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Main result

Theorem: Let L ⊆ A∗ and m ≥ 1. The following are equivalent:

1. L is definable in Σ2
m[<].

2. The ordered syntactic monoid Synt(L) of L is in Wm.

3. Synt(L) is in DA and satisfies Um ≤ Vm.



Logic

I Syntax FO:

ϕ = ∃x
(
a(x)∧
∀y(¬b(y) ∨ x < y)∧
∃z(x < z ∧ b(z))

)
I Syntactic properties / resources:

I 3 variables: FO3

I quantifier depth 2
I 1 quantifier alternation: Σ2

Σ3
2

I Semantics FO:

I L(ϕ) = {a, c}∗a {a, b, c}∗ b {a, b, c}∗

I Alternative:

ψ = ∃x(b(x)) ∧ ∀x∃y
(
b(x) → (y < x ∧ a(y))

)



Understanding a logic fragment F : (e.g. F = FO)

I Complexity of computational problems for F ?
(satisfiability for FO is non-elementary)

I Which languages can be defined in F ? (FO = star-free)

I How can we decide whether a given regular language L
is definable in F ? (FO = aperiodic)

I Closure properties of the F-definable languages?
(FO is closed under inverse homomorphisms)

I Which other fragment also defines the F-definable languages?
(FO = LTL = FO3)

I Is separation by F-definable languages decidable? (yes)

Computation of Separators? (yes)

⇒ descriptive complexity theory within the regular languages



The role of algebra:

I Many effective characterizations of definability in F rely on
algebra.

I Outline: L ⊆ A∗ is F-definable ⇔ Synt(L) ∈ V
for some class V of finite monoids

I membership in V decidable ⇒ definability in F decidable

I Sometimes algebra can only be found below the surface, e.g.
FO = counter-free.

I Usually, classes of finite monoids and operations on finite
monoids are easier to handle than in the case of automata.

I “Good” algebraic characterizations can often be translated to
automata.

I Many closure properties come for free!



ω-terms

I M finite monoid, u ∈ M is idempotent if u2 = u

I there exists ω(M) ≥ 1 such that ∀u ∈ M: uω(M) is idempotent

I idea behind ω-terms:
Use one formal symbol ω which works for all finite monoids

I ω-terms: s ::= x | ss | sω for variable x ∈ Ω

I a mapping h : Ω→ M extends to homomorphism
h : {ω-terms over Ω} → M by setting h(sω) = h(s)ω(M)

I M satisfies an identity s = t if h(s) = h(t) for all h : Ω→ M

I Example 1: xy = yx defines the finite commutative monoids

I Example 2: (xy)ωx(xy)ω = (xy)ω defines DA

I Example 3: (xy)ωx(ts)ω = (xy)ωs(ts)ω defines J

I identities s ≤ t for ordered monoids

I “distance” from ω-terms to logic is rather large



Block products

I For a homomorphism h : A∗ → N let AN = N × A× N
and let σh : A∗ → A∗N , a1 · · · an 7→ b1 · · · bn
with bi =

(
h(a1 · · · ai−1), ai , h(ai+1 · · · an)

)
.

I L ⊆ A∗ is recognized by monoid in V ∗∗W if there exists a
homomorphism h : A∗ → N ∈W such that L is union of
languages σ−1(K ) ∩ Lh with K ⊆ A∗N being recognized by
monoid in V and Lh ⊆ A∗ being recognized by h.

I Equivalent construction using monoids only (no
homomorphisms, no recognition) is called the block product.

I Block products do not automatically give decidability.

I “distance” between block products and logic is rather small



Main result

I Σ2
m[<]: two variables, m blocks = m − 1 nested negations

I Example: A∗a1A
∗ · · · akA∗ is definable in Σ2

1[<].

I W1 = J x ≤ 1 K, Wm+1 = Wm ∗∗ J

I U1 = z , V1 = 1,
Um+1 = (Umxm)ωUm(ymUm)ω,
Vm+1 = (Umxm)ωVm(ymUm)ω

Theorem: Let L ⊆ A∗ and m ≥ 1. The following are equivalent:

1. L is definable in Σ2
m[<].

2. The ordered syntactic monoid Synt(L) of L is in Wm.

3. Synt(L) is in DA and satisfies Um ≤ Vm.



From logic to block products

Lemma: If L is definable in Σ2
m[<], then Synt(L) ∈Wm.

Proof:

I m = 1: L satisfies z ≤ 1:

x y xy

z

xy

I m > 1: innermost block ψ(x) of ϕ ∈ Σ2
m[<]

a

x

n1 n2
(n1, a, n2)

x

n1, n2 ∈ N for N ∈ J [Simon’s Theorem]

I “equivalent” formula ϕ′ ∈ Σ2
m−1[<] over alphabet N × A× N

I Induction: ϕ′ ∈Wm−1

I Thus ϕ ∈Wm = Wm−1 ∗∗ J. 2
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Remarks

I Step from Wm to Um ≤ Vm is also easy.

I Difficult part (as usual): from Um ≤ Vm to Σ2
m[<]

I Related results: Effective characterizations of FO2
m[<]

[K., Weil 2012], [Krebs, Straubing 2012]

I No immediate connection between FO2
m[<] and Σ2

m[<]

Thank you!
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