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Dominating Set Variants

• Dominating Set (DS) :
A subset S ⊆ V (G) such that every vertex not in S is
adjacent to at least one member of S.

• Independent Dominating Set (IDS) :
S is also independent.

• Efficient Dominating Set (EDS) :
For every vertex v ∈ V, |N [v] ∩ S| = 1.

• Threshold Dominating Set (ThDS) with threshold r :
For every vertex v, |N(v) ∩ S| ≥ r.

• Total Dominating Set (TDS) : ThDS with r = 1.
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Example
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{B,D} is a Dominating Set. Also an IDS.
{B,F} is an EDS.
{A,B,D} is a Total Dominating Set.
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Parameterized Problem

• A parameterized problem is a language L ⊆ Σ∗ × N. Input
instance of L is (x, k) where x ∈ Σ∗, k ∈ N. k is called
parameter.

• Example: Feedback Vertex Set parameterized by Solution
Size.
L = {(G, k)|∃S ⊆ V (G) such that |S| ≤ k and G \ S is
acyclic}.
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Fixed-Parameter Tractability (FPT)

A(x, k)

Yes if (x, k) 2 L

No, otherwise

• Algorithm A runs in f(k) · |x|c time.

• A is called Fixed Parameter Algorithm.
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Examples

• Feedback Vertex Set parameterized by solution size k
admits O(3.618k · nO(1)) time algorithm [KP'14].

• Vertex Cover parameterized by solution size k admits
O(1.27k · nO(1)) time algorithm [CKJ'01].
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Hardness

• W [1]-hard : Problems unlikely to be FPT .
Examples : Independent Set, Clique parameterized by
solution size k

• Para NP -hard : Problems that are NP -hard for a constant
value for the parameter.
Example: k-coloring
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Dominating Set Variants

• All dominating set variants parameterized by solution size
are W [1]-hard. Most of them are actually W [2]-hard.

• Other parameters?
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Structural Parameterizations

• Parameters based on the structural properties of the input.

• Example : Maximum degree, treewidth, Minimum Vertex
Cover, deletion distance to an easy instance
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Cluster graph and Split graph

• Cluster graph : Every connected component of the
graph is a clique.

• Split graph : The vertex set of the graph can be
partitioned into a clique and an independent set.
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• All dominating set variants are solvable in polynomial time
on cluster graphs.

• Dominating Set, TDS and ThDS are NP -hard on split
graphs.

• EDS and IDS are solvable in polynomial time on split
graphs.
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Results for deletion distance to cluster
graph

Algorithms Lower Bounds

DS, TDS O∗(3k) O∗((2− ε)k)

IDS O∗(3k) O∗((2− ε)k)

EDS O∗(3k) O∗(2o(k))
ThDS O∗((r + 2)k)

Table: Results for deletion distance to cluster graph
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Results for deletion distance to split
graph

Algorithms Lower Bounds

DS, TDS para-NP -hard

IDS O∗(2k) O∗((2− ε)k)

EDS O∗(3k/2) O∗(2o(k))
ThDS para-NP -hard

Table: Results for deletion distance to split graph
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Problem De�nition

Dominating Set-Cluster VD

Input: An undirected graph G = (V,E), S ⊆ V (G) such that
every component of G \ S is a clique and an integer `.
Parameter: |S|
Question: Is there a dominating set in G of size `?

• Assume S is given as part of input. If not use the algorithm
by [BCKP'16] to get S in time O∗(1.9102k).
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Algorithm

• Guess S′, the part of the solution intersecting with S.
• Delete N [S′] ∩ S.

. . .
S′

S

V \ S
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Disjoint Problem De�nition

DS-disjointcluster

Input: An undirected graph G = (V,E), S ⊆ V such that
every connected component of G \ S is a clique, a (0, 1) vec-
tor (f1, f2, . . . , fq) corresponding for the cliques (C1, C2, . . . , Cq)
and an integer `.
Parameter: |S|
Question: Does there exist a subset T ⊆ V \ S of size `, that
dominates all vertices of S and all vertices of all cliques Ci with
�ags fi = 1?
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A detour

Set Cover

Input: A universe U , a family of sets F = {S1, . . . , Sm} of
subsets of U and an integer `.
Parameter: |U | = k
Question: Does there exist a subset F ′ ⊆ F of size ` covering
U?

. . . U

. . . F
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Equivalent problem

Set-Cover with Partition

Input: A universe U , a family of sets F = {S1, . . . , Sm}, a par-
tition B = (B1,B2, . . . ,Bq) of F , a (0, 1) vector (f1, f2, . . . , fq)
corresponding to each block in the partition (B1,B2, . . . ,Bq) and
an integer `.
Parameter: |U | = k
Question: Does there exist a subset F ′ ⊆ F of size ` covering
U and from each block Bi with �ags fi = 1 at least one set is
picked?

Universe U = S.
For each vertex v ∈ V \ S, we de�ne a set Sv = N(v) ∩ S.
Family of sets F = {Sv : v ∈ V \ S}.
(B1,B2, . . . ,Bq) = (C1, C2, . . . , Cq)
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Dynamic Programming Algorithm for
Set-Cover with Partition

For W ⊆ U , index j of set Sj and �ag f ∈ {0, 1}

. . .
W

U

. . . F

B1 B2 B3

S1 Sj
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OPT [W, j, f ] : cardinality of the minimum subset X of
{S1, . . . , Sj} covering W such that

• from each block Bi with fi = 1, there is at least one set in X

• except the block Bx containing the set Sj where we reset
the �ag to f to indicate that at least f sets are required in
that block.
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Dynamic Programming Recurrence

• Case 1 : Sj+1 is not the �rst set in its block Bx.

OPT [W, j+1, f ] = min
{
OPT [W, j, f ], 1+OPT [W\Sj+1, j, 0]

}
• Case 2 : Sj+1 is the �rst set in its block Bx.

OPT [W, j+1, f ] =


1 + OPT [W \ Sj+1, j, fx−1] if f = 1

min
{
OPT [W, j, fx−1],

1 + OPT [W \ Sj+1, j, fx−1]
}

if f = 0
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Running Time

• Number of subproblems : 2|U |+1 ·m
• Running time for Set-Cover with Partition:
O(2|U | ·m2).

• Running time for Dominating Set-Cluster VD :
k∑

i=1

(
k
i

)
O∗(2k−i) = O∗(3k)
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Other Variants
• EDS ,IDS, TDS : O∗(3k)
• ThDS : O∗((r + 2)k)

. . .
S′

S

V \ S

26



Lower Bound Conjectures

• Exponential Time Hypothesis (ETH) ([IPZ01,IP01])
3-CNF-SAT cannot be solved in O∗(2o(n)) time where the
input formula has n variables and m clauses.

• Strong Exponential Time Hypothesis

(SETH)([IPZ01])

There is no ε > 0 such that ∀q ≥ 3, q-CNFSAT can be
solved in O∗((2− ε)n) time where n is the number of
variables in input formula.

• Set Cover Conjecture (SCC)

There is no ε > 0 such that SET COVER can be solved in
O∗((2− ε)n) time where n is the size of the universe.
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Lower Bounds
• Dominating Set-Cluster VD and cannot be solved in
O∗((2− ε)k) running time for any ε > 0 unless SCC fails.

. . . S

V \ S
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Lower Bounds cont'd

• IDS-ClusterVD cannot be solved in time O∗((2− ε)k) for
any ε > 0 unless SETH fails.

• EDS-Vertex Cover cannot be solved in 2o(|S|) time unless
ETH fails.
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Para-NP-hardness

• Dominating Set and Total Dominating Set are
NP -hard on Split graphs.

• Hence para-NP-hard for deletion Distance to Split Graphs.
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Algorithm for EDS and IDS
• EDS and IDS can be solved in O∗(2k) time.

. . .
S′

S

V \ S
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Lower Bounds

• IDS-SplitVD cannot be solved in O∗((2− ε)k) time unless
SETH fails.

• EDS-SplitVD cannot be solved in 2o(k) time unless ETH
fails.
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Improved Algorithm for EDS

• EDS-SplitVD can be solved in O∗(3k/2) time.
• Color all the vertices of G blue initially.
• Whenever a vertex gets undeletable, make it red.
• Measure = Number of blue vertices in S, initial value k.
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Branching Rule 1

• x, y ∈ S blue vertices with distance at most 2.

x 2 S y 2 S

z

y 2 S x 2 S y 2 S

z

Add x into D,
delete N [x] from G and

color N2(x) by red.

Add y into D,
delete N [y] from G and

color N2(y) by red.

Color x and y by red

x 2 S

35



Reduction Rule 1
• Blue vertices are forced below.

x

NG(x)

x

NG(x)
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• Guess the intersection of the clique part of the split graph
C in the solution.

• One-time branch on at most |C|+ 1 cases.

• Now only vertices of independent set part I left below.

• Note that after Branching Rule 1, any vertex in I have
exactly one blue vertex in S as its neighbour .
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Reduction Rule 2
• x is forced in the solution.

x S

Iu v
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Branching Rule 2.1

x

u v

zy

v

z

u

y

x

u v

zy

Add u into D.
So, x, y get deleted.

v gets red color.

Add v into D.
So, x, z get deleted.

u gets red color.

S

S

Color u, v by red.

S

S

This forces
z into D.
So, z gets

deleted too. This forces
y into D.
So, y gets

deleted too.

This forces
y, z into D.
So, y, z get
deleted too.

I I

I

I
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Branching Rule 2.2

x

u

y

v

z

u

y

x

u

v

z

y

Add u into D.
So, x, y get deleted.

v gets red color.

Add v into D.
So, x, z get deleted.

u gets red color.

S

S

Color u, v by red.

S

S

This forces
z into D.
So, z gets

deleted too. This forces
y into D.
So, y gets

deleted too.

This forces
y, z into D.
So y, z get
deleted too.

I I

I

I

v

z
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• After applying every above rules, look at blue vertices
u ∈ S, v ∈ I and (u, v) ∈ E(G).

• Either u or v in solution as N(u) \ {v} = N(v) \ {u}.
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Future Work

• Close the 3k − 2k upper-lower bound gap for
(DS/IDS/TDS)-Cluster VD.

• Deletion distance to other easy instances.

• Other dominating set variants.
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THANK YOU
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