Notions of metric dimension of corona products: combinatorial and computational results

Henning Fernau Universität Trier, Germany

fernau@uni-trier.de

Juan Alberto Rodríguez-Velázquez Universitat Rovira i Virgili, Tarragona, Spain

juanalberto.rodriguez@urv.cat

Moscow, June 2014

Overview

- Graph products and graph parameters
- Combinatorial results
- Complexity results
- Conclusions

Graph products and graph parameters

- A recurring theme in graph combinatorics:
- Bound parameters of a product graph by parameters of its constituents!
- The results (proofs) are often of a computational nature,
- but of little practical algorithmic use.

Here: Good (exact) bounds could yield computational insights.

Corona product (Frucht, Harary 1970) a lesser known asymmetric graph product

G, H: graphs of order n_G, n_H .

The *corona product (graph)* $G \odot H$ is obtained by

- taking one copy of G and n_G copies of H and
- introducing an edge between
 - *** each vertex from the i^{th} copy of H and
 - *** the i^{th} vertex of G.

 $P_4 \odot P_5$:

An abstract detour (with applications): Let (X, d) be a metric space.

The *diameter* of a point set $S \subseteq X$ is $diam(S) := sup\{d(x,y) : x,y \in S\}$.

A point $z \in X$ is said to *distinguish* two points x and y of X if $d(z, x) \neq d(z, y)$.

A *generator* of (X,d) is a set $S\subseteq X$ such that any pair of points of X is distinguished by some point of S.

If the only distances are 0, 1, ..., k, then x, y are *neighbors* if d(x, y) = 1.

A *local generator* of (X,d) is a set $S\subseteq X$ such that any pair of neighbored points of X is distinguished by some point of S.

A possible application: a traveler lost in some metric space can locate himself by knowing his distance to all generator points.

→ Navigation applications of "locating sets".

Local generators help with local disorientation.

Graphs, metrices and derived parameters

Let G = (V, E) be a connected graph.

 $d_G(x,y)$: the length of a shortest path between vertices u and v.

Clearly, (V, d_G) is a metric space. The *diameter* of a graph is thus understood.

 $S \subseteq V$ is a *metric generator* for G if it is a generator of (V, d_G) .

A minimum metric generator is known as a *metric basis*, and its cardinality is the *metric dimension* of G, denoted by $\dim(G)$.

see: Slater 1975; Harary, Melter 1976; for applications: Johnson 1993/1998

Derived notions: *local metric generator*, giving rise to the *local metric dimension* of G, denoted by $\dim_l(G)$; see Okamoto 2010.

Alternative myopic metrization of V: $d_{G,2}(x,y) = \min\{d_G(x,y), 2\}$. Can only differentiate neighbors from non-neighbors.

Derived notions: (local) adjacency generator, leading to the (local) adjacency dimension of G, denoted by $\dim_A(G)$ or $\dim_{A,l}(G)$; see Saputro 2013; very much related to that of a 1-locating dominating set Charon, Hudry, Lobstein 2003.

Simple facts

By definition, the following inequalities hold for any graph G:

- $\dim(G) \leq \dim_A(G)$; if $\dim(G) \leq 2$, then $\dim(G) = \dim_A(G)$;
- $\dim_l(G) \leq \dim_{A,l}(G)$;
- $\dim_l(G) \leq \dim(G)$;
- $\dim_{A,l}(G) \leq \dim_A(G)$;
- $\gamma(G) \leq \dim_A(G) + 1$ (if S is an adjacency generator, then at most one vertex is not dominated by S);
- $\dim_{A,l}(G) \leq \beta(G)$ (each vertex cover is a local adjacency generator).

Concrete facts for paths and stars

- 2. $\dim_l(K_{1,n}) = \dim_{A,l}(K_{1,n}) = 1 \le n-1 = \dim(K_{1,n}) = \dim_A(K_{1,n}), n \ge 2;$

$$n = 4$$
: local versus global

- 3. $\gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil \leq \left\lfloor \frac{2n+2}{5} \right\rfloor = \dim_A(P_n), n \geq 7;$
- 4. $\left\lfloor \frac{n}{4} \right\rfloor \leq \dim_{A,l}(P_n) \leq \left\lceil \frac{n}{4} \right\rceil \leq \left\lfloor \frac{n}{2} \right\rfloor = \beta(P_n), n \geq 2.$

A small example for the corona product

The blue vertices forms an adjacency basis for $P_4 \odot P_5$ but not a dominating set.

The metric basis is smaller in this example:

Overview

Graph products and graph parameters

• Combinatorial results

Complexity results

Conclusions

The main combinatorial result

Theorem 1 For any connected graph G of order $n_G \ge 2$ and for any non-trivial graph H, $\dim(G \odot H) = n_G \cdot \dim_A(H)$.

Hence,
$$\dim(P_4 \odot P_5) = 4 \cdot \dim_A(P_5) = 4 \cdot \left\lfloor \frac{2 \cdot 5 + 2}{5} \right\rfloor = 4 \cdot 2 = 8$$
:

If G is a connected graph with $n_G \ge 2$ and H is non-trivial, $\dim(G \odot H) = n_G \cdot \dim_A(H)$.

Claim 1: If S is an adjacency generator of H, then n_G copies of S form a metric generator of $G \odot H$.

- $-\{v\} \times H_v \subseteq G \odot H \text{ has diam}(\{v\} \times H_v) = 2. \rightsquigarrow \forall x, y \in H_v \exists z \in S_v \ d(z, x) \neq d(z, y).$
- Consider $u, v \in G$, $u \neq v$. Pick $z \in S_v$ so that d(z, u) > d(z, v).
- Let $x \in H_v$ and $y \in H_u$. Then, for $z \in S_v$, $d(z, x) \neq d(z, y)$.
- For $v \in G$ and $x \in H_v$, choose $z \in S_u$ s.t. d(z, x) > d(z, v).
- For $v \in G$ and $x \in H_u$, choose $z \in S_v$ s.t. d(z, x) > d(z, v).

The last three items are due to the following Fact: G forms a separator in $G \odot H$.

This "bottleneck argument" also yields: Claim 2: The restriction of any metric generator of $G \odot H$ to some copy H_v is an adjacency generator of H_v .

More combinatorial results: Going into some technical details

Theorem 2 Let G be a connected graph of order $n_G \geq 2$ and let H be a non-trivial graph. If there exists an adjacency basis for H which is also a dominating set and if, for any adjacency basis S for H, there exists some $v \in V(H) - S$ such that $S \subseteq N_H(v)$, then

$$\dim_A(G \odot H) = n_G \cdot \dim_A(H) + \gamma(G).$$

Corollary 3 Let $r \ge 2$. Let G be a connected graph of order $n_G \ge 2$. Then,

$$\dim_A(G \odot K_r) = n_G(r-1) + \gamma(G).$$

More combinatorial results: Assume G is connected and H is non-trivial.

Theorem 4 Let $n_G \geq 2$. The following statements are equivalent:

- 1. There exists an adjacency basis S for H, which is also a dominating set, such that for every $v \in V(H) S$ it is satisfied that $S \nsubseteq N_H(v)$.
- 2. $\dim_A(G \odot H) = n_G \cdot \dim_A(H)$.
- 3. $\dim_A(G \odot H) = \dim(G \odot H)$.

Theorem 5 Let $n \geq 3$. The following statements are equivalent:

- 1. No adjacency basis for H is a dominating set.
- 2. $\dim_A(G \odot H) = n_G \cdot \dim_A(H) + n_G 1.$
- 3. $\dim_A(G \odot H) = \dim(G \odot H) + n_G 1$.

More combinatorial results: Going local

Theorem 6 For any connected graph G of order $n_G \geq 2$ and any non-trivial graph H, $\dim_l(G \odot H) = n_G \cdot \dim_{A,l}(H)$.

Under the same conditions, we can obtain:

Theorem 7 The following assertions are equivalent.

- 1. There exists a local adjacency basis S for H such that $\forall v \in V(H) S : S \not\subseteq N_H(v)$.
- 2. $\dim_{A,l}(G \odot H) = n_G \cdot \dim_{A,l}(H)$.
- 3. $\dim_l(G \odot H) = \dim_{A,l}(G \odot H)$.

Theorem 8 The following assertions are equivalent.

- 1. For any local adjacency basis S for H, there exists some $v \in V(H) S$ with $S \subseteq N_H(v)$.
- 2. $\dim_{A,l}(G \odot H) = n_G \cdot \dim_{A,l}(H) + \gamma(G)$.
- 3. $\dim_l(G \odot H) = \dim_{A,l}(G \odot H) \gamma(G)$.

Overview

- Graph products and graph parameters
- Combinatorial results
- Complexity results
- Conclusions

Decidability problems

DIM: Given: G and k, decide if $\dim(G) \leq k$ or not.

LOCDIM: Given G and k, decide if $\dim_l(G) \leq k$ or not.

ADJDIM: Given G and k, decide if $\dim_A(G) \leq k$ or not.

LOCADJDIM: Given G and k, decide if $\dim_{A,l}(G) \leq k$ or not.

VC: Given G and k, decide if $\beta(G) \leq k$ or not.

Dom: Given G and k, decide if $\gamma(G) \leq k$ or not.

Using combinatorial results for \mathcal{NP} -hardness proofs I

Theorem 9 ADJDIM is \mathcal{NP} -complete.

For the hardness, recall Cor. 3: $\dim_A(G \odot K_2) = n_G + \gamma(G)$. If $\dim_A(G \odot K_2)$ could be determined in poly-time, so could $\gamma(G)$.

Theorem 10 (other reductions known) DIM is \mathcal{NP} -complete.

For the hardness, recall that Thm. 1 yields: $\dim(K_2 \odot H) = 2 \cdot \dim_A(H)$. If $\dim(K_2 \odot H)$ could be determined in poly-time, so could $\dim_A(H)$.

Using combinatorial results for \mathcal{NP} -hardness proofs II

Theorem 11 LOCADJDIM is \mathcal{NP} -complete.

For the hardness, check out the conditions of Thm. 8. Hence,

$$\dim_{A,l}(G \odot K_2) = n_G \cdot \dim_{A,l}(K_2) + \gamma(G) = n_G + \gamma(G).$$

If $\dim_{A,l}(G \odot K_2)$ could be determined in poly-time, so could $\gamma(G)$.

Theorem 12 LOCDIM is \mathcal{NP} -complete.

By Thm. 6, $\dim_l(K_2 \odot H) = 2 \cdot \dim_{A,l}(H)$. If $\dim_l(K_2 \odot H)$ could be determined in poly-time, so could $\dim_{A,l}(H)$.

Conclusions

- Precise combinatorial results (not "only" bounds) that relate different graph parameters are very useful for complexity results.
 - → Reduction cooks, look up comb. recipes!
 Mathematicians, produce characterizations!
- Our reductions also yield non-existence of sub-exponential $\mathcal{O}^*(2^{o(n)})$ algorithms for our problems, assuming ETH.
- Picture is less clear for approximability or parameterized complexity.

Thanks for your attention!

