On Lower Bounds for Multiplicative Circuits and Linear Circuits in Noncommutative Domains

V. Arvind, S. Raja
The Institute of Mathematical Sciences, Chennai \&
A.V. Sreejith
Tata Institute of Fundamental Research, Mumbai

CSR 2014

Outline

1. Lower Bounds for Multiplicative Circuits.
1.1 lower bounds for Circuits over free monoids.
1.2 lower bounds for Circuits over permutation groups.
2. Lower Bounds for Linear Circuits over Noncommutative Rings

Multiplicative Circuits

- Let $T=\{0,1\}^{*}$ and $\circ=$ string concatenation operation
- (T, \circ) is a monoid

Multiplicative Circuits

- Let $T=\{0,1\}^{*}$ and $\circ=$ string concatenation operation
- (T, \circ) is a monoid

Circuit over monoid (T, \circ):

Multiplicative Circuits

- Let $T=\{0,1\}^{*}$ and $\circ=$ string concatenation operation
- (T, \circ) is a monoid

Circuit over monoid (T, \circ):

Multiplicative Circuits

- Let $T=\{0,1\}^{*}$ and $\circ=$ string concatenation operation
- (T, \circ) is a monoid

Circuit over monoid (T, \circ):

Multiplicative Circuits

- Let $T=\{0,1\}^{*}$ and $\circ=$ string concatenation operation
- (T, \circ) is a monoid

Circuit over monoid (T, \circ):

- $\operatorname{fanin}=2$
- size $=$ number of gates in the circuit
- multi-output circuit

Our Results

Theorem (Lower Bounds for Circuits over free Monoids) Let $S=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq\{0,1\}^{n}$ be the explicit set of n strings. Any concatenation circuit that takes $X=\{0,1\}$ as input and outputs y_{1}, \ldots, y_{n} will require size $\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.

Our Results

Theorem (Lower Bounds for Circuits over free Monoids) Let $S=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq\{0,1\}^{n}$ be the explicit set of n strings. Any concatenation circuit that takes $X=\{0,1\}$ as input and outputs y_{1}, \ldots, y_{n} will require size $\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.

Theorem (Lower Bounds for Circuits over permutation group) Any composition circuit over the permutation group $\left(S_{N}, \cdot\right)$, with domain size $N=2^{\frac{n^{2}}{\log ^{2} n}}$, that takes as input π_{0}, π_{1} and computes $G_{S}=\left\{\pi_{y_{i}} \mid y_{i} \in S\right\} \subseteq S_{N}$ as output is of size $\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.

Lower Bounds for Circuits over free Monoids

Circuits over free Monoids: $T=\{0,1\}^{*}$ and monoid operation is string concatenation.
Definition (Construction of S)

- Let $D=\left\{1,2, \ldots, n^{2}\right\}$.
- Each $i \in\left[n^{2}\right]$ requires $\left\lceil 2 \log _{2} n\right\rceil$ bits to represent it in binary

Lower Bounds for Circuits over free Monoids

Circuits over free Monoids: $T=\{0,1\}^{*}$ and monoid operation is string concatenation.

Definition (Construction of S)

- Let $D=\left\{1,2, \ldots, n^{2}\right\}$.
- Each $i \in\left[n^{2}\right]$ requires $\left\lceil 2 \log _{2} n\right\rceil$ bits to represent it in binary for $i=1, \ldots, n$ do

1. pick first $\frac{n}{2 \log n}$ numbers from the current set D
2. concatenate their binary representation to obtain y_{i}
3. remove these numbers from D
end for

Lower Bounds for Circuits over free Monoids

Circuits over free Monoids: $T=\{0,1\}^{*}$ and monoid operation is string concatenation.
Definition (Construction of S)

- Let $D=\left\{1,2, \ldots, n^{2}\right\}$.
- Each $i \in\left[n^{2}\right]$ requires $\left\lceil 2 \log _{2} n\right\rceil$ bits to represent it in binary for $i=1, \ldots, n$ do

1. pick first $\frac{n}{2 \log n}$ numbers from the current set D
2. concatenate their binary representation to obtain y_{i}
3. remove these numbers from D
end for

- Each $y_{i} \in\{0,1\}^{n}$ constructed has the property that y_{i} has $\geq \frac{n}{2 \log n}$ distinct substrings of length $2 \log n$.

Lower Bounds for Circuits over free Monoids, contd

Lemma

Let $s \in X^{n}$ be any string where $|X| \geq 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega\left(\frac{N}{\ell}\right)$ gates.

Lower Bounds for Circuits over free Monoids, contd

Lemma

Let $s \in X^{n}$ be any string where $|X| \geq 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega\left(\frac{N}{\ell}\right)$ gates.
Proof Let C be a concatenation circuit computing s.

Lower Bounds for Circuits over free Monoids, contd

Lemma

Let $s \in X^{n}$ be any string where $|X| \geq 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega\left(\frac{N}{\ell}\right)$ gates.
Proof Let C be a concatenation circuit computing s.
k_{1} distinct substrings of length ℓ

k_{2} distinct substrings of length ℓ

Lower Bounds for Circuits over free Monoids, contd

Lemma

Let $s \in X^{n}$ be any string where $|X| \geq 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega\left(\frac{N}{\ell}\right)$ gates.
Proof Let C be a concatenation circuit computing s.
$k_{1}+k_{2}+\ell-1$ distinct substrings of length ℓ
k_{1} distinct substrings of length ℓ

k_{2} distinct substrings of length ℓ

Lower Bounds for Circuits over free Monoids, contd

Lemma

Let $s \in X^{n}$ be any string where $|X| \geq 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega\left(\frac{N}{\ell}\right)$ gates.
Proof Let C be a concatenation circuit computing s.
$k_{1}+k_{2}+\ell-1$ distinct substrings of length ℓ
k_{1} distinct substrings of length ℓ

k_{2} distinct substrings of length ℓ

- \# of new substrings of length ℓ generated at any g is $\leq \ell-1$

Lower Bounds for Circuits over free Monoids, contd

Lemma

Let $s \in X^{n}$ be any string where $|X| \geq 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega\left(\frac{N}{\ell}\right)$ gates.
Proof Let C be a concatenation circuit computing s.
$k_{1}+k_{2}+\ell-1$ distinct substrings of length ℓ
k_{1} distinct substrings of length ℓ

k_{2} distinct substrings of length ℓ

- \# of new substrings of length ℓ generated at any g is $\leq \ell-1$ and this gives, $|C|=\Omega\left(\frac{N}{\ell}\right)$.

Lower Bounds for Circuits over free Monoids, contd

Theorem
Let $S=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq\{0,1\}^{n}$ be the explicit set of n strings defined above. Any concatenation circuit that takes $X=\{0,1\}$ as input and outputs S at its n output gates will require size $\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.

Lower Bounds for Circuits over free Monoids, contd

Theorem
Let $S=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq\{0,1\}^{n}$ be the explicit set of n strings defined above. Any concatenation circuit that takes $X=\{0,1\}$ as input and outputs S at its n output gates will require size $\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.
Proof

- Let C be a concatenation circuit computing S.
- Note that each $y_{i} \in S$ have $\Omega\left(\frac{n}{\log n}\right)$ distinct substrings of length $O(\log n)$.
- In total $y_{1}, y_{2}, \ldots, y_{n}$ have $\Omega\left(\frac{n^{2}}{\log n}\right)$ distinct substrings of length $O(\log n)$.

Lower Bounds for Circuits over free Monoids, contd

Lower Bounds for Circuits over free Monoids, contd

Lower Bounds for Circuits over free Monoids, contd

- Note that $\left|C^{\prime}\right| \leq|C|+n-1$

Lower Bounds for Circuits over free Monoids, contd

Lower Bounds for Circuits over free Monoids, contd

- Note that $\left|C^{\prime}\right| \leq|C|+n-1$
$-Y$ have $\Omega\left(\frac{n^{2}}{\log n}\right)$ distinct substrings of length $O(\log n)$
- By Lemma, $\left|C^{\prime}\right|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$

C^{\prime}

Lower Bounds for Circuits over free Monoids, contd

- Note that $\left|C^{\prime}\right| \leq|C|+n-1$
$-Y$ have $\Omega\left(\frac{n^{2}}{\log n}\right)$ distinct substrings of length $O(\log n)$
- By Lemma, $\left|C^{\prime}\right|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$
- This gives, $|C|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$

2. Circuits over permutation groups

Circuits over permutation groups:

- $S=S_{N}$ where S_{N} is a permutation group with domain size N
- operation is composition

2. Circuits over permutation groups

Circuits over permutation groups:

- $S=S_{N}$ where S_{N} is a permutation group with domain size N
- operation is composition

Definition of generating elements: π_{0} and π_{1}

- Let $D=\left\{-\frac{N}{2},-\left(\frac{N}{2}-1\right), \ldots,-1,0,1, \ldots, \frac{N}{2}-1\right\}$

- Let $y=101$. By π_{y} we mean the permutation $\pi_{1} \pi_{0} \pi_{1}$.

Definition: $G_{S}=\left\{\pi_{y_{i}} \mid y_{i} \in S\right\}$, where the set S be the explicit set of n strings defined before.

Goal: To compute G_{S} using composition circuits

Theorem
Any composition circuit over the permutation group $\left(S_{N}, \cdot\right)$, with domain size $N=2^{\frac{n^{2}}{\log ^{2} n}}$, that takes as input π_{0}, π_{1} and computes $G_{S}=\left\{\pi_{y_{i}} \mid y_{i} \in S\right\} \subseteq S_{N}$ as output is of size $\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.

Theorem
Any composition circuit over the permutation group $\left(S_{N}, \cdot\right)$, with domain size $N=2^{\frac{n^{2}}{\log ^{2} n}}$, that takes as input π_{0}, π_{1} and computes $G_{S}=\left\{\pi_{y_{i}} \mid y_{i} \in S\right\} \subseteq S_{N}$ as output is of size $\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.
Proof:- Let C be a composition circuit computing G_{S}.

Theorem

Any composition circuit over the permutation group $\left(S_{N}, \cdot\right)$, with domain size $N=2^{\frac{n^{2}}{\log ^{2} n}}$, that takes as input π_{0}, π_{1} and computes $G_{S}=\left\{\pi_{y_{i}} \mid y_{i} \in S\right\} \subseteq S_{N}$ as output is of size $\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.
Proof:- Let C be a composition circuit computing G_{S}.

- Note that $|C|=\left|C^{\prime}\right|$.
- Suppose in C^{\prime}, if $\forall i \in[n], y_{i}^{\prime}=y_{i} \in S$ then C^{\prime} is a concatenation circuit computing $S=\left\{y_{1}, \ldots, y_{n}\right\}$.
- By Theorem, $\left|C^{\prime}\right|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right) \Longrightarrow|C|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.
- Suppose in C^{\prime}, if $\forall i \in[n], y_{i}^{\prime}=y_{i} \in S$ then C^{\prime} is a concatenation circuit computing $S=\left\{y_{1}, \ldots, y_{n}\right\}$.
- By Theorem, $\left|C^{\prime}\right|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right) \Longrightarrow|C|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.
- Otherwise in $C^{\prime}, \exists i \in[n], y_{i}^{\prime} \neq y_{i}$.
- Let $\pi_{y_{i}}=v . b_{1} \cdot s, \pi_{y_{i}^{\prime}}=u \cdot b_{2} \cdot s$, where $b_{1} \neq b_{2}$.
- w.l.o.g, assume that $b_{1}=\pi_{0}$ and $b_{2}=\pi_{1}$.
- Suppose in C^{\prime}, if $\forall i \in[n], y_{i}^{\prime}=y_{i} \in S$ then C^{\prime} is a concatenation circuit computing $S=\left\{y_{1}, \ldots, y_{n}\right\}$.
- By Theorem, $\left|C^{\prime}\right|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right) \Longrightarrow|C|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.
- Otherwise in $C^{\prime}, \exists i \in[n], y_{i}^{\prime} \neq y_{i}$.
- Let $\pi_{y_{i}}=v . b_{1} \cdot s, \pi_{y_{i}^{\prime}}=u \cdot b_{2} \cdot s$, where $b_{1} \neq b_{2}$.
- w.l.o.g, assume that $b_{1}=\pi_{0}$ and $b_{2}=\pi_{1}$.
- $D=\left\{-\frac{N}{2},-\left(\frac{N}{2}-1\right), \ldots,-1,0,1, \ldots, \frac{N}{2}-1\right\}$
- Suppose in C^{\prime}, if $\forall i \in[n], y_{i}^{\prime}=y_{i} \in S$ then C^{\prime} is a concatenation circuit computing $S=\left\{y_{1}, \ldots, y_{n}\right\}$.
- By Theorem, $\left|C^{\prime}\right|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right) \Longrightarrow|C|=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$.
- Otherwise in $C^{\prime}, \exists i \in[n], y_{i}^{\prime} \neq y_{i}$.
- Let $\pi_{y_{i}}=v \cdot b_{1} \cdot s, \pi_{y_{i}^{\prime}}=u \cdot b_{2} \cdot s$, where $b_{1} \neq b_{2}$.
- w.l.o.g, assume that $b_{1}=\pi_{0}$ and $b_{2}=\pi_{1}$.
- $D=\left\{-\frac{N}{2},-\left(\frac{N}{2}-1\right), \ldots,-1,0,1, \ldots, \frac{N}{2}-1\right\}$

- Thus, u have at least $\left(\frac{N}{2}-1\right)$ copies of π_{1} and since fanin is 2, $|C| \geq \Omega\left(\log \left(\frac{N}{2}-1\right)\right)$, where $N=2^{\frac{n^{2}}{\log ^{2} n}}$.

Linear Circuits over Rings

Example: Linear circuit over noncommutative ring R

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in R$.

Linear Circuits over Rings

Example: Linear circuit over noncommutative ring R

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in R$.

Linear Circuits over Rings

Example: Linear circuit over noncommutative ring R

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in R$.

Linear Circuits over Rings

Example: Linear circuit over noncommutative ring R

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in R$.

Linear Circuits over Rings

Example: Linear circuit over noncommutative ring R

- $\operatorname{fanin}=2$
- size $=$ number of gates in the circuit
- multi-output circuit
where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in R$.

Linear Circuits over Rings, contd

- When R is a field, we get the well-studied linear circuits model (see Satya Lokam's 2009 survey).
- No explicit superlinear size lower bounds are known for this model over fields (except for some special cases like the bounded coefficient model [Morgenstern'73])
- When the coefficients to come from a noncommutative ring $R=\mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$, we prove lower bounds for certain restricted linear circuits.

Linear Circuits over Rings, contd

Definition (Homogeneous polynomials)

A polynomial $P \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ is called homogeneous if degree of each monomial in P is the same.

Linear Circuits over Rings, contd

Definition (Homogeneous polynomials)

A polynomial $P \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ is called homogeneous if degree of each monomial in P is the same.

Example:

- Homogeneous polynomials: $x_{1}^{10}+x_{0}^{5} x_{1}^{5}$

Linear Circuits over Rings, contd

Definition (Homogeneous polynomials)

A polynomial $P \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ is called homogeneous if degree of each monomial in P is the same.

Example:

- Homogeneous polynomials: $x_{1}^{10}+x_{0}^{5} x_{1}^{5}$
- Non-homogeneous polynomials: $x_{1}^{2}+x_{0}$

Homogeneous Linear Circuits over $\mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$.

- each gate g of the circuit computes a linear form $\sum_{i=1}^{n} \beta_{i} y_{i}$, where the $\beta_{i} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ are all homogeneous polynomials of the same degree.

Homogeneous Linear Circuits over $\mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$.

- each gate g of the circuit computes a linear form $\sum_{i=1}^{n} \beta_{i} y_{i}$, where the $\beta_{i} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ are all homogeneous polynomials of the same degree.

Homogeneous Linear Circuits over $\mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$.

- each gate g of the circuit computes a linear form $\sum_{i=1}^{n} \beta_{i} y_{i}$, where the $\beta_{i} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ are all homogeneous polynomials of the same degree.

Linear Circuits over Rings, contd

- Our goal is to construct an explicit matrix $M \in \mathbb{F}^{n \times n}\left\langle x_{0}, x_{1}\right\rangle$ such that $M Y$, where $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ is a column vector of input variables, can not be computed by any homogeneous linear circuit C with size $O(n)$ and depth $O(\log n)$.

Linear Circuits over Rings, contd

- Our goal is to construct an explicit matrix $M \in \mathbb{F}^{n \times n}\left\langle x_{0}, x_{1}\right\rangle$ such that $M Y$, where $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ is a column vector of input variables, can not be computed by any homogeneous linear circuit C with size $O(n)$ and depth $O(\log n)$.
- proved by suitably generalizing Valiant's matrix rigidity method.

Linear Circuits over Rings, contd

- Our goal is to construct an explicit matrix $M \in \mathbb{F}^{n \times n}\left\langle x_{0}, x_{1}\right\rangle$ such that $M Y$, where $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ is a column vector of input variables, can not be computed by any homogeneous linear circuit C with size $O(n)$ and depth $O(\log n)$.
- proved by suitably generalizing Valiant's matrix rigidity method.

Notation
Consider $n \times n$ matrices $\mathbb{F}^{n \times n}$ over field \mathbb{F}. The support of a matrix $A \in \mathbb{F}^{n \times n}$ is the set of locations $\operatorname{supp}(A)=\left\{(i, j) \mid A_{i j} \neq 0\right\}$.

Definition (Rigidity of a matrix)

Let \mathbb{F} be any field. The rigidity of a matrix $A \in \mathbb{F}^{n \times n}$, denoted by $\mathcal{R}_{r}(A)$, is the smallest number t for which there are set of t positions $S \subseteq[n] \times[n]$ and a matrix E such that:

- $\operatorname{supp}(E) \subseteq S$
- rank of $A+E$ is upper bounded by r.

Linear Circuits over Rings, contd

Definition (Rigidity of a deck of matrices)
Let \mathbb{F} be any field. The rigidity $\rho_{r}(D)$ of a deck of matrices $D=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\} \subseteq \mathbb{F}^{n \times n}$ is the smallest number t for which there are set of t positions $S \subseteq[n] \times[n]$ and a deck of matrices
$E=\left\{E_{1}, E_{2}, \ldots, E_{N}\right\}$ such that for all i :

- $\operatorname{supp}\left(E_{i}\right) \subseteq S$
- rank of $A_{i}+E_{i}$ is upper bounded by r.

Linear Circuits over Rings, contd

Definition (Rigidity of a deck of matrices)
Let \mathbb{F} be any field. The rigidity $\rho_{r}(D)$ of a deck of matrices
$D=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\} \subseteq \mathbb{F}^{n \times n}$ is the smallest number t for which there are set of t positions $S \subseteq[n] \times[n]$ and a deck of matrices
$E=\left\{E_{1}, E_{2}, \ldots, E_{N}\right\}$ such that for all i :

- $\operatorname{supp}\left(E_{i}\right) \subseteq S$
- rank of $A_{i}+E_{i}$ is upper bounded by r.

Definition (Rigid deck)
A deck of matrices $D=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\} \subseteq \mathbb{F}^{n \times n}$ is called rigid deck if $\rho_{\epsilon \cdot n}(D)=\Omega\left(n^{2-o(1)}\right)$, where $\epsilon>0$ is a constant.

Linear Circuits over Rings, contd

Definition (Rigidity of a deck of matrices)
Let \mathbb{F} be any field. The rigidity $\rho_{r}(D)$ of a deck of matrices
$D=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\} \subseteq \mathbb{F}^{n \times n}$ is the smallest number t for which there are set of t positions $S \subseteq[n] \times[n]$ and a deck of matrices
$E=\left\{E_{1}, E_{2}, \ldots, E_{N}\right\}$ such that for all i :

- $\operatorname{supp}\left(E_{i}\right) \subseteq S$
- rank of $A_{i}+E_{i}$ is upper bounded by r.

Definition (Rigid deck)
A deck of matrices $D=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\} \subseteq \mathbb{F}^{n \times n}$ is called rigid deck if $\rho_{\epsilon \cdot n}(D)=\Omega\left(n^{2-o(1)}\right)$, where $\epsilon>0$ is a constant.

- Notice that for $N=1$, this is the notion of rigid matrices.

Linear Circuits over Rings, contd

Definition (Construction of a Rigid deck)
Let $D=\left\{A_{m} \mid m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}\right\}$ with matrices A_{m} indexed by string m of length n^{2}. The matrix A_{m} is defined as follows: $1 \leq i, j \leq n$

$$
A_{m}[i, j]= \begin{cases}1 & \text { if } m_{n i+j}=x_{1} \\ 0 & \text { if } m_{n i+j}=x_{0}\end{cases}
$$

Linear Circuits over Rings, contd

Definition (Construction of a Rigid deck)
Let $D=\left\{A_{m} \mid m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}\right\}$ with matrices A_{m} indexed by string m of length n^{2}. The matrix A_{m} is defined as follows: $1 \leq i, j \leq n$

$$
A_{m}[i, j]= \begin{cases}1 & \text { if } m_{n i+j}=x_{1} \\ 0 & \text { if } m_{n i+j}=x_{0}\end{cases}
$$

- For each $k \in\left\{x_{0}, x_{1}\right\}^{n^{2}}$ and each $1 \leq i, j \leq n$ there is a polynomial (in n) time algorithm that outputs the $(i, j)^{t h}$ entry of A_{k}. We call such a deck D as an explicit deck.

Linear Circuits over Rings, contd

Definition (Construction of a Rigid deck)
Let $D=\left\{A_{m} \mid m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}\right\}$ with matrices A_{m} indexed by string m of length n^{2}. The matrix A_{m} is defined as follows: $1 \leq i, j \leq n$

$$
A_{m}[i, j]= \begin{cases}1 & \text { if } m_{n i+j}=x_{1} \\ 0 & \text { if } m_{n i+j}=x_{0}\end{cases}
$$

- For each $k \in\left\{x_{0}, x_{1}\right\}^{n^{2}}$ and each $1 \leq i, j \leq n$ there is a polynomial (in n) time algorithm that outputs the $(i, j)^{\text {th }}$ entry of A_{k}. We call such a deck D as an explicit deck.

Lemma
The above deck $D=\left\{A_{m} \mid m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}\right\}$ is an explicit rigid deck for any field \mathbb{F}.

Linear Circuits over Rings, contd

- We now turn to the lower bound result for homogeneous linear circuits where the coefficient ring is $\mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$.
- WANT: an explicit matrix $M \in \mathbb{F}^{n \times n}\left\langle x_{0}, x_{1}\right\rangle$ such that $M Y$, where Y is a vector of input variables, can not be computed by any homogeneous linear circuits C with size $O(n)$ and depth $O(\log n)$.

Linear Circuits over Rings, contd

- We now turn to the lower bound result for homogeneous linear circuits where the coefficient ring is $\mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$.
- WANT: an explicit matrix $M \in \mathbb{F}^{n \times n}\left\langle x_{0}, x_{1}\right\rangle$ such that $M Y$, where Y is a vector of input variables, can not be computed by any homogeneous linear circuits C with size $O(n)$ and depth $O(\log n)$.

Definition (of matrix M)
We define an explicit $n \times n$ matrix M as $M=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} A_{m} m$, where $D=\left\{A_{m} \mid m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}\right\}$ is the deck defined before

- each entry of matrix M can be expressed as

$$
M_{i j}=\left(x_{0}+x_{1}\right)^{(i-1) n+j-1} \cdot x_{1} \cdot\left(x_{0}+x_{1}\right)^{n^{2}-((i-1) n+j)} .
$$

Theorem
Any homogeneous linear circuit C over the coefficient ring $\mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ computing $M Y$, for M defined before, requires either size
$\omega(n)$ or depth $\omega(\log n)$.

Theorem

Any homogeneous linear circuit C over the coefficient ring $\mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ computing $M Y$, for M defined before, requires either size $\omega(n)$ or depth $\omega(\log n)$.
Proof Proof by contradiction. Let C is a homogeneous linear circuit of size $O(n)$ and depth $O(\log n)$ computing $M Y$.

Theorem

Any homogeneous linear circuit C over the coefficient ring
$\mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ computing $M Y$, for M defined before, requires either size $\omega(n)$ or depth $\omega(\log n)$.
Proof Proof by contradiction. Let C is a homogeneous linear circuit of size $O(n)$ and depth $O(\log n)$ computing $M Y$.

$$
\begin{aligned}
& O_{1}=M_{1, *} \cdot Y \quad O_{n}=M_{n, *} \cdot Y \\
& \begin{array}{llllll}
y_{1} & y_{2} & y_{3} & \cdots & & y_{n}
\end{array} \\
& \text { depth }=O(\log n) \\
& \text { size }=O(n) \\
& \text { C computing } M \cdot Y
\end{aligned}
$$

- By Valiant's graph-theoretic argument, in the circuit C there is a set of gates V of cardinality $s=\frac{c_{1} n}{\log \log n}=o(n)$ such that at least $n^{2}-n^{1+\delta}$, for $\delta<1$, input-output pairs have all their paths going through V.
- By Valiant's graph-theoretic argument, in the circuit C there is a set of gates V of cardinality $s=\frac{c_{1} n}{\log \log n}=o(n)$ such that at least $n^{2}-n^{1+\delta}$, for $\delta<1$, input-output pairs have all their paths going through V.
- Thus, we can write $M=B_{1} B_{2}+E$, where
- $B_{1} \in \mathbb{F}^{n \times s}\left\langle x_{0}, x_{1}\right\rangle$ and
- $B_{2} \in \mathbb{F}^{s \times n}\left\langle x_{0}, x_{1}\right\rangle$
- $E \in \mathbb{F}^{n \times n}\left\langle x_{0}, x_{1}\right\rangle$ and $|\operatorname{supp}(E)| \leq n^{1+\delta}$
- Write matrices M, E and $B_{1} B_{2}$ as a polynomial with matrix coefficients.

Example:

$$
\left(\begin{array}{cc}
6 x_{0}+x_{1} & x_{0} \\
8 x_{1} & 0
\end{array}\right)=\left(\begin{array}{ll}
6 & 1 \\
0 & 0
\end{array}\right) x_{0}+\left(\begin{array}{ll}
1 & 0 \\
8 & 0
\end{array}\right) x_{1}
$$

- $M=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} A_{m} \cdot m$, where $A_{m} \in \mathcal{A}$
- $B_{1} B_{2}=\sum_{m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}} B_{m} \cdot m$
- $E=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} E_{m} \cdot m,\left|\cup_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} \operatorname{supp}\left(E_{m}\right)\right| \leq n^{1+\delta}$
- Write matrices M, E and $B_{1} B_{2}$ as a polynomial with matrix coefficients.

Example:

$$
\left(\begin{array}{cc}
6 x_{0}+x_{1} & x_{0} \\
8 x_{1} & 0
\end{array}\right)=\left(\begin{array}{ll}
6 & 1 \\
0 & 0
\end{array}\right) x_{0}+\left(\begin{array}{ll}
1 & 0 \\
8 & 0
\end{array}\right) x_{1}
$$

- $M=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} A_{m} \cdot m$, where $A_{m} \in \mathcal{A}$
- $B_{1} B_{2}=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} B_{m} \cdot m$
- $E=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} E_{m} \cdot m,\left|\cup_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} \operatorname{supp}\left(E_{m}\right)\right| \leq n^{1+\delta}$
- Note that, $A_{m}=B_{m}+E_{m} \Longrightarrow B_{m}=A_{m}-E_{m}$.
- Write matrices M, E and $B_{1} B_{2}$ as a polynomial with matrix coefficients.

Example:

$$
\left(\begin{array}{cc}
6 x_{0}+x_{1} & x_{0} \\
8 x_{1} & 0
\end{array}\right)=\left(\begin{array}{ll}
6 & 1 \\
0 & 0
\end{array}\right) x_{0}+\left(\begin{array}{ll}
1 & 0 \\
8 & 0
\end{array}\right) x_{1}
$$

- $M=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} A_{m} \cdot m$, where $A_{m} \in \mathcal{A}$
- $B_{1} B_{2}=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} B_{m} \cdot m$
- $E=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} E_{m} \cdot m,\left|\cup_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} \operatorname{supp}\left(E_{m}\right)\right| \leq n^{1+\delta}$
- Note that, $A_{m}=B_{m}+E_{m} \Longrightarrow B_{m}=A_{m}-E_{m}$.

Rest of the proof:

- We show that for each m, rank of B_{m} is $\leq s=o(n)$.
- Write matrices M, E and $B_{1} B_{2}$ as a polynomial with matrix coefficients.

Example:

$$
\left(\begin{array}{cc}
6 x_{0}+x_{1} & x_{0} \\
8 x_{1} & 0
\end{array}\right)=\left(\begin{array}{ll}
6 & 1 \\
0 & 0
\end{array}\right) x_{0}+\left(\begin{array}{ll}
1 & 0 \\
8 & 0
\end{array}\right) x_{1}
$$

- $M=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} A_{m} \cdot m$, where $A_{m} \in \mathcal{A}$
- $B_{1} B_{2}=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} B_{m} \cdot m$
- $E=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} E_{m} \cdot m,\left|\cup_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} \operatorname{supp}\left(E_{m}\right)\right| \leq n^{1+\delta}$
- Note that, $A_{m}=B_{m}+E_{m} \Longrightarrow B_{m}=A_{m}-E_{m}$.

Rest of the proof:

- We show that for each m, rank of B_{m} is $\leq s=o(n)$.
- we know that, $\left|\operatorname{supp}\left(E_{m}\right)\right| \leq n^{1+\delta}$.
- Write matrices M, E and $B_{1} B_{2}$ as a polynomial with matrix coefficients.

Example:

$$
\left(\begin{array}{cc}
6 x_{0}+x_{1} & x_{0} \\
8 x_{1} & 0
\end{array}\right)=\left(\begin{array}{ll}
6 & 1 \\
0 & 0
\end{array}\right) x_{0}+\left(\begin{array}{ll}
1 & 0 \\
8 & 0
\end{array}\right) x_{1}
$$

- $M=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} A_{m} \cdot m$, where $A_{m} \in \mathcal{A}$
- $B_{1} B_{2}=\sum_{m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}} B_{m} \cdot m$
- $E=\sum_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} E_{m} \cdot m,\left|\cup_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} \operatorname{supp}\left(E_{m}\right)\right| \leq n^{1+\delta}$
- Note that, $A_{m}=B_{m}+E_{m} \Longrightarrow B_{m}=A_{m}-E_{m}$.

Rest of the proof:

- We show that for each m, rank of B_{m} is $\leq s=o(n)$.
- we know that, $\left|\operatorname{supp}\left(E_{m}\right)\right| \leq n^{1+\delta}$. This contradicts the fact that \mathcal{A} is a rigid deck.

Summary:-

- We have shown lower bounds for
- multiplicative circuits over monoids, permutation groups, free groups, matrix semigroups
- linear circuit over noncommutative rings

Summary:-

- We have shown lower bounds for
- multiplicative circuits over monoids, permutation groups, free groups, matrix semigroups
- linear circuit over noncommutative rings

Open Problems

- To give explicit constructions for smaller rigid decks of $n \times n$ matrices, say, poly(n) sized decks.

Summary:-

- We have shown lower bounds for
- multiplicative circuits over monoids, permutation groups, free groups, matrix semigroups
- linear circuit over noncommutative rings

Open Problems

- To give explicit constructions for smaller rigid decks of $n \times n$ matrices, say, poly (n) sized decks. Or is the construction of rigid decks of smaller size equivalent to the original matrix rigidity problem?

Summary:-

- We have shown lower bounds for
- multiplicative circuits over monoids, permutation groups, free groups, matrix semigroups
- linear circuit over noncommutative rings

Open Problems

- To give explicit constructions for smaller rigid decks of $n \times n$ matrices, say, poly (n) sized decks. Or is the construction of rigid decks of smaller size equivalent to the original matrix rigidity problem?

Thank you.

Linear Circuits over Rings, contd

Lemma
The deck $\mathcal{A}=\left\{A_{m} \mid m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}\right\}$ is an explicit rigid deck for any field \mathbb{F}.

Linear Circuits over Rings, contd

Lemma

The deck $\mathcal{A}=\left\{A_{m} \mid m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}\right\}$ is an explicit rigid deck for any field \mathbb{F}.

Proof:-

- Valiant showed that almost all $n \times n 0-1$ matrices A over any field \mathbb{F} have rigidity $\rho_{r}(A)=\Omega\left(\frac{(n-r)^{2}}{\log n}\right)$ for target rank r.
- In particular, for $r=\epsilon \cdot n$, over any field \mathbb{F}, there is a $0-1$ matrix R for which we have $\rho_{r}(R) \geq \frac{\delta \cdot n^{2}}{\log n}$ for some constant $\delta>0$ depending on ϵ.

Linear Circuits over Rings, contd

Lemma

The deck $\mathcal{A}=\left\{A_{m} \mid m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}\right\}$ is an explicit rigid deck for any field \mathbb{F}.

Proof:-

- Valiant showed that almost all $n \times n 0-1$ matrices A over any field \mathbb{F} have rigidity $\rho_{r}(A)=\Omega\left(\frac{(n-r)^{2}}{\log n}\right)$ for target rank r.
- In particular, for $r=\epsilon \cdot n$, over any field \mathbb{F}, there is a 0-1 matrix R for which we have $\rho_{r}(R) \geq \frac{\delta \cdot n^{2}}{\log n}$ for some constant $\delta>0$ depending on ϵ.
- We claim that for the deck \mathcal{A} we have $\rho_{\epsilon n}(\mathcal{A}) \geq \frac{\delta \cdot n^{2}}{\log n}$.
- To see this, $S \subseteq[n] \times[n]$ such that $|S|<\frac{\delta n^{2}}{\log n}$
- Let $E=\left\{E_{m} \in \mathbb{F}^{n \times n} \mid m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}\right\}$ be any collection of matrices such that:
- $\operatorname{supp}\left(E_{m}\right) \subseteq S$
- Thus, we have for each $m,\left|\operatorname{supp}\left(E_{m}\right)\right|<\frac{\delta n^{2}}{\log n}$
- Since the deck \mathcal{A} contains all 0-1 matrices, in particular $R \in \mathcal{A}$ and $R=A_{m}$ for some monomial m.
- From the rigidity of R we know that the rank of $R+E_{m}$ is at least ϵ.

This proves the claim and the lemma follows.

Rank of B_{m} is $\leq s$

- We now analyze the matrices B_{m}.

Rank of B_{m} is $\leq s$

- We now analyze the matrices B_{m}.
- By the homogeneity condition on the circuit C, we can partition $V=V_{1} \cup V_{2} \cup \ldots V_{\ell}$, where each gate g in V_{i} computes a linear form $\sum_{j=1}^{n} \gamma_{j} y_{j}$ and $\gamma_{j} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ is a homogeneous degree d_{i} polynomial.
- Let $s_{i}=\left|V_{i}\right|, 1 \leq i \leq \ell$. Then we have $s=s_{1}+s_{2}+\ldots s_{\ell}$.

Rank of B_{m} is $\leq s$

- We now analyze the matrices B_{m}.
- By the homogeneity condition on the circuit C, we can partition $V=V_{1} \cup V_{2} \cup \ldots V_{\ell}$, where each gate g in V_{i} computes a linear form $\sum_{j=1}^{n} \gamma_{j} y_{j}$ and $\gamma_{j} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ is a homogeneous degree d_{i} polynomial.
- Let $s_{i}=\left|V_{i}\right|, 1 \leq i \leq \ell$. Then we have $s=s_{1}+s_{2}+\ldots s_{\ell}$.
- Every monomial m has a unique prefix of length d_{i} for each degree d_{i}.
- Thus, we can write $B_{m}=\sum_{j=1}^{\ell} B_{m, j, 1} B_{m, j, 2}$, where
- $B_{m, j, 1}$ is the $n \times s_{j}$ matrix corresponding to the d_{j}-prefix of m
- $B_{m, j, 2}$ is the $s_{j} \times n$ matrix corresponding to the $n^{2}-d_{j}$-suffix of m.

Rank of B_{m} is $\leq s$

- We now analyze the matrices B_{m}.
- By the homogeneity condition on the circuit C, we can partition $V=V_{1} \cup V_{2} \cup \ldots V_{\ell}$, where each gate g in V_{i} computes a linear form $\sum_{j=1}^{n} \gamma_{j} y_{j}$ and $\gamma_{j} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ is a homogeneous degree d_{i} polynomial.
- Let $s_{i}=\left|V_{i}\right|, 1 \leq i \leq \ell$. Then we have $s=s_{1}+s_{2}+\ldots s_{\ell}$.
- Every monomial m has a unique prefix of length d_{i} for each degree d_{i}.
- Thus, we can write $B_{m}=\sum_{j=1}^{\ell} B_{m, j, 1} B_{m, j, 2}$, where
- $B_{m, j, 1}$ is the $n \times s_{j}$ matrix corresponding to the d_{j}-prefix of m
- $B_{m, j, 2}$ is the $s_{j} \times n$ matrix corresponding to the $n^{2}-d_{j}$-suffix of m.
- It follows that for each monomial m the rank of B_{m} is bounded by s.

Rank of B_{m} is $\leq s$

- We now analyze the matrices B_{m}.
- By the homogeneity condition on the circuit C, we can partition $V=V_{1} \cup V_{2} \cup \ldots V_{\ell}$, where each gate g in V_{i} computes a linear form $\sum_{j=1}^{n} \gamma_{j} y_{j}$ and $\gamma_{j} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ is a homogeneous degree d_{i} polynomial.
- Let $s_{i}=\left|V_{i}\right|, 1 \leq i \leq \ell$. Then we have $s=s_{1}+s_{2}+\ldots s_{\ell}$.
- Every monomial m has a unique prefix of length d_{i} for each degree d_{i}.
- Thus, we can write $B_{m}=\sum_{j=1}^{\ell} B_{m, j, 1} B_{m, j, 2}$, where
- $B_{m, j, 1}$ is the $n \times s_{j}$ matrix corresponding to the d_{j}-prefix of m
- $B_{m, j, 2}$ is the $s_{j} \times n$ matrix corresponding to the $n^{2}-d_{j}$-suffix of m.
- It follows that for each monomial m the rank of B_{m} is bounded by s.

Putting it together, for each monomial m we have $A_{m}=B_{m}+E_{m}$, where B_{m} is rank s and $\left|\cup_{m \in\left\{x_{0}, x_{1}\right\}^{n^{2}}} \operatorname{supp}\left(E_{m}\right)\right| \leq n^{1+\delta}$.

Rank of B_{m} is $\leq s$

- We now analyze the matrices B_{m}.
- By the homogeneity condition on the circuit C, we can partition $V=V_{1} \cup V_{2} \cup \ldots V_{\ell}$, where each gate g in V_{i} computes a linear form $\sum_{j=1}^{n} \gamma_{j} y_{j}$ and $\gamma_{j} \in \mathbb{F}\left\langle x_{0}, x_{1}\right\rangle$ is a homogeneous degree d_{i} polynomial.
- Let $s_{i}=\left|V_{i}\right|, 1 \leq i \leq \ell$. Then we have $s=s_{1}+s_{2}+\ldots s_{\ell}$.
- Every monomial m has a unique prefix of length d_{i} for each degree d_{i}.
- Thus, we can write $B_{m}=\sum_{j=1}^{\ell} B_{m, j, 1} B_{m, j, 2}$, where
- $B_{m, j, 1}$ is the $n \times s_{j}$ matrix corresponding to the d_{j}-prefix of m
- $B_{m, j, 2}$ is the $s_{j} \times n$ matrix corresponding to the $n^{2}-d_{j}$-suffix of m.
- It follows that for each monomial m the rank of B_{m} is bounded by s.

Putting it together, for each monomial m we have $A_{m}=B_{m}+E_{m}$, where B_{m} is rank s and $\left|\cup_{m \in\left\{x_{0}, x_{1}\right\} n^{2}} \operatorname{supp}\left(E_{m}\right)\right| \leq n^{1+\delta}$. This contradicts the fact that \mathcal{A} is a rigid deck.

