Block Products and Nesting Negations in FO²

Lukas Fleischer

Manfred Kufleitner

Alexander Lauser

Universität Stuttgart, Germany

CSR 2014

Moscow, Russia

June 9, 2014

Main result

Theorem: Let $L \subseteq A^*$ and $m \ge 1$. The following are equivalent:

- 1. L is definable in $\sum_{m}^{2} [<]$.
- 2. The ordered syntactic monoid Synt(L) of L is in W_m .
- 3. Synt(L) is in **DA** and satisfies $U_m \leq V_m$.

Logic

Syntax FO:

$$\varphi = \exists x (a(x) \land \forall y (\neg b(y) \lor x < y) \land \exists z (x < z \land b(z)))$$

- Syntactic properties / resources:
 - ▶ 3 variables: FO³
 - quantifier depth 2
 - ▶ 1 quantifier alternation: Σ_2
- Semantics FO:
 - $L(\varphi) = \{a, c\}^* a \{a, b, c\}^* b \{a, b, c\}^*$
- ► Alternative:

$$\psi = \exists x (b(x)) \land \forall x \exists y (b(x) \rightarrow (y < x \land a(y)))$$

Understanding a logic fragment \mathcal{F} : (e.g. $\mathcal{F} = FO$)

- ► Complexity of computational problems for *F*? (satisfiability for FO is non-elementary)
- ▶ Which languages can be defined in \mathcal{F} ? (FO = star-free)
- ► How can we decide whether a given regular language L is definable in F?
 (FO = aperiodic)
- ► Closure properties of the F-definable languages? (FO is closed under inverse homomorphisms)
- ▶ Which other fragment also defines the \mathcal{F} -definable languages? (FO = LTL = FO³)
- Is separation by \mathcal{F} -definable languages decidable? (yes) Computation of Separators? (yes)
- ⇒ descriptive complexity theory within the regular languages

The role of algebra:

- ▶ Many effective characterizations of definability in 𝓕 rely on algebra.
- ▶ Outline: $L \subseteq A^*$ is \mathcal{F} -definable \Leftrightarrow Synt(L) \in **V** for some class **V** of finite monoids
- ightharpoonup membership in ightharpoonup decidable \Rightarrow definability in \mathcal{F} decidable
- Sometimes algebra can only be found below the surface, e.g. FO = counter-free.
- Usually, classes of finite monoids and operations on finite monoids are easier to handle than in the case of automata.
- "Good" algebraic characterizations can often be translated to automata.
- Many closure properties come for free!

ω -terms

- ▶ *M* finite monoid, $u \in M$ is idempotent if $u^2 = u$
- ▶ there exists $\omega(M) \ge 1$ such that $\forall u \in M$: $u^{\omega(M)}$ is idempotent
- idea behind ω -terms: Use one formal symbol ω which works for all finite monoids
- ▶ ω-terms: $s ::= x \mid ss \mid s^ω$ for variable x ∈ Ω
- ▶ a mapping $h: \Omega \to M$ extends to homomorphism $h: \{\omega\text{-terms over }\Omega\} \to M$ by setting $h(s^{\omega}) = h(s)^{\omega(M)}$
- ▶ M satisfies an identity s = t if h(s) = h(t) for all $h : \Omega \to M$
- **Example** 1: xy = yx defines the finite commutative monoids
- **Example 2:** $(xy)^{\omega}x(xy)^{\omega}=(xy)^{\omega}$ defines **DA**
- ► Example 3: $(xy)^{\omega}x(ts)^{\omega} = (xy)^{\omega}s(ts)^{\omega}$ defines **J**
- ▶ identities *s* < *t* for ordered monoids
- ▶ "distance" from ω -terms to logic is rather large

Block products

- ► For a homomorphism $h: A^* \to N$ let $A_N = N \times A \times N$ and let $\sigma_h: A^* \to A_N^*$, $a_1 \cdots a_n \mapsto b_1 \cdots b_n$ with $b_i = (h(a_1 \cdots a_{i-1}), a_i, h(a_{i+1} \cdots a_n))$.
- ▶ $L \subseteq A^*$ is recognized by monoid in $\mathbf{V} ** \mathbf{W}$ if there exists a homomorphism $h : A^* \to N \in \mathbf{W}$ such that L is union of languages $\sigma^{-1}(K) \cap L_h$ with $K \subseteq A_N^*$ being recognized by monoid in \mathbf{V} and $L_h \subseteq A^*$ being recognized by h.
- Equivalent construction using monoids only (no homomorphisms, no recognition) is called the block product.
- Block products do not automatically give decidability.
- "distance" between block products and logic is rather small

Main result

- $\Sigma_m^2[<]$: two variables, m blocks = m-1 nested negations
- **Example:** $A^*a_1A^*\cdots a_kA^*$ is definable in $\Sigma_1^2[<]$.
- ▶ $W_1 = [x \le 1]$, $W_{m+1} = W_m ** J$
- $U_1 = z, V_1 = 1,$ $U_{m+1} = (U_m x_m)^{\omega} U_m (y_m U_m)^{\omega},$ $V_{m+1} = (U_m x_m)^{\omega} V_m (y_m U_m)^{\omega}$

Theorem: Let $L \subseteq A^*$ and $m \ge 1$. The following are equivalent:

- 1. *L* is definable in $\sum_{m}^{2} [<]$.
- 2. The ordered syntactic monoid Synt(L) of L is in W_m .
- 3. Synt(L) is in **DA** and satisfies $U_m \leq V_m$.

Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

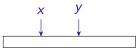
Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:



Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:



Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:



Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:



Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:

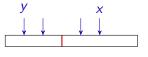


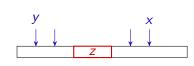


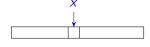
Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:



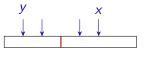


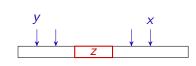


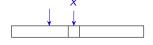
Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:



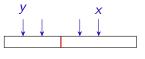


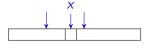


Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:

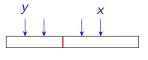


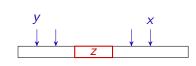


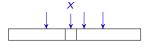
Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:





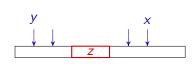


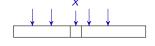
Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:



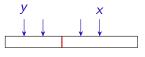


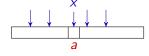


Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:

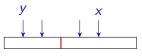


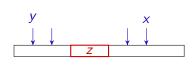


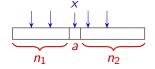
Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:



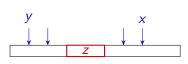




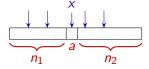
Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:



▶ m > 1: innermost block $\psi(x)$ of $\varphi \in \Sigma_m^2[<]$

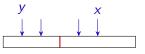


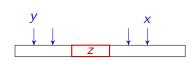
 $n_1, n_2 \in N$ for $N \in J$ [Simon's Theorem]

Lemma: If *L* is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

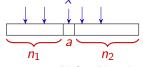
Proof:

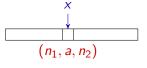
▶ m = 1: L satisfies $z \le 1$:





▶ m > 1: innermost block $\psi(x)$ of $\varphi \in \Sigma_m^2[<]$





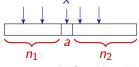
 $n_1, n_2 \in N$ for $N \in \mathbf{J}$ [Simon's Theorem]

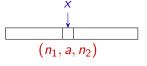
Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:

▶ m > 1: innermost block $\psi(x)$ of $\varphi \in \Sigma_m^2[<]$





 $n_1, n_2 \in N$ for $N \in J$ [Simon's Theorem]

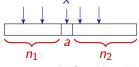
• "equivalent" formula $\varphi' \in \Sigma_{m-1}^2[<]$ over alphabet $N \times A \times N$

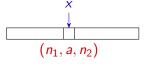
Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

Proof:

▶ m = 1: L satisfies $z \le 1$:

▶ m > 1: innermost block $\psi(x)$ of $\varphi \in \Sigma_m^2[<]$





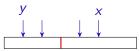
 $n_1, n_2 \in N$ for $N \in J$ [Simon's Theorem]

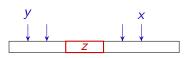
- "equivalent" formula $\varphi' \in \Sigma^2_{m-1}[<]$ over alphabet $N \times A \times N$
- ▶ Induction: $\varphi' \in \mathbf{W}_{m-1}$

Lemma: If L is definable in $\Sigma_m^2[<]$, then $\mathrm{Synt}(L) \in \mathbf{W}_m$.

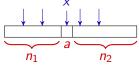
Proof:

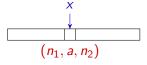
▶ m = 1: L satisfies $z \le 1$:





▶ m > 1: innermost block $\psi(x)$ of $\varphi \in \Sigma_m^2[<]$





 $n_1, n_2 \in N$ for $N \in J$ [Simon's Theorem]

- "equivalent" formula $\varphi' \in \Sigma^2_{m-1}[<]$ over alphabet $N \times A \times N$
- ▶ Induction: $\varphi' \in \mathbf{W}_{m-1}$
- ▶ Thus $\varphi \in \mathbf{W}_m = \mathbf{W}_{m-1} ** \mathbf{J}$.

Remarks

- ▶ Step from \mathbf{W}_m to $U_m \leq V_m$ is also easy.
- ▶ Difficult part (as usual): from $U_m \le V_m$ to $\Sigma_m^2[<]$
- ▶ Related results: Effective characterizations of FO²_m[<] [K., Weil 2012], [Krebs, Straubing 2012]
- ▶ No immediate connection between $FO_m^2[<]$ and $\Sigma_m^2[<]$

Thank you!