomials

Example:

Let F be the finite field with 17 elements. We look at the

differences between considering the ”same” function as function

from F 2 to F and as function from {0, . . . , 16}2 → R.
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differences between considering the ”same” function as function
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Low degree tests and the benefit of trigonometric polynomials

Example:

Let F be the finite field with 17 elements. We look at the

differences between considering the ”same” function as function

from F 2 to F and as function from {0, . . . , 16}2 → R.

g(x , y) = xy2

L = {(t + 4, t)|t ∈ F}

gL(t) = (t + 4)t2

gL(t) =

 (t + 4)t2 t ≤ 12

(t − 13)t2 t > 12
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Low degree tests and the benefit of trigonometric polynomials

Example:

Let F be the finite field with 17 elements. We look at the

differences between considering the ”same” function as function

from F 2 to F and as function from {0, . . . , 16}2 → R.

g(x , y) = xy2

L = {(2t + 1, 3t + 1)|t ∈ F}
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Low degree tests and the benefit of trigonometric polynomials

Example:

Let F be the finite field with 17 elements. We look at the

differences between considering the ”same” function as function

from F 2 to F and as function from {0, . . . , 16}2 → R.

g(x , y) = xy2

L = {(2t + 1, 3t + 1)|t ∈ F}

gL(t) = (2t + 1)(3t + 1)2
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Low degree tests and the benefit of trigonometric polynomials

Example:

Let F be the finite field with 17 elements. We look at the

differences between considering the ”same” function as function

from F 2 to F and as function from {0, . . . , 16}2 → R.

g(x , y) = xy2

L = {(2t + 1, 3t + 1)|t ∈ F}

gL(t) = (2t + 1)(3t + 1)2

gL(t) =



(2t + 1)(3t + 1)2 t ≤ 5

(2t + 1)(3t − 16)2 5 < t ≤ 7

(2t − 16)(3t − 16)2 7 < t ≤ 10

(2t − 16)(3t − 33)2 10 < t
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Low degree tests and the benefit of trigonometric polynomials

Example:

Let F be the finite field with 17 elements. We look at the

differences between considering the ”same” function as function

from F 2 to F and as function from {0, . . . , 16}2 → R.

g : {0, 1, . . . , 16}k → R

x 7→

 0 x1 < 8

1 x1 ≥ 8
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Low degree tests and the benefit of trigonometric polynomials

Solution:

Use trigonometric polynomials with appropriate period.

The difference between the multiplication and addition in F and

the multiplication and addition in R becomes irrelevant.
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Low degree tests and the benefit of trigonometric polynomials

Solution:

Use trigonometric polynomials with appropriate period.

The difference between the multiplication and addition in F and

the multiplication and addition in R becomes irrelevant.

h(x , y) = sin( 2π
|F |x) cos(2 2π

|F |y)
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Low degree tests and the benefit of trigonometric polynomials

Solution:

Use trigonometric polynomials with appropriate period.

The difference between the multiplication and addition in F and

the multiplication and addition in R becomes irrelevant.

h(x , y) = sin( 2π
|F |x) cos(2 2π

|F |y)

L = {(t + 4, t)|t ∈ F}

hL(t) = sin( 2π
|F |(t + 4)) cos(2 2π

|F | t)
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Low degree tests and the benefit of trigonometric polynomials

Solution:

Use trigonometric polynomials with appropriate period.

The difference between the multiplication and addition in F and

the multiplication and addition in R becomes irrelevant.

h(x , y) = sin( 2π
|F |x) cos(2 2π

|F |y)
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hL = sin( 2π
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Rough outline of the proof that this test works

Only lines with small directional vector are suitable for a test.

Not possible to copy the proof for polynomials from F k to F .

Outline

The suitable lines connect F k well. Let G = (V ,E ) be the

graph with V = F k and (x , y) ∈ E if there is a suitable line

connecting x and y . The graph G is an expander with

expansion parameter λ(G ) close to 1.

If f : F k → R is ε-close to a polynomial, then the probability

that the line test rejects is about ε, but only if ε is small.
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Rough outline of the proof that this test works

Fk
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Rough outline of the proof that this test works

In case f has distance almost 1 to any polynomial we reason as

follows. We construct a finite sequence f1, f2, . . . , fn such that

f1 = f and fn is a polynomial

fi is very close to fi+1

for every fi the probability that the line test rejects is at most

two times the probability that the line test rejects f .
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Rough outline of the proof that this test works
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Rough outline of the proof that this test works
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Theorem

If the line test finds an error with probability less than ε, then

g : F k → R is close to a low degree trigonometric polynomial.
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Theorem in detail

Theorem (All details)

Let F be a finite field with q elements where q is a prime number. Let d ∈ N, h := 1015 and k > 3h such that

q ≥ 104(2hkd + 1)3. There exists a probabilistic verification algorithm in the BSS-model of computation over the

reals with the following properties:

The verifier gets as input a function value table of a multivariate function f : F k → R and a proof string

π consisting of at most q2k segments (blocks). Each segment consists of 2hkd + k + 1 real components.

Such a segment is seen as specifying a degree hkd polynomial by its coefficients and claiming that this is

the restriction of f to the corresponding line.

The verifier first uniformly generates O(k · log q) random bits; next, it uses the random bits to determine a

point x ∈ F k together with one segment in the proof string it wants to read. Finally, using the values of

f (x) and those of the chosen segment it performs a line test. According to the outcome of the test the

verifier either accepts or rejects the input.

The running time of the verifier is polynomially bounded in the quantity k · log q, i.e., polylogarithmic in

the input size O(k · q2k ).

For every function value table representing a trigonometric max-degree d polynomial there exists a proof

string such that the verifier accepts with probability 1.

For any 0 < ε < 10−19 and for every function value table whose distance to a closest max-degree 2hkd

polynomial is at least 2ε the probability that the verifier rejects is at least ε, no matter what proof string is

given.
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Future work and open questions

Further questions:

What remains to be done in the proof of the PCPR theorem?

segmentation procedure

segmentable sum check

Is there a way to test algebraic polynomials while querying

only a constant number of segments?

Can the number of queries in the PCPR theorem be reduced

to a small number?
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