On Lower Bounds for Multiplicative Circuits and Linear Circuits in Noncommutative Domains

V. Arvind , S. Raja The Institute of Mathematical Sciences, Chennai & A.V. Sreejith Tata Institute of Fundamental Research, Mumbai

CSR 2014

Outline

- 1. Lower Bounds for Multiplicative Circuits.
 - 1.1 lower bounds for Circuits over free monoids.
 - 1.2 lower bounds for Circuits over permutation groups.

2. Lower Bounds for Linear Circuits over Noncommutative Rings

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Let $T = \{0,1\}^*$ and $\circ =$ string concatenation operation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► (*T*, ∘) is a monoid

- \blacktriangleright Let $\mathcal{T} = \{0,1\}^*$ and $\circ =$ string concatenation operation
- ► (*T*, ∘) is a monoid

Circuit over monoid (T,\circ) :

- \blacktriangleright Let $\mathcal{T}=\{0,1\}^*$ and $\circ=$ string concatenation operation
- ► (*T*, ∘) is a monoid

Circuit over monoid (T,\circ) :

- \blacktriangleright Let $\mathcal{T} = \{0,1\}^*$ and $\circ =$ string concatenation operation
- ► (*T*, ∘) is a monoid

Circuit over monoid (T,\circ) :

- Let $T = \{0,1\}^*$ and $\circ =$ string concatenation operation
- ► (T, ∘) is a monoid

Circuit over monoid (T,\circ) :

- fanin = 2
- size = number of gates in the circuit
- multi-output circuit

Our Results

Theorem (Lower Bounds for Circuits over free Monoids) Let $S = \{y_1, ..., y_n\} \subseteq \{0, 1\}^n$ be the explicit set of n strings. Any concatenation circuit that takes $X = \{0, 1\}$ as input and outputs $y_1, ..., y_n$ will require size $\Omega(\frac{n^2}{\log^2 n})$.

Our Results

Theorem (Lower Bounds for Circuits over free Monoids) Let $S = \{y_1, ..., y_n\} \subseteq \{0, 1\}^n$ be the explicit set of n strings. Any concatenation circuit that takes $X = \{0, 1\}$ as input and outputs $y_1, ..., y_n$ will require size $\Omega(\frac{n^2}{\log^2 n})$.

Theorem (Lower Bounds for Circuits over permutation group) Any composition circuit over the permutation group (S_N, \cdot) , with domain size $N = 2^{\frac{n^2}{\log^2 n}}$, that takes as input π_0, π_1 and computes $G_S = \{\pi_{y_i} | y_i \in S\} \subseteq S_N$ as output is of size $\Omega(\frac{n^2}{\log^2 n})$.

(日) (同) (三) (三) (三) (○) (○)

Circuits over free Monoids: $T = \{0, 1\}^*$ and monoid operation is string concatenation.

Definition (Construction of S)

• Let
$$D = \{1, 2, ..., n^2\}.$$

▶ Each $i \in [n^2]$ requires $\lceil 2 \log_2 n \rceil$ bits to represent it in binary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Circuits over free Monoids: $T = \{0, 1\}^*$ and monoid operation is string concatenation.

Definition (Construction of S)

• Let
$$D = \{1, 2, ..., n^2\}.$$

▶ Each $i \in [n^2]$ requires $\lceil 2 \log_2 n \rceil$ bits to represent it in binary

for i = 1, ..., n do

- 1. pick first $\frac{n}{2\log n}$ numbers from the current set D
- 2. concatenate their binary representation to obtain y_i
- 3. remove these numbers from D

end for

Circuits over free Monoids: $T = \{0, 1\}^*$ and monoid operation is string concatenation.

Definition (Construction of S)

• Let
$$D = \{1, 2, ..., n^2\}.$$

▶ Each $i \in [n^2]$ requires $\lceil 2 \log_2 n \rceil$ bits to represent it in binary

for i = 1, ..., n do

- 1. pick first $\frac{n}{2\log n}$ numbers from the current set D
- 2. concatenate their binary representation to obtain y_i
- 3. remove these numbers from D

end for

► Each $y_i \in \{0, 1\}^n$ constructed has the property that y_i has $\geq \frac{n}{2 \log n}$ distinct substrings of length $2 \log n$.

Lemma

Let $s \in X^n$ be any string where $|X| \ge 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega(\frac{N}{\ell})$ gates.

Lemma

Let $s \in X^n$ be any string where $|X| \ge 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega(\frac{N}{\ell})$ gates.

Proof Let C be a concatenation circuit computing s.

Lemma

Let $s \in X^n$ be any string where $|X| \ge 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega(\frac{N}{\ell})$ gates.

Proof Let C be a concatenation circuit computing s.

Lemma

Let $s \in X^n$ be any string where $|X| \ge 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega(\frac{N}{\ell})$ gates.

Proof Let C be a concatenation circuit computing s.

 $k_1+k_2+\ell-1$ distinct substrings of length ℓ

 k_1 distinct substrings of length ℓ

 $s_1 \circ s_2$ f s_1 s_2 s_2

 k_2 distinct substrings of length ℓ

Lemma

Let $s \in X^n$ be any string where $|X| \ge 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega(\frac{N}{\ell})$ gates.

Proof Let *C* be a concatenation circuit computing *s*.

 k_1 distinct substrings of length ℓ

 $k_1 + k_2 + \ell - 1$ distinct substrings of length ℓ $s_1 \circ s_2$

g

 S_1

 k_2 distinct substrings of length ℓ

รว

- # of new substrings of length ℓ generated at any g is $\leq \ell-1$

Lemma

Let $s \in X^n$ be any string where $|X| \ge 2$, such that the number of distinct substrings of s of length ℓ is N. Then any concatenation circuit for s will require $\Omega(\frac{N}{\ell})$ gates.

Proof Let *C* be a concatenation circuit computing *s*.

 $\textit{k}_1 + \textit{k}_2 + \ell - 1$ distinct substrings of length ℓ

 k_1 distinct substrings of length ℓ

 $s_1 \circ s_2$ $f_1 \circ s_2$ $s_1 \circ s_2$

 k_2 distinct substrings of length ℓ

- # of **new** substrings of length ℓ generated at any g is $\leq \ell - 1$ and this gives, $|C| = \Omega(\frac{N}{\ell})$.

Theorem

Let $S = \{y_1, ..., y_n\} \subseteq \{0, 1\}^n$ be the explicit set of n strings defined above. Any concatenation circuit that takes $X = \{0, 1\}$ as input and outputs S at its n output gates will require size $\Omega(\frac{n^2}{\log^2 n})$.

Theorem

Let $S = \{y_1, ..., y_n\} \subseteq \{0, 1\}^n$ be the explicit set of n strings defined above. Any concatenation circuit that takes $X = \{0, 1\}$ as input and outputs S at its n output gates will require size $\Omega(\frac{n^2}{\log^2 n})$. **Proof**

- Let *C* be a concatenation circuit computing *S*.
- Note that each y_i ∈ S have Ω(ⁿ/_{log n}) distinct substrings of length O(log n).
- ► In total $y_1, y_2, ..., y_n$ have $\Omega(\frac{n^2}{\log n})$ distinct substrings of length $O(\log n)$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\uparrow Y = y_1 \circ y_2 \circ \dots \circ y_n$ *y*₁*y*₂ ... Уn , *s*₁ ∘ *s*₂ **S**7 s_1 C'

- Note that $|C'| \leq |C| + n - 1$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\uparrow Y = y_1 \circ y_2 \circ \dots \circ y_n$ *Y*1 *Y*2 Уn , *s*₁ ∘ *s*₂ **S**1 **S**7 C'

- Note that $|\mathcal{C}'| \leq |\mathcal{C}| + n 1$
- Y have $\Omega(\frac{n^2}{\log n})$ distinct substrings of length $O(\log n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\uparrow Y = y_1 \circ y_2 \circ \dots \circ y_n$ *Y*1 *Y*2 Уn , *s*₁ ∘ *s*₂ **S**1 **S**7 C'

- Note that $|\mathcal{C}'| \leq |\mathcal{C}| + n 1$
- Y have $\Omega(\frac{n^2}{\log n})$ distinct substrings of length $O(\log n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- By Lemma,
$$|C'| = \Omega(rac{n^2}{\log^2 n})$$

 $\uparrow Y = y_1 \circ y_2 \circ \dots \circ y_n$ *Y*1 *Y*2 Уn , *s*₁ ∘ *s*₂ **S**1 **S**7 C'

- Note that $|\mathcal{C}'| \leq |\mathcal{C}| + n 1$
- Y have $\Omega(\frac{n^2}{\log n})$ distinct substrings of length $O(\log n)$

- By Lemma,
$$|C'| = \Omega(rac{n^2}{\log^2 n})$$

- This gives,
$$|C| = \Omega(\frac{n^2}{\log^2 n})$$

2. Circuits over permutation groups

Circuits over permutation groups:

• $S = S_N$ where S_N is a permutation group with domain size N

operation is composition

2. Circuits over permutation groups

Circuits over permutation groups:

- $S = S_N$ where S_N is a permutation group with domain size N
- operation is composition

Definition of generating elements: π_0 and π_1

• Let
$$D = \{-\frac{N}{2}, -(\frac{N}{2}-1), ..., -1, 0, 1, ..., \frac{N}{2}-1\}$$

• Let y = 101. By π_y we mean the permutation $\pi_1 \pi_0 \pi_1$.

Definition: $G_S = \{\pi_{y_i} | y_i \in S\}$, where the set *S* be the explicit set of *n* strings defined before.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Goal: To compute G_S using composition circuits

Theorem

Any composition circuit over the permutation group (S_N, \cdot) , with domain size $N = 2^{\frac{n^2}{\log^2 n}}$, that takes as input π_0, π_1 and computes $G_S = \{\pi_{y_i} | y_i \in S\} \subseteq S_N$ as output is of size $\Omega(\frac{n^2}{\log^2 n})$.

Theorem

Any composition circuit over the permutation group (S_N, \cdot) , with domain size $N = 2^{\frac{n^2}{\log^2 n}}$, that takes as input π_0, π_1 and computes $G_S = \{\pi_{y_i} | y_i \in S\} \subseteq S_N$ as output is of size $\Omega(\frac{n^2}{\log^2 n})$. **Proof:**- Let *C* be a composition circuit computing G_S .

Theorem

Any composition circuit over the permutation group (S_N, \cdot) , with domain size $N = 2^{\frac{n^2}{\log^2 n}}$, that takes as input π_0, π_1 and computes $G_S = \{\pi_{y_i} | y_i \in S\} \subseteq S_N$ as output is of size $\Omega(\frac{n^2}{\log^2 n})$. **Proof:**- Let *C* be a composition circuit computing G_S .

Suppose in C', if ∀i ∈ [n], y'_i = y_i ∈ S then C' is a concatenation circuit computing S = {y₁,...,y_n}.

► By Theorem,
$$|C'| = \Omega(\frac{n^2}{\log^2 n}) \implies |C| = \Omega(\frac{n^2}{\log^2 n}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Suppose in C', if ∀i ∈ [n], y'_i = y_i ∈ S then C' is a concatenation circuit computing S = {y₁,...,y_n}.
- ► By Theorem, $|C'| = \Omega(\frac{n^2}{\log^2 n}) \implies |C| = \Omega(\frac{n^2}{\log^2 n}).$

- Otherwise in C', $\exists i \in [n]$, $y'_i \neq y_i$.
- Let $\pi_{y_i} = v.b_1.s$, $\pi_{y'_i} = u.b_2.s$, where $b_1 \neq b_2$.
- w.l.o.g, assume that $b_1 = \pi_0$ and $b_2 = \pi_1$.

- Suppose in C', if ∀i ∈ [n], y'_i = y_i ∈ S then C' is a concatenation circuit computing S = {y₁,...,y_n}.
- ► By Theorem, $|C'| = \Omega(\frac{n^2}{\log^2 n}) \implies |C| = \Omega(\frac{n^2}{\log^2 n}).$

- Otherwise in C', $\exists i \in [n]$, $y'_i \neq y_i$.
- Let $\pi_{y_i} = v.b_1.s$, $\pi_{y'_i} = u.b_2.s$, where $b_1 \neq b_2$.
- w.l.o.g, assume that $b_1 = \pi_0$ and $b_2 = \pi_1$.
- ► $D = \{-\frac{N}{2}, -(\frac{N}{2} 1), ..., -1, 0, 1, ..., \frac{N}{2} 1\}$

- Suppose in C', if ∀i ∈ [n], y'_i = y_i ∈ S then C' is a concatenation circuit computing S = {y₁,...,y_n}.
- ► By Theorem, $|C'| = \Omega(\frac{n^2}{\log^2 n}) \implies |C| = \Omega(\frac{n^2}{\log^2 n}).$
- Otherwise in C', $\exists i \in [n]$, $y'_i \neq y_i$.
- Let $\pi_{y_i} = v.b_1.s$, $\pi_{y'_i} = u.b_2.s$, where $b_1 \neq b_2$.
- w.l.o.g, assume that $b_1 = \pi_0$ and $b_2 = \pi_1$.
- ► $D = \{-\frac{N}{2}, -(\frac{N}{2} 1), ..., -1, 0, 1, ..., \frac{N}{2} 1\}$

► Thus, *u* have at least $(\frac{N}{2} - 1)$ copies of π_1 and since famin is 2, $|C| \ge \Omega(\log(\frac{N}{2} - 1))$, where $N = 2^{\frac{n^2}{\log^2 n}}$.

Example: Linear circuit over noncommutative ring R

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example: Linear circuit over noncommutative ring R

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example: Linear circuit over noncommutative ring R

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: Linear circuit over noncommutative ring R

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example: Linear circuit over noncommutative ring R

- fanin = 2
- size = number of gates in the circuit
- multi-output circuit

- When R is a field, we get the well-studied linear circuits model (see Satya Lokam's 2009 survey).
- No explicit superlinear size lower bounds are known for this model over fields (except for some special cases like the bounded coefficient model [Morgenstern'73])
- When the coefficients to come from a *noncommutative* ring R = 𝔽⟨x₀, x₁⟩, we prove lower bounds for certain restricted linear circuits.

Definition (Homogeneous polynomials)

A polynomial $P \in \mathbb{F}\langle x_0, x_1 \rangle$ is called homogeneous if degree of each monomial in P is the same.

Definition (Homogeneous polynomials)

A polynomial $P \in \mathbb{F}\langle x_0, x_1 \rangle$ is called homogeneous if degree of each monomial in P is the same.

Example:

• Homogeneous polynomials: $x_1^{10} + x_0^5 x_1^5$

Definition (Homogeneous polynomials)

A polynomial $P \in \mathbb{F}\langle x_0, x_1 \rangle$ is called homogeneous if degree of each monomial in P is the same.

Example:

- Homogeneous polynomials: $x_1^{10} + x_0^5 x_1^5$
- Non-homogeneous polynomials: $x_1^2 + x_0$

Homogeneous Linear Circuits over $\mathbb{F}\langle x_0, x_1 \rangle$

where $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{F}\langle x_0, x_1 \rangle$.

each gate g of the circuit computes a linear form ∑ⁿ_{i=1} β_iy_i, where the β_i ∈ ℝ⟨x₀, x₁⟩ are all homogeneous polynomials of the same degree.

Homogeneous Linear Circuits over $\mathbb{F}\langle x_0, x_1 \rangle$

where $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{F}\langle x_0, x_1 \rangle$.

each gate g of the circuit computes a linear form ∑ⁿ_{i=1} β_iy_i, where the β_i ∈ F⟨x₀, x₁⟩ are all homogeneous polynomials of the same degree.

Homogeneous Linear Circuits over $\mathbb{F}\langle x_0, x_1 \rangle$

where $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{F}\langle x_0, x_1 \rangle$.

each gate g of the circuit computes a linear form ∑ⁿ_{i=1} β_iy_i, where the β_i ∈ F⟨x₀, x₁⟩ are all homogeneous polynomials of the same degree.

Our goal is to construct an explicit matrix M ∈ ℝ^{n×n}⟨x₀, x₁⟩ such that MY, where Y = (y₁, y₂,..., y_n)^T is a column vector of input variables, can not be computed by any homogeneous linear circuit C with size O(n) and depth O(log n).

Our goal is to construct an explicit matrix M ∈ ℝ^{n×n}⟨x₀, x₁⟩ such that MY, where Y = (y₁, y₂,..., y_n)^T is a column vector of input variables, can not be computed by any homogeneous linear circuit C with size O(n) and depth O(log n).

 proved by suitably generalizing Valiant's matrix rigidity method.

- Our goal is to construct an explicit matrix M ∈ ℝ^{n×n}⟨x₀, x₁⟩ such that MY, where Y = (y₁, y₂,..., y_n)^T is a column vector of input variables, can not be computed by any homogeneous linear circuit C with size O(n) and depth O(log n).
- proved by suitably generalizing Valiant's matrix rigidity method.

Notation

Consider $n \times n$ matrices $\mathbb{F}^{n \times n}$ over field \mathbb{F} . The support of a matrix $A \in \mathbb{F}^{n \times n}$ is the set of locations $\operatorname{supp}(A) = \{(i, j) \mid A_{ij} \neq 0\}$.

Definition (Rigidity of a matrix)

Let \mathbb{F} be any field. The rigidity of a matrix $A \in \mathbb{F}^{n \times n}$, denoted by $\mathcal{R}_r(A)$, is the smallest number t for which there are set of t positions $S \subseteq [n] \times [n]$ and a matrix E such that:

- $\operatorname{supp}(E) \subseteq S$
- rank of A + E is upper bounded by r.

Definition (Rigidity of a deck of matrices)

Let \mathbb{F} be any field. The rigidity $\rho_r(D)$ of a deck of matrices $D = \{A_1, A_2, \dots, A_N\} \subseteq \mathbb{F}^{n \times n}$ is the smallest number t for which there are set of t positions $S \subseteq [n] \times [n]$ and a deck of matrices $E = \{E_1, E_2, \dots, E_N\}$ such that for all i:

- $\operatorname{supp}(E_i) \subseteq S$
- rank of $A_i + E_i$ is upper bounded by r.

Definition (Rigidity of a deck of matrices)

Let \mathbb{F} be any field. The rigidity $\rho_r(D)$ of a deck of matrices $D = \{A_1, A_2, \dots, A_N\} \subseteq \mathbb{F}^{n \times n}$ is the smallest number t for which there are set of t positions $S \subseteq [n] \times [n]$ and a deck of matrices $E = \{E_1, E_2, \dots, E_N\}$ such that for all i:

- $\operatorname{supp}(E_i) \subseteq S$
- rank of $A_i + E_i$ is upper bounded by r.

Definition (Rigid deck)

A deck of matrices $D = \{A_1, A_2, \dots, A_N\} \subseteq \mathbb{F}^{n \times n}$ is called *rigid deck* if $\rho_{\epsilon \cdot n}(D) = \Omega(n^{2-o(1)})$, where $\epsilon > 0$ is a constant.

Definition (Rigidity of a deck of matrices)

Let \mathbb{F} be any field. The rigidity $\rho_r(D)$ of a deck of matrices $D = \{A_1, A_2, \dots, A_N\} \subseteq \mathbb{F}^{n \times n}$ is the smallest number t for which there are set of t positions $S \subseteq [n] \times [n]$ and a deck of matrices $E = \{E_1, E_2, \dots, E_N\}$ such that for all i:

- $\operatorname{supp}(E_i) \subseteq S$
- rank of $A_i + E_i$ is upper bounded by r.

Definition (Rigid deck)

A deck of matrices $D = \{A_1, A_2, \dots, A_N\} \subseteq \mathbb{F}^{n \times n}$ is called *rigid deck* if $\rho_{\epsilon \cdot n}(D) = \Omega(n^{2-o(1)})$, where $\epsilon > 0$ is a constant.

• Notice that for N = 1, this is the notion of rigid matrices.

Definition (Construction of a Rigid deck)

Let $D = \{A_m \mid m \in \{x_0, x_1\}^{n^2}\}$ with matrices A_m indexed by string m of length n^2 . The matrix A_m is defined as follows: $1 \le i, j \le n$

$$A_m[i,j] = \begin{cases} 1 & \text{if } m_{ni+j} = x_1 \\ 0 & \text{if } m_{ni+j} = x_0 \end{cases}$$

(日) (同) (三) (三) (三) (○) (○)

Definition (Construction of a Rigid deck)

Let $D = \{A_m \mid m \in \{x_0, x_1\}^{n^2}\}$ with matrices A_m indexed by string m of length n^2 . The matrix A_m is defined as follows: $1 \le i, j \le n$

$$A_m[i,j] = \begin{cases} 1 & \text{if } m_{ni+j} = x_1 \\ 0 & \text{if } m_{ni+j} = x_0 \end{cases}$$

For each k ∈ {x₀, x₁}^{n²} and each 1 ≤ i, j ≤ n there is a polynomial (in n) time algorithm that outputs the (i, j)th entry of A_k. We call such a deck D as an explicit deck.

Definition (Construction of a Rigid deck)

Let $D = \{A_m \mid m \in \{x_0, x_1\}^{n^2}\}$ with matrices A_m indexed by string m of length n^2 . The matrix A_m is defined as follows: $1 \le i, j \le n$

$$A_m[i,j] = \begin{cases} 1 & \text{if } m_{ni+j} = x_1 \\ 0 & \text{if } m_{ni+j} = x_0 \end{cases}$$

For each k ∈ {x₀, x₁}^{n²} and each 1 ≤ i, j ≤ n there is a polynomial (in n) time algorithm that outputs the (i, j)th entry of A_k. We call such a deck D as an explicit deck.

Lemma

The above deck $D = \{A_m \mid m \in \{x_0, x_1\}^{n^2}\}$ is an explicit rigid deck for any field \mathbb{F} .

- ► We now turn to the lower bound result for homogeneous linear circuits where the coefficient ring is F(x₀, x₁).
- WANT: an explicit matrix M ∈ F^{n×n}⟨x₀, x₁⟩ such that MY, where Y is a vector of input variables, can not be computed by any homogeneous linear circuits C with size O(n) and depth O(log n).

- ► We now turn to the lower bound result for homogeneous linear circuits where the coefficient ring is F(x₀, x₁).
- WANT: an explicit matrix M ∈ F^{n×n}⟨x₀, x₁⟩ such that MY, where Y is a vector of input variables, can not be computed by any homogeneous linear circuits C with size O(n) and depth O(log n).

Definition (of matrix M)

We define an explicit $n \times n$ matrix M as $M = \sum_{m \in \{x_0, x_1\}^{n^2}} A_m m$, where $D = \{A_m \mid m \in \{x_0, x_1\}^{n^2}\}$ is the deck defined before

each entry of matrix M can be expressed as

$$M_{ij} = (x_0 + x_1)^{(i-1)n+j-1} \cdot x_1 \cdot (x_0 + x_1)^{n^2 - ((i-1)n+j)}.$$

Theorem

Any homogeneous linear circuit C over the coefficient ring $\mathbb{F}\langle x_0, x_1 \rangle$ computing MY, for M defined before, requires either size $\omega(n)$ or depth $\omega(\log n)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem

Any homogeneous linear circuit C over the coefficient ring $\mathbb{F}\langle x_0, x_1 \rangle$ computing MY, for M defined before, requires either size $\omega(n)$ or depth $\omega(\log n)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof Proof by contradiction. Let C is a homogeneous linear circuit of size O(n) and depth $O(\log n)$ computing MY.

Theorem

Any homogeneous linear circuit C over the coefficient ring $\mathbb{F}\langle x_0, x_1 \rangle$ computing MY, for M defined before, requires either size $\omega(n)$ or depth $\omega(\log n)$.

Proof Proof by contradiction. Let C is a homogeneous linear circuit of size O(n) and depth $O(\log n)$ computing MY.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

▶ By Valiant's graph-theoretic argument, in the circuit *C* there is a set of gates *V* of cardinality $s = \frac{c_1 n}{\log \log n} = o(n)$ such that at least $n^2 - n^{1+\delta}$, for $\delta < 1$, input-output pairs have all their paths going through *V*.

▶ By Valiant's graph-theoretic argument, in the circuit *C* there is a set of gates *V* of cardinality $s = \frac{c_1 n}{\log \log n} = o(n)$ such that at least $n^2 - n^{1+\delta}$, for $\delta < 1$, input-output pairs have all their paths going through *V*.

• Thus, we can write $M = B_1B_2 + E$, where

- $B_1 \in \mathbb{F}^{n \times s} \langle x_0, x_1 \rangle$ and
- $B_2 \in \mathbb{F}^{s \times n} \langle x_0, x_1 \rangle$
- $E \in \mathbb{F}^{n \times n} \langle x_0, x_1 \rangle$ and $|\operatorname{supp}(E)| \leq n^{1+\delta}$

► Write matrices *M*,*E* and *B*₁*B*₂ as a polynomial with matrix coefficients.

Example:

$$\begin{pmatrix} 6x_0 + x_1 & x_0 \\ 8x_1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 1 \\ 0 & 0 \end{pmatrix} x_0 + \begin{pmatrix} 1 & 0 \\ 8 & 0 \end{pmatrix} x_1$$

►
$$M = \sum_{m \in \{x_0, x_1\}^{n^2}} A_m \cdot m$$
, where $A_m \in A$
► $B_1 B_2 = \sum_{m \in \{x_0, x_1\}^{n^2}} B_m \cdot m$
► $E = \sum_{m \in \{x_0, x_1\}^{n^2}} E_m \cdot m$, $| \cup_{m \in \{x_0, x_1\}^{n^2}} \operatorname{supp}(E_m)| \le n^{1+\delta}$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

▶ Write matrices *M*,*E* and *B*₁*B*₂ as a polynomial with matrix coefficients.

Example:

$$\begin{pmatrix} 6x_0 + x_1 & x_0 \\ 8x_1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 1 \\ 0 & 0 \end{pmatrix} x_0 + \begin{pmatrix} 1 & 0 \\ 8 & 0 \end{pmatrix} x_1$$

•
$$M = \sum_{m \in \{x_0, x_1\}^{n^2}} A_m \cdot m$$
, where $A_m \in \mathcal{A}$
• $B_1 B_2 = \sum_{m \in \{x_0, x_1\}^{n^2}} B_m \cdot m$
• $E = \sum_{m \in \{x_0, x_1\}^{n^2}} E_m \cdot m$, $| \cup_{m \in \{x_0, x_1\}^{n^2}} \operatorname{supp}(E_m)| \le n^{1+\delta}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Note that, $A_m = B_m + E_m \implies B_m = A_m - E_m$.

▶ Write matrices *M*,*E* and *B*₁*B*₂ as a polynomial with matrix coefficients.

Example:

$$\begin{pmatrix} 6x_0 + x_1 & x_0 \\ 8x_1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 1 \\ 0 & 0 \end{pmatrix} x_0 + \begin{pmatrix} 1 & 0 \\ 8 & 0 \end{pmatrix} x_1$$

►
$$M = \sum_{m \in \{x_0, x_1\}^{n^2}} A_m \cdot m$$
, where $A_m \in A$
► $B_1 B_2 = \sum_{m \in \{x_0, x_1\}^{n^2}} B_m \cdot m$
► $E = \sum_{m \in \{x_0, x_1\}^{n^2}} E_m \cdot m$, $| \cup_{m \in \{x_0, x_1\}^{n^2}} \operatorname{supp}(E_m)| \le n^{1+\delta}$

• Note that, $A_m = B_m + E_m \implies B_m = A_m - E_m$.

Rest of the proof:

• We show that for each *m*, rank of B_m is $\leq s = o(n)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ Write matrices *M*,*E* and *B*₁*B*₂ as a polynomial with matrix coefficients.

Example:

$$\begin{pmatrix} 6x_0 + x_1 & x_0 \\ 8x_1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 1 \\ 0 & 0 \end{pmatrix} x_0 + \begin{pmatrix} 1 & 0 \\ 8 & 0 \end{pmatrix} x_1$$

►
$$M = \sum_{m \in \{x_0, x_1\}^{n^2}} A_m \cdot m$$
, where $A_m \in A$
► $B_1 B_2 = \sum_{m \in \{x_0, x_1\}^{n^2}} B_m \cdot m$
► $E = \sum_{m \in \{x_0, x_1\}^{n^2}} E_m \cdot m$, $| \cup_{m \in \{x_0, x_1\}^{n^2}} \operatorname{supp}(E_m)| \le n^{1+\delta}$

• Note that, $A_m = B_m + E_m \implies B_m = A_m - E_m$.

Rest of the proof:

• We show that for each *m*, rank of B_m is $\leq s = o(n)$.

• we know that, $|\operatorname{supp}(E_m)| \leq n^{1+\delta}$.

► Write matrices *M*,*E* and *B*₁*B*₂ as a polynomial with matrix coefficients.

Example:

$$\begin{pmatrix} 6x_0 + x_1 & x_0 \\ 8x_1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 1 \\ 0 & 0 \end{pmatrix} x_0 + \begin{pmatrix} 1 & 0 \\ 8 & 0 \end{pmatrix} x_1$$

►
$$M = \sum_{m \in \{x_0, x_1\}^{n^2}} A_m \cdot m$$
, where $A_m \in A$
► $B_1 B_2 = \sum_{m \in \{x_0, x_1\}^{n^2}} B_m \cdot m$
► $E = \sum_{m \in \{x_0, x_1\}^{n^2}} E_m \cdot m$, $| \cup_{m \in \{x_0, x_1\}^{n^2}} \operatorname{supp}(E_m)| \le n^{1+\delta}$

• Note that, $A_m = B_m + E_m \implies B_m = A_m - E_m$.

Rest of the proof:

- We show that for each *m*, rank of B_m is $\leq s = o(n)$.
- we know that, |supp(E_m)| ≤ n^{1+δ}. This contradicts the fact that A is a rigid deck.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary:-

- We have shown lower bounds for
 - multiplicative circuits over monoids, permutation groups, free groups, matrix semigroups

linear circuit over noncommutative rings

Summary:-

- We have shown lower bounds for
 - multiplicative circuits over monoids, permutation groups, free groups, matrix semigroups

linear circuit over noncommutative rings

Open Problems

To give explicit constructions for smaller rigid decks of n × n matrices, say, poly(n) sized decks.

Summary:-

- We have shown lower bounds for
 - multiplicative circuits over monoids, permutation groups, free groups, matrix semigroups
 - linear circuit over noncommutative rings

Open Problems

To give explicit constructions for smaller rigid decks of n × n matrices, say, poly(n) sized decks. Or is the construction of rigid decks of smaller size equivalent to the original matrix rigidity problem?

Summary:-

- We have shown lower bounds for
 - multiplicative circuits over monoids, permutation groups, free groups, matrix semigroups
 - linear circuit over noncommutative rings

Open Problems

To give explicit constructions for smaller rigid decks of n × n matrices, say, poly(n) sized decks. Or is the construction of rigid decks of smaller size equivalent to the original matrix rigidity problem?

Thank you.

Linear Circuits over Rings, contd

Lemma

The deck $A = \{A_m \mid m \in \{x_0, x_1\}^{n^2}\}$ is an explicit rigid deck for any field \mathbb{F} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear Circuits over Rings, contd

Lemma

The deck $A = \{A_m \mid m \in \{x_0, x_1\}^{n^2}\}$ is an explicit rigid deck for any field \mathbb{F} .

Proof:-

- Valiant showed that almost all n × n 0-1 matrices A over any field 𝔽 have rigidity ρ_r(A) = Ω((n-r)²/log n) for target rank r.
- ▶ In particular, for $r = \epsilon \cdot n$, over any field \mathbb{F} , there is a 0-1 matrix R for which we have $\rho_r(R) \ge \frac{\delta \cdot n^2}{\log n}$ for some constant $\delta > 0$ depending on ϵ .

Linear Circuits over Rings, contd

Lemma

The deck $A = \{A_m \mid m \in \{x_0, x_1\}^{n^2}\}$ is an explicit rigid deck for any field \mathbb{F} .

Proof:-

- Valiant showed that almost all n × n 0-1 matrices A over any field 𝔽 have rigidity ρ_r(A) = Ω((n-r)²/log n) for target rank r.
- ▶ In particular, for $r = \epsilon \cdot n$, over any field \mathbb{F} , there is a 0-1 matrix R for which we have $\rho_r(R) \ge \frac{\delta \cdot n^2}{\log n}$ for some constant $\delta > 0$ depending on ϵ .

(日) (同) (三) (三) (三) (○) (○)

• We claim that for the deck \mathcal{A} we have $\rho_{\epsilon n}(\mathcal{A}) \geq \frac{\delta \cdot n^2}{\log n}$.

- ▶ To see this, $S \subseteq [n] \times [n]$ such that $|S| < \frac{\delta n^2}{\log n}$
- Let E = {E_m ∈ ℝ^{n×n} | m ∈ {x₀, x₁}^{n²}} be any collection of matrices such that:
 - $\operatorname{supp}(E_m) \subseteq S$
 - Thus, we have for each m, $|\operatorname{supp}(E_m)| < \frac{\delta n^2}{\log n}$
- Since the deck A contains all 0-1 matrices, in particular $R \in A$ and $R = A_m$ for some monomial m.
- From the rigidity of R we know that the rank of $R + E_m$ is at least ϵn .

This proves the claim and the lemma follows.

• We now analyze the matrices B_m .

<□ > < @ > < E > < E > E のQ @

- We now analyze the matrices B_m .
- ▶ By the homogeneity condition on the circuit *C*, we can partition $V = V_1 \cup V_2 \cup \ldots V_\ell$, where each gate *g* in V_i computes a linear form $\sum_{j=1}^n \gamma_j y_j$ and $\gamma_j \in \mathbb{F}\langle x_0, x_1 \rangle$ is a homogeneous degree d_i polynomial.

• Let $s_i = |V_i|, 1 \le i \le \ell$. Then we have $s = s_1 + s_2 + \ldots s_\ell$.

- We now analyze the matrices B_m .
- ▶ By the homogeneity condition on the circuit *C*, we can partition $V = V_1 \cup V_2 \cup \ldots V_\ell$, where each gate *g* in V_i computes a linear form $\sum_{j=1}^n \gamma_j y_j$ and $\gamma_j \in \mathbb{F}\langle x_0, x_1 \rangle$ is a homogeneous degree d_i polynomial.
- Let $s_i = |V_i|, 1 \le i \le \ell$. Then we have $s = s_1 + s_2 + \ldots s_\ell$.
- Every monomial m has a unique prefix of length d_i for each degree d_i.
 - Thus, we can write $B_m = \sum_{j=1}^{\ell} B_{m,j,1} B_{m,j,2}$, where
 - $B_{m,j,1}$ is the $n \times s_j$ matrix corresponding to the d_j -prefix of m
 - $B_{m,j,2}$ is the $s_j \times n$ matrix corresponding to the $n^2 d_j$ -suffix of m.

- We now analyze the matrices B_m .
- ▶ By the homogeneity condition on the circuit *C*, we can partition $V = V_1 \cup V_2 \cup \ldots V_\ell$, where each gate *g* in V_i computes a linear form $\sum_{j=1}^n \gamma_j y_j$ and $\gamma_j \in \mathbb{F}\langle x_0, x_1 \rangle$ is a homogeneous degree d_i polynomial.
- Let $s_i = |V_i|, 1 \le i \le \ell$. Then we have $s = s_1 + s_2 + \ldots s_\ell$.
- Every monomial m has a unique prefix of length d_i for each degree d_i.
 - ▶ Thus, we can write $B_m = \sum_{j=1}^{\ell} B_{m,j,1} B_{m,j,2}$, where
 - $B_{m,j,1}$ is the $n \times s_j$ matrix corresponding to the d_j -prefix of m
 - $B_{m,j,2}$ is the $s_j \times n$ matrix corresponding to the $n^2 d_j$ -suffix of m.

► It follows that for each monomial *m* the rank of B_m is bounded by *s*.

- We now analyze the matrices B_m .
- ▶ By the homogeneity condition on the circuit *C*, we can partition $V = V_1 \cup V_2 \cup \ldots V_\ell$, where each gate *g* in V_i computes a linear form $\sum_{j=1}^n \gamma_j y_j$ and $\gamma_j \in \mathbb{F}\langle x_0, x_1 \rangle$ is a homogeneous degree d_i polynomial.
- Let $s_i = |V_i|, 1 \le i \le \ell$. Then we have $s = s_1 + s_2 + \ldots s_\ell$.
- Every monomial *m* has a unique prefix of length *d_i* for each degree *d_i*.
 - ▶ Thus, we can write $B_m = \sum_{j=1}^{\ell} B_{m,j,1} B_{m,j,2}$, where
 - ▶ $B_{m,j,1}$ is the $n \times s_j$ matrix corresponding to the d_j -prefix of m
 - $B_{m,j,2}$ is the $s_j \times n$ matrix corresponding to the $n^2 d_j$ -suffix of m.
- ► It follows that for each monomial *m* the rank of B_m is bounded by *s*.

Putting it together, for each monomial m we have $A_m = B_m + E_m$, where B_m is rank s and $| \cup_{m \in \{x_0, x_1\}^{n^2}} \operatorname{supp}(E_m) | \le n^{1+\delta}$.

Rank of B_m is < s

- We now analyze the matrices B_m .
- By the homogeneity condition on the circuit C, we can partition $V = V_1 \cup V_2 \cup \ldots V_\ell$, where each gate g in V_i computes a linear form $\sum_{i=1}^{n} \gamma_i y_i$ and $\gamma_i \in \mathbb{F}\langle x_0, x_1 \rangle$ is a homogeneous degree d_i polynomial.
- Let $s_i = |V_i|, 1 \le i \le \ell$. Then we have $s = s_1 + s_2 + ... s_{\ell}$.
- Every monomial *m* has a unique prefix of length d_i for each degree d_i .
 - Thus, we can write $B_m = \sum_{i=1}^{\ell} B_{m,j,1} B_{m,j,2}$, where
 - $B_{m,j,1}$ is the $n \times s_j$ matrix corresponding to the d_j -prefix of m
 - $B_{m,i,2}$ is the $s_i \times n$ matrix corresponding to the $n^2 d_i$ -suffix of m.
- ▶ It follows that for each monomial *m* the rank of B_m is bounded by s.

Putting it together, for each monomial *m* we have $A_m = B_m + E_m$, where B_m is rank s and $|\bigcup_{m \in \{x_0, x_1\}^{n^2}} \operatorname{supp}(E_m)| \le n^{1+\delta}$. This contradicts the fact that \mathcal{A} is a rigid deck.