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Multiplicative Circuits

I Let T = {0, 1}∗ and ◦ = string concatenation operation

I (T ,◦) is a monoid

Circuit over monoid (T ,◦):

◦
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- fanin = 2

- size = number of gates in the circuit

- multi-output circuit

10 01
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Our Results

Theorem (Lower Bounds for Circuits over free Monoids)

Let S = {y1, ..., yn} ⊆ {0, 1}n be the explicit set of n strings. Any
concatenation circuit that takes X = {0, 1} as input and outputs

y1, ..., yn will require size Ω( n2

log2 n
).

Theorem (Lower Bounds for Circuits over permutation group)

Any composition circuit over the permutation group (SN , ·), with

domain size N = 2
n2

log2 n , that takes as input π0, π1 and computes
GS = {πyi |yi ∈ S} ⊆ SN as output is of size Ω( n2

log2 n
).



Our Results

Theorem (Lower Bounds for Circuits over free Monoids)

Let S = {y1, ..., yn} ⊆ {0, 1}n be the explicit set of n strings. Any
concatenation circuit that takes X = {0, 1} as input and outputs

y1, ..., yn will require size Ω( n2

log2 n
).

Theorem (Lower Bounds for Circuits over permutation group)

Any composition circuit over the permutation group (SN , ·), with

domain size N = 2
n2

log2 n , that takes as input π0, π1 and computes
GS = {πyi |yi ∈ S} ⊆ SN as output is of size Ω( n2

log2 n
).



Lower Bounds for Circuits over free Monoids

Circuits over free Monoids: T = {0, 1}∗ and monoid operation
is string concatenation.

Definition (Construction of S)

I Let D = {1, 2, ..., n2}.
I Each i ∈ [n2] requires d2 log2 ne bits to represent it in binary

for i = 1, ..., n do

1. pick first n
2 log n numbers from the current set D

2. concatenate their binary representation to obtain yi

3. remove these numbers from D

end for

I Each yi ∈ {0, 1}n constructed has the property that yi has
≥ n

2 log n distinct substrings of length 2 log n.
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Lower Bounds for Circuits over free Monoids, contd

Lemma
Let s ∈ X n be any string where |X | ≥ 2, such that the number of
distinct substrings of s of length ` is N. Then any concatenation
circuit for s will require Ω(N` ) gates.

Proof Let C be a concatenation circuit computing s.

g

s1 s2

s1 ◦ s2

k1 distinct substrings of length `

k2 distinct substrings of length `

k1 + k2 + `− 1 distinct substrings of length `

- # of new substrings of length ` generated at any g is ≤ `− 1
and this gives, |C | = Ω(N` ). �
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Lower Bounds for Circuits over free Monoids, contd

Theorem
Let S = {y1, ..., yn} ⊆ {0, 1}n be the explicit set of n strings
defined above. Any concatenation circuit that takes X = {0, 1} as

input and outputs S at its n output gates will require size Ω( n2

log2 n
).

Proof

I Let C be a concatenation circuit computing S .

I Note that each yi ∈ S have Ω( n
log n ) distinct substrings of

length O(log n).

I In total y1, y2, ..., yn have Ω( n2

log n ) distinct substrings of length
O(log n).
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Lower Bounds for Circuits over free Monoids, contd

s1 s2

s1 ◦ s2

0000 1111

C

y1 y2 ... yn

Y = y1 ◦ y2 ◦ ... ◦ yn

C ′

- Note that |C ′| ≤ |C |+ n − 1

-Y have Ω( n2

log n ) distinct substrings

of length O(log n)

- By Lemma, |C ′| = Ω( n2

log2 n
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log2 n
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2. Circuits over permutation groups

Circuits over permutation groups:

I S = SN where SN is a permutation group with domain size N

I operation is composition

Definition of generating elements: π0 and π1
I Let D = {−N

2 ,−(N2 − 1), ...,−1, 0, 1, ..., N2 − 1}

0−1−2...−N
2

π0

0 1 2 ... N
2 − 1π1

I Let y = 101. By πy we mean the permutation π1π0π1.
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Definition: GS = {πyi |yi ∈ S}, where the set S be the explicit set
of n strings defined before.

Goal: To compute GS using composition circuits



Theorem
Any composition circuit over the permutation group (SN , ·), with

domain size N = 2
n2

log2 n , that takes as input π0, π1 and computes
GS = {πyi |yi ∈ S} ⊆ SN as output is of size Ω( n2

log2 n
).

Proof:- Let C be a composition circuit computing GS .

·
p1 p2

p1.p2

π0π0π0π0 π1π1π1π1

πy ′
1

= πy1 πy ′
2

= πy2
...

πy ′
n

= πyn

C

◦
p1 p2

p1 ◦ p2

0000 1111

y ′1 y ′2 ...
y ′n

y ′i ∈ {0, 1}∗

C’

I Note that |C | = |C ′|.
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I Suppose in C ′, if ∀i ∈ [n], y ′i = yi ∈ S then C ′ is a
concatenation circuit computing S = {y1, ..., yn}.

I By Theorem, |C ′| = Ω( n2

log2 n
) =⇒ |C | = Ω( n2

log2 n
).

I Otherwise in C ′, ∃i ∈ [n], y ′i 6= yi .

I Let πyi = v .b1.s, πy ′
i

= u.b2.s, where b1 6= b2.

I w.l.o.g, assume that b1 = π0 and b2 = π1.

I D = {−N
2 ,−(N2 − 1), ...,−1, 0, 1, ..., N2 − 1}

0−1−2...−N
2

π0

0 1 2 ... N
2 − 1π1

I Thus, u have at least (N2 − 1) copies of π1 and since fanin is

2, |C | ≥ Ω(log(N2 − 1)), where N = 2
n2

log2 n . �
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Linear Circuits over Rings

Example: Linear circuit over noncommutative ring R

+

+

+

y2 y3y1

α1 α2 α3 α4

11

α1y1 + α2y2 α1y1 + α2y2

α1y1 + (α2 + α3)y2 + α4y3

- fanin = 2

- size = number of gates in the circuit

- multi-output circuit

where α1, α2, α3, α4 ∈ R.
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Linear Circuits over Rings , contd

I When R is a field, we get the well-studied linear circuits
model (see Satya Lokam’s 2009 survey).

I No explicit superlinear size lower bounds are known for this
model over fields (except for some special cases like the
bounded coefficient model [Morgenstern’73])

I When the coefficients to come from a noncommutative ring
R = F〈x0, x1〉, we prove lower bounds for certain restricted
linear circuits.



Linear Circuits over Rings, contd

Definition (Homogeneous polynomials)

A polynomial P ∈ F〈x0, x1〉 is called homogeneous if degree of
each monomial in P is the same.

Example:

I Homogeneous polynomials: x10
1 + x5

0x5
1

I Non-homogeneous polynomials: x2
1 + x0
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Homogeneous Linear Circuits over F〈x0, x1〉

+

+

y2 y3y1

α1 α2

α3

α4

α1y1 + α2y2

α4(α1y1 + α2y2) + α3y3

where α1, α2, α3, α4 ∈ F〈x0, x1〉.
I each gate g of the circuit computes a linear form

∑n
i=1 βiyi ,

where the βi ∈ F〈x0, x1〉 are all homogeneous polynomials of
the same degree.
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Linear Circuits over Rings, contd

I Our goal is to construct an explicit matrix M ∈ Fn×n〈x0, x1〉
such that MY , where Y = (y1, y2, . . . , yn)T is a column vector
of input variables, can not be computed by any homogeneous
linear circuit C with size O(n) and depth O(log n).

I proved by suitably generalizing Valiant’s matrix rigidity
method.

Notation
Consider n× n matrices Fn×n over field F. The support of a matrix
A ∈ Fn×n is the set of locations supp(A) = {(i , j) | Aij 6= 0}.



Linear Circuits over Rings, contd

I Our goal is to construct an explicit matrix M ∈ Fn×n〈x0, x1〉
such that MY , where Y = (y1, y2, . . . , yn)T is a column vector
of input variables, can not be computed by any homogeneous
linear circuit C with size O(n) and depth O(log n).

I proved by suitably generalizing Valiant’s matrix rigidity
method.

Notation
Consider n× n matrices Fn×n over field F. The support of a matrix
A ∈ Fn×n is the set of locations supp(A) = {(i , j) | Aij 6= 0}.



Linear Circuits over Rings, contd

I Our goal is to construct an explicit matrix M ∈ Fn×n〈x0, x1〉
such that MY , where Y = (y1, y2, . . . , yn)T is a column vector
of input variables, can not be computed by any homogeneous
linear circuit C with size O(n) and depth O(log n).
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Definition (Rigidity of a matrix)

Let F be any field. The rigidity of a matrix A ∈ Fn×n, denoted by
Rr (A) , is the smallest number t for which there are set of t
positions S ⊆ [n]× [n] and a matrix E such that:

I supp(E ) ⊆ S

I rank of A + E is upper bounded by r .
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Definition (Rigidity of a deck of matrices)

Let F be any field. The rigidity ρr (D) of a deck of matrices
D = {A1,A2, . . . ,AN} ⊆ Fn×n is the smallest number t for which
there are set of t positions S ⊆ [n]× [n] and a deck of matrices
E = {E1,E2, . . . ,EN} such that for all i :

I supp(Ei ) ⊆ S

I rank of Ai + Ei is upper bounded by r .

Definition (Rigid deck)

A deck of matrices D = {A1,A2, . . . ,AN} ⊆ Fn×n is called rigid
deck if ρε·n(D) = Ω(n2−o(1)), where ε > 0 is a constant.

I Notice that for N = 1, this is the notion of rigid matrices.
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Definition (Construction of a Rigid deck)

Let D = {Am | m ∈ {x0, x1}n
2} with matrices Am indexed by string

m of length n2. The matrix Am is defined as follows: 1 ≤ i , j ≤ n

Am[i , j ] =

{
1 if mni+j = x1
0 if mni+j = x0

I For each k ∈ {x0, x1}n
2

and each 1 ≤ i , j ≤ n there is a
polynomial (in n) time algorithm that outputs the (i , j)th

entry of Ak . We call such a deck D as an explicit deck.

Lemma
The above deck D = {Am | m ∈ {x0, x1}n

2} is an explicit rigid
deck for any field F.
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I We now turn to the lower bound result for homogeneous
linear circuits where the coefficient ring is F〈x0, x1〉.

I WANT: an explicit matrix M ∈ Fn×n〈x0, x1〉 such that MY ,
where Y is a vector of input variables, can not be computed
by any homogeneous linear circuits C with size O(n) and
depth O(log n).

Definition (of matrix M)

We define an explicit n × n matrix M as M =
∑

m∈{x0,x1}n2 Amm,

where D = {Am | m ∈ {x0, x1}n
2} is the deck defined before

I each entry of matrix M can be expressed as

Mij = (x0 + x1)(i−1)n+j−1 · x1 · (x0 + x1)n
2−((i−1)n+j).
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Theorem
Any homogeneous linear circuit C over the coefficient ring
F〈x0, x1〉 computing MY , for M defined before, requires either size
ω(n) or depth ω(log n).

Proof Proof by contradiction. Let C is a homogeneous linear
circuit of size O(n) and depth O(log n) computing MY .

+

s1 s2

s1 + s2

y1 y2 y3 ... yn

C computing M · Y

O1 = M1,∗ · Y
...

On = Mn,∗ · Y

depth = O(log n)

size = O(n)
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I By Valiant’s graph-theoretic argument, in the circuit C there
is a set of gates V of cardinality s = c1n

log log n = o(n) such that

at least n2−n1+δ, for δ < 1, input-output pairs have all their
paths going through V .

I Thus, we can write M = B1B2 + E , where
I B1 ∈ Fn×s〈x0, x1〉 and
I B2 ∈ Fs×n〈x0, x1〉
I E ∈ Fn×n〈x0, x1〉 and |supp(E )| ≤ n1+δ
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I Write matrices M,E and B1B2 as a polynomial with matrix
coefficients.

Example: (
6x0 + x1 x0

8x1 0

)
=

(
6 1
0 0

)
x0 +

(
1 0
8 0

)
x1

I M =
∑

m∈{x0,x1}n2 Am ·m, where Am ∈ A
I B1B2 =

∑
m∈{x0,x1}n2 Bm ·m

I E =
∑

m∈{x0,x1}n2 Em ·m, | ∪
m∈{x0,x1}n2 supp(Em)| ≤ n1+δ

I Note that, Am = Bm + Em =⇒ Bm = Am − Em.

Rest of the proof:

I We show that for each m, rank of Bm is ≤ s = o(n).

I we know that, |supp(Em)| ≤ n1+δ. This contradicts the fact
that A is a rigid deck. �
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Summary:-
I We have shown lower bounds for

I multiplicative circuits over monoids, permutation groups, free
groups, matrix semigroups

I linear circuit over noncommutative rings

Open Problems

I To give explicit constructions for smaller rigid decks of n × n
matrices, say, poly(n) sized decks. Or
is the construction of rigid decks of smaller size equivalent to
the original matrix rigidity problem?

Thank you.
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Linear Circuits over Rings, contd

Lemma
The deck A = {Am | m ∈ {x0, x1}n

2} is an explicit rigid deck for
any field F.

Proof:-

I Valiant showed that almost all n × n 0-1 matrices A over any

field F have rigidity ρr (A) = Ω( (n−r)
2

log n ) for target rank r .

I In particular, for r = ε · n, over any field F, there is a 0-1
matrix R for which we have ρr (R) ≥ δ·n2

log n for some constant
δ > 0 depending on ε.

I We claim that for the deck A we have ρεn(A) ≥ δ·n2
log n .
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I To see this, S ⊆ [n]× [n] such that |S | < δn2

log n

I Let E = {Em ∈ Fn×n|m ∈ {x0, x1}n
2} be any collection of

matrices such that:
I supp(Em) ⊆ S
I Thus, we have for each m, |supp(Em)| < δn2

log n

I Since the deck A contains all 0-1 matrices, in particular
R ∈ A and R = Am for some monomial m.

I From the rigidity of R we know that the rank of R + Em is at
least εn.

This proves the claim and the lemma follows. �



Rank of Bm is ≤ s

I We now analyze the matrices Bm.

I By the homogeneity condition on the circuit C , we can
partition V = V1 ∪ V2 ∪ . . .V`, where each gate g in Vi

computes a linear form
∑n

j=1 γjyj and γj ∈ F〈x0, x1〉 is a
homogeneous degree di polynomial.

I Let si = |Vi |, 1 ≤ i ≤ `. Then we have s = s1 + s2 + . . . s`.
I Every monomial m has a unique prefix of length di for each

degree di .
I Thus, we can write Bm =

∑`
j=1 Bm,j,1Bm,j,2, where

I Bm,j,1 is the n × sj matrix corresponding to the dj -prefix of m
I Bm,j,2 is the sj × n matrix corresponding to the n2 − dj -suffix

of m.

I It follows that for each monomial m the rank of Bm is
bounded by s.

Putting it together, for each monomial m we have Am = Bm + Em,
where Bm is rank s and | ∪

m∈{x0,x1}n2 supp(Em)| ≤ n1+δ. This

contradicts the fact that A is a rigid deck. �
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