Dynamic Complexity of Planar 3-connected Graph Isomorphism

Jenish C. Mehta

Fixed Problem

Input

Computed Solution

slight change

Complexity of updating the solution?

Fixed Problem

Input
A Relation filled

with tuples

slight change Insertion/Deletion of a tuple **Computed Solution**

A set of Relations

Complexity of updating the solution?

Complexity Class in which the Relations can be updated?

Definition. For any static complexity class C, we define its dynamic version, DynC as follows: Let $\rho = \langle R_1^{a_1}, ..., R_s^{a_s}, c_1, ..., c_t \rangle$, be any vocabulary and $S \subseteq STRUC(\rho)$ be any problem. Let $R_{n,\rho} = \{ins(i,a'), del(i,a'), set(j,a) \mid 1 \le i \le s, a' \in \{0,...,n-1\}^{a_i}, 1 \le j \le t\}$ be the request to insert/delete tuple a' into/from the relation R_i , or set constant c_j to a.

Let $eval_{n,\rho}: R_{n,\rho}^* \to STRUC(\rho)$ be the evaluation of a sequence or stream of requests. Define $S \in \mathsf{DynC}$ iff there exists another problem $T \subset STRUC(\tau)$ (over some vocabulary τ) such that $T \in \mathsf{C}$ and there exist maps f and g:

$$f: R_{n,\rho}^* \to STRUC(\tau), \ g: STRUC(\tau) \times R_{n,\rho} \to STRUC(\tau)$$

satisfying the following properties:

- 1. (Correctness) For all $r' \in R_{n,\rho}^*$, $(eval_{n,\rho}(r') \in S) \Leftrightarrow (f(r') \in T)$
- 2. (Update) For all $s \in R_{n,\rho}$, and $r' \in R_{n,\rho}^*$, f(r's) = g(f(r'), s)
- 3. (Bounded Universe) $||f(r')|| = ||eval_{n,\rho}(r')||^{O(1)}$
- 4. (Initialization) The functions g and the initial structure $f(\emptyset)$ are computable in C as functions of n.

Boffnition. For any static complexity class \mathbb{C} , we define its dynamic version, Byr \mathbb{C} as follows: for $\rho = (R_1^{\alpha_1}, ..., R_2^{\alpha_1}, c_2, ..., c_d)$, be any variability and $S \subseteq SHHCC(\mu)$ be see problem. Let $R_{\alpha\beta} = \{im(0, a'), del(0, a'), sel(0, a) \mid 1 \le i \le s, a' \in \{0, ..., n-1\}^n, 1 \le i \le l\}$ be the request to insert these triple a' into from the relation R_{α} or set constant c_{α} to a.

Let $cool_{xy} : H_{xy} \to SHHCC(\mu)$ be the evaluation of a sequence or stream of requests. Define $S \in DyrC$ iff there exists another problem $T \in SHHCC(c)$ (ever some vocabulary c) such that $T \in C$ and there exist maps I and a:

$$S: H^*_{cor} \rightarrow SSMC(c), \ g:SSMC(c) \times B_{cor} \rightarrow SSMC(c)$$

satisfying the following amportion

- 1. (Currenotineous) For all $a' \in H_{i,m}^*$ (configuration) $\in S$) $\Longrightarrow (\beta(a') \in T)$
- 2. (Eighbor) For all $\alpha \in R_{rec}$ and $r' \in R_{loc}^{rec}$ $f(r'\alpha) = g(f(r'), \alpha)$
- 3. (Brunded Entourse) $||f(v')|| = ||vvol_{n,i}(v')||^{O(1)}$
- (Britishkosty oc) The Succions g and the initial structure f(8) are computable in € as Succions of a.

Problem: Vertex-colouring a graph using 3 colours?

Input: Relation (graph) *G*(*x*, *y*) (a,b), (b,c), (c,d), (d,e), (e,f), (a,c), (b,e), (b,f), (c,f), (g,h)

Solution:

R = a,e,g B = b,d,h G = c,f,i

Change: Insertion/Deletion of an edge, or tuple in *G*

Problem: Vertex-colouring a graph using 3 colours?

Relations Maintained:

A(x,y), B(x,y,z,w), R(p,q,r), D(a,b,c,d,e), C(s,r)

Dynamic Complexity:

Complexity class *C*, to update the relations A,B,C,D,R and find the solution from them after insertion/deletion

Problem is in DynC

Problem: Parity of the String?

Relations:

B(z) = To find the parity of the string.

The only tuple in the relation will be the parity of the string.

Simple DynP, DynL solution

Problem: Parity of the String?

Input: Relation (string) S(p,b)

101110*0*1

0123456789

Relations:

A(x,y) = To store the old string

B(z) = To find the parity of the string.

The only tuple in the relation will be the parity of the string.

Problem: Parity of the String?

$$S(p,b) = (0,1), (1,0), (2,1), (3,1), (4,1), (5,0), (7,0), (9,1)$$

$$A(x,y) = (0,1), (1,0), (2,1), (3,1), (4,1), (5,0), (7,0), (9,1)$$

$$B(z) = (1)$$

Problem: Parity of the String?

User: *insert(p,b)*

101110*0*1 0 1 2 3 4 5 6 7 8 9

$$A'(x,y) = A(x,y)$$
 OR
 $x=p$ AND $y=b$

User: *insert(p,b)* [assume insert(6,1)]

$$B'(z) = A(p,b)$$
 AND $B(z)$ OR $!A(p,b)$ AND $b=0$ AND $B(z)$ OR $b=1$ AND $z=1$ AND $B(0)$ OR $z=0$ AND $B(1)$

 $l_{min}(v, w) \leftarrow \min\{level_v(s) + 1 + level_t(w) : PR(v, s, t)\}$ {Length of the new shortest path from v to w} $PR_{min}(v, w, s, t) = R_2(v, w) \wedge PR(v, s, t) \wedge (level_v(s) + 1 + level_t(w) = l_{min}(v, w))$ {Set of edges that lead to the shortest path $PR_{lex,min}(v, w, s, t) = PR_{min}(v, w, s, t) \land (s \le t) \land (\forall p, q, PR_{min}(v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (\forall p, q, PR_{min}(v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (\forall p, q, PR_{min}(v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (\forall p, q, PR_{min}(v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (\forall p, q, PR_{min}(v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (\forall p, q, PR_{min}(v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (\forall p, q, PR_{min}(v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (\forall p, q, PR_{min}(v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (\forall p, q, PR_{min}(v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s = t) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s < p) \land (v, w, p, q) \Rightarrow (s < p) \lor ((s <$ $p) \wedge (t \leq q))$ (Choosing the lexicographically smallest edge. $PR_{lex,min}$ is the set of new edges that will be added. The queries are now exactly similar to insertion of edges $\{|P_2| < |P_1| \text{ or } |P_1| = |P_2| \land P_2 <_c P_1, \text{ and } \{x, y, z\} \text{ are on } |P_2|\}$ $(l_{old} > l_{new}) \vee (l_{old} = l_{new} \wedge n_1 > n_2)$ and $(CPath(v, v_e, v, \alpha, \{x, y, z\}) \land CPath(v, v_e, x, y, z))$ {All on the path from v to α } $\vee (CPath(\beta, \beta_e, w, \{x, y, z\}) \wedge CPath(\beta, \beta_e, x, y, z))$ {All on the path from β to w} $\lor (CPath(v, v_e, v, \alpha, \{x\}) \land CPath(\beta, \beta_e, \beta, w, \{y, z\}) \land CPath(\beta, \beta_e, \beta, y, z)) \{x \text{ on } path_{v, v_e}(v, \alpha)\}$ and y, z on $path_{\beta,\beta_e}(\beta, w)$ $\lor (CPath(v, v_e, v, \alpha, \{x, z\}) \land CPath(v, v_e, v, z, x) \land CPath(\beta, \beta_e, \beta, w, y)) \{x, z \text{ on } path_{v, v_e}(v, \alpha)\}$ and y on $path_{\beta,\beta_e}(\beta, w)$ } $\{EmbPar(v, v_e, x, n_p) \text{ denotes that the embedding number of } x$'s parent in $[v, v_e]$ is n_p $EmbPar(v, v_e, x, n_p) = \exists x_p, Parent(v, v_e, x_p, x) \land Emb(x, x_p, n_p)$ $Emb_p(v, v_e, t, x, n_x) = Edge(x, t) \land \exists n_p, d_t, n_{old}, Deg(t, d_t) \land EmbPar(v, v_e, t, n_p) \land Emb(t, x, n_{old})$ $\wedge (n_{old} \ge n_p \Rightarrow n_x = n_{old} - n_p) \wedge (n_{old} < n_p \Rightarrow n_x = n_{old} + d_x - n_p)$

 $PR(v, s, t) = R_1(v, s) \wedge R_2(v, t) \wedge Edge(s, t)$ {All edges connecting R_1 and R_2 }

 $Emb_f(v, x, n_x) = \exists n_{old}, d_v, Emb(v, x, n_{old}) \land Deg(v, d_v) \land (n_x = d_v - 1 - n_{old})$

 $R_2(v,x) = BFSEdge(v,a,b) \wedge Path(v,v,x,\{a,b\})$

 $R_1(v,y) = \neg R_2(v,y)$

 $l_{min}(v,w) \leftarrow \min\{level_v(s) + 1 + level_t(w) : PR(v,s,t)\}$ {Length of the new shortest path from v to w $PR_{min}(v, w, s, t) = R_2(v, w) \wedge PR(v, s, t) \wedge (level_v(s) + 1 + level_w(v)) = l_{min}(v, w)$ (Set of edges that lead to the shortest path} $PR_{lex,min}(v,w,s,t) = PR_{min}(v,w,s,t) \wedge (s \leq t) \wedge (\forall p,q, PP_{min}(v,w,p,q) \Rightarrow (s < p) \vee ((s = t) \wedge (\forall p,q, PP_{min}(v,w,p,q) \Rightarrow (s < p) \wedge ((s = t) \wedge (\forall p,q, PP_{min}(v,w,p,q) \Rightarrow (s < p) \wedge ((s = t) \wedge (\forall p,q, PP_{min}(v,w,p,q) \Rightarrow (s < p) \wedge ((s = t) \wedge (\forall p,q, PP_{min}(v,w,p,q) \Rightarrow (s < p) \wedge ((s = t) \wedge (\forall p,q, PP_{min}(v,w,p,q) \Rightarrow (s < p) \wedge ((s = t) \wedge (\forall p,q, PP_{min}(v,w,p,q) \Rightarrow (s < p) \wedge ((s = t) \wedge (\forall p,q, PP_{min}(v,w,p,q) \Rightarrow (s < p) \wedge ((s = t) \wedge (\forall p,q, PP_{min}(v,w,p,q) \Rightarrow (s < p) \wedge ((s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge (s = t) \wedge (s = t) \wedge (s = t) \wedge ((s = t) \wedge (s = t) \wedge$ $p) \wedge (t \leq q))$ (Choosing the lexicographically smallest edge. PR_{lex} in is the set of new edges that will be added. The queries are now exactly similar to insection of edges $\{|P_2| < |P_1| \text{ or } |P_1| = |P_2| \land P_2 <_c P_1, \text{ and } \{x, f, z\} \text{ are on } |P_2|\}$ $(l_{old} > l_{new}) \vee (l_{old} = l_{new} \wedge n_1 > n_2)$ and $(CPath(v, v_e, v, \alpha, \{x, y, z\}) \land CPath(v, v_e, x, y, z))$ {All on the path from v to α } $\forall (CPath(\beta, \beta_e, w, \{x, y, z\}) \land CPath(\beta, \beta_e, x, y, z)) \text{ All on the path from } \beta \text{ to } w\}$ $\forall (CPath(v, v_e, v, \alpha, \{x\}) \land CPath(\beta, \beta_e, \beta, w, \{y, z\}) \land CPath(\beta, \beta_e, \beta, y, z)) \{x \text{ on } path_{v, v_e}(v, \alpha)\}$ and y, z on $path_{\beta,\beta_e}(\beta, w)$ $\forall (CPath(v, v_e, v, \alpha, \{x, z\}) \land CPath(v, v_e, v, z, x) \land CPath(\beta, \beta_e, \beta, w, y)) \{x, z \text{ on } path_{v, v_e}(v, \alpha)\}$ and y on path_{β,β_{ρ}} (β,w) $\{EmbPar(v, v_e, x, v_e)\}$ denotes that the embedding number of x's parent in $[v, v_e]$ is $n_p\}$ $EmbPar(v, v_e, x n_p) = \exists x_p. Parent(v, v_e, x_p, x) \land Emb(x, x_p, n_p)$ $Emb_p(v, v_e, t, x, n_x) = Edge(x, t) \land \exists n_p, d_t, n_{old}, Deg(t, d_t) \land EmbPar(v, v_e, t, n_p) \land Emb(t, x, n_{old})$

 $PR(v,s,t) = R_1(v,s) \wedge R_2(v,t) \wedge Edge(s,t)$ {All edges connecting R_1 and R_2

 $\wedge (n_{old} \ge n_p \Rightarrow n_x = n_{old} - n_p) \wedge (n_{old} < n_p \Rightarrow n_x = n_{old} + d_x - n_p)$

 $Emb_f(v, x, n_x) = \exists n_{old}, d_v, Emb(v, x, n_{old}) \land Deg(v, d_v) \land (n_x = d_v - 1 - n_{old})$

 $R_2(v,x) = BFSEdge(v,a,b) \wedge Path(v,v,x,\{a,b\})$

 $R_1(v,y) = \neg R_2(v,y)$

Parity is NOT in FO (uniform AC°)

Parity is in *DynFO*!

Undirected Reachability is in *DynFO*!

DST ('93) – FOIES, Acyclic Reach

IP ('97) – Dynamic Complexity, Undirected Reach

Hesse ('01) – Reach in DynTC⁰

HI ('02) – Complete problems for DynC

DHK ('14) - Triangulated PlanarReach in DynFO

Schwentick ('13) – Perspectives

Isomorphism in PlanarLand

	Trees	3-connected planar graphs	Planar Graphs
Quadratic/ Linear time	Elementary	Weinberg ('66); Hopcroft, Tarjan ('73)	Hopcroft, Wong ('74)
Logspace	Lindell ('92)	Datta, Limaye, Nimbhorkar ('08)	Datta, Limaye, Nimbhorkar, Thierauf, Wagner ('09)
DynFO	Etessami ('98)	This work	?

This work

Main Results:

- 1. Breadth-First Search for general undirected graphs is in *DynFO*
- 2. Isomorphism for Planar 3-connected graphs is in *DynFO*+

(general undirected graphs)

Main Idea:

Maintain BFS-tree from every vertex in the graph

(general undirected graphs)

Edge (x, y)

Level (v, x, l)

BFSEdge (v, x, y)

Path (v, x, y, z)

Lemma 1:

After the insertion of edge $\{a,b\}$, the level of a vertex x cannot change both in the BFS trees of a and b.

Lemma 2:

If any vertex t lies on path(b,b,w) and on path(v,v,a), then the shortest path from v to x does not change after the insertion of (a,b)

insert (a,b)

- Find the shorter path:path(a,a,x) or path(b,b,x)[Lemma 1]
- Only New path to consider: path(v,v,a) + (a,b) + path(b,b,x)

(general undirected graphs)

insert (a,b)

- Find the shorter path:

path(v,v,x) or path(v,v,a) + (a,b) +

path(b,b,x)

[Lemma 2]

- Update the relations if new path

is shorter

BFSEdge(v,x,y):

Edge (x,y) belongs to the BFS tree of vertex v, if:
There exists a vertex w in BFS tree of v whose level has not changed AND (x,y) lies on the path from v to w OR ...

BFSEdge(v,x,y):

... OR

There exists a vertex w in BFS tree of v whose level has changed AND (x,y) lies on the path from v to a OR the path from b to w OR is (a,b).

(general undirected graphs)

Path(v,x,y,z):

(general undirected graphs)

delete(a,b):

(general undirected graphs)

Lemma 3:

When an edge (a,b) separates a set of vertices T from the BFS tree of v, and r and xare vertices belonging to *T*, then path(r,r,x)cannot pass through (a,b)

(general undirected graphs)

Consistency?

A Theorem of Whitney

Theorem (Whitney, 1933):

A planar 3-connected graph has a unique embedding on the sphere

Anti/clockwise from *d*: e b a f e

Impossible to re-draw such that ordering is:
e a f b e

Embedding a planar 3-connected graph

Emb (v, x, n):

Face (f, x, y, z):

Embedding a planar 3-connected graph

Lemma:

Two distinct vertices lie on at most *one* face in a 3-connected planar graph

Canonical Breadth-First Search

(Thierauf, Wagner, 2007)

Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

Key Idea:

Maintain CBFS-trees from <u>every</u> vertex, for <u>every</u> edge taken as the starting embedding edge

Canonical Breadth-First Search in DynFO+

(planar 3-connected graphs)

Canonical Breadth-First Search in DynFO+

(planar 3-connected graphs)

Canonical Ordering on Paths: P1 < P2 if

$$d = lca(x,y),$$

 $emb(d,dp) = 0,$
 $emb(d,dx) < emb(d,dy)$

Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

insert (a,b) а b4 b3 b2

Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

delete(a,b):

Use \leq relation to find the edge (p,r)

```
Canon(v,q,x) =
  (I, m):
  for some ancestor w of x,
  let pw be the parent of w,
  ppw be the parent of pw,
  emb (v, q, pw, ppw) = 0,
  I = level (v, w) AND
  m = emb(v, q, pw, w)
```


Starting vertex: b

Starting edge: (b,d)

Pre-canon:

(c)=
$$\{(b,0),(c,1)\}$$

(d)=
$$\{(b,0), (d,0)\}$$

(f)=
$$\{(b,0), (d,0), (f,2)\}$$

$$(g) = \{ (b,0), (c,1), (g,2) \}$$

Starting vertex: b

Starting edge: (b,d)

Canon:

Canon:

(a)=
$$\{(0,0), (1,2)\}$$

(c)=
$$\{(0,0), (1,1)\}$$

(d)=
$$\{(0,0), (1,0)\}$$

(e)=
$$\{(0,0), (1,0), (2,3)\}$$

(f)=
$$\{(0,0), (1,0), (2,2)\}$$

(g)=
$$\{ (0,0), (1,1), (2,2) \}$$

Canon for the Graph:

$$Canon(G,b,d) =$$
{ ({ (0,0), (1,2) }, { (0,0), (1,0) }), ... }

Isomorphism

Testing for isomorphism between G and H: Graphs G and H are isomorphic if and only if: For some starting vertex/edge pair (v,q) in G, There exists a vertex/edge pair (w,r) in H, Such that, Canon(G,v,q) = Canon(H,w,r)

Open Problems

Is Planar Graph Isomorphism decidable in *DynFO*?

Yes

Does the dynamic version of every language in *L* belong to *DynFO*?

(Static Complexity) Upper Bound for *DynFO*?

?

arxiv.org/abs/1312.2141

Thank You