Structural Parameterizations of Dominating Set Variants

Dishant Goyal Ashwin Jacob Kaushtubh Kumar Diptapriyo Majumdar Venkatesh Raman

June 6, 2018, CSR, Moscow, Russia

Outline

(1) Definition and Properties
(2) Our Results
(3) Deletion Distance to Cluster Graphs Algorithm
Lower Bounds

4 Deletion Distance to Split Graphs

Dominating Set Variants

Dominating Set Variants

- Dominating Set (DS) :

A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.

Dominating Set Variants

- Dominating Set (DS) :

A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.

- Independent Dominating Set (IDS) :
S is also independent.

Dominating Set Variants

- Dominating Set (DS) :

A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.

- Independent Dominating Set (IDS) :
S is also independent.
- Efficient Dominating Set (EDS) : For every vertex $v \in V,|N[v] \cap S|=1$.

Dominating Set Variants

- Dominating Set (DS) :

A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.

- Independent Dominating Set (IDS) :
S is also independent.
- Efficient Dominating Set (EDS) : For every vertex $v \in V,|N[v] \cap S|=1$.
- Threshold Dominating Set (ThDS) with threshold r : For every vertex $v,|N(v) \cap S| \geq r$.

Dominating Set Variants

- Dominating Set (DS) :

A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.

- Independent Dominating Set (IDS) :
S is also independent.
- Efficient Dominating Set (EDS) : For every vertex $v \in V,|N[v] \cap S|=1$.
- Threshold Dominating Set (ThDS) with threshold r : For every vertex $v,|N(v) \cap S| \geq r$.
- Total Dominating Set (TDS) : ThDS with $r=1$.

Example

Example

$\{B, D\}$ is a Dominating Set. Also an IDS.

Example

$\{B, D\}$ is a Dominating Set. Also an IDS. $\{B, F\}$ is an EDS.

Example

$\{B, D\}$ is a Dominating Set. Also an IDS.
$\{B, F\}$ is an EDS.
$\{A, B, D\}$ is a Total Dominating Set.

Parameterized Problem

- A parameterized problem is a language $L \subseteq \Sigma^{*} \times \mathbb{N}$. Input instance of L is (x, k) where $x \in \Sigma^{*}, k \in \mathbb{N}$. k is called parameter.

Parameterized Problem

- A parameterized problem is a language $L \subseteq \Sigma^{*} \times \mathbb{N}$. Input instance of L is (x, k) where $x \in \Sigma^{*}, k \in \mathbb{N}$. k is called parameter.
- Example: Feedback Vertex Set parameterized by Solution Size.
$L=\{(G, k) \mid \exists S \subseteq V(G)$ such that $|S| \leq k$ and $G \backslash S$ is acyclic $\}$.

Fixed-Parameter Tractability (FPT)

- Algorithm \mathcal{A} runs in $f(k) \cdot|x|^{c}$ time.
- \mathcal{A} is called Fixed Parameter Algorithm.

Examples

- Feedback Vertex Set parameterized by solution size k admits $\mathcal{O}\left(3.618^{k} \cdot n^{\mathcal{O}(1)}\right)$ time algorithm [KP'14].
- Vertex Cover parameterized by solution size k admits $\mathcal{O}\left(1.27^{k} \cdot n^{\mathcal{O}(1)}\right)$ time algorithm [CKJ'01].

Hardness

Hardness

- W[1]-hard : Problems unlikely to be FPT.

Hardness

- W[1]-hard : Problems unlikely to be FPT. Examples: Independent Set, Clique parameterized by solution size k

Hardness

- W[1]-hard : Problems unlikely to be FPT. Examples: Independent Set, Clique parameterized by solution size k
- Para $N P$-hard : Problems that are $N P$-hard for a constant value for the parameter.

Hardness

- W[1]-hard : Problems unlikely to be FPT.

Examples: Independent Set, Clique parameterized by solution size k

- Para $N P$-hard : Problems that are $N P$-hard for a constant value for the parameter.
Example: k-COLORING

Dominating Set Variants

- All dominating set variants parameterized by solution size are $W[1]$-hard. Most of them are actually $W[2]$-hard.
- Other parameters?

Structural Parameterizations

- Parameters based on the structural properties of the input.
- Example : Maximum degree, treewidth, Minimum Vertex Cover, deletion distance to an easy instance

Cluster graph and Split graph

Cluster graph and Split graph

- Cluster graph : Every connected component of the graph is a clique.

Cluster graph and Split graph

- Cluster graph : Every connected component of the graph is a clique.
- Split graph : The vertex set of the graph can be partitioned into a clique and an independent set.

- All dominating set variants are solvable in polynomial time on cluster graphs.
- Dominating Set, TDS and ThDS are $N P$-hard on split graphs.
- EDS and IDS are solvable in polynomial time on split graphs.

Outline

(1) Definition and Properties
(2) Our Results
(3) Deletion Distance to Cluster Graphs Algorithm
Lower Bounds

4 Deletion Distance to Split Graphs

Results for deletion distance to cluster graph

	Algorithms	Lower Bounds
DS, TDS	$\mathcal{O}^{*}\left(3^{k}\right)$	$\mathcal{O}^{*}\left((2-\varepsilon)^{k}\right)$
IDS	$\mathcal{O}^{*}\left(3^{k}\right)$	$\mathcal{O}^{*}\left((2-\varepsilon)^{k}\right)$
EDS	$\mathcal{O}^{*}\left(3^{k}\right)$	$\mathcal{O}^{*}\left(2^{o(k)}\right)$
THDS	$\mathcal{O}^{*}\left((r+2)^{k}\right)$	

Table: Results for deletion distance to cluster graph

Results for deletion distance to split graph

	Algorithms	Lower Bounds
DS, TDS		para- $N P$-hard
IDS	$\mathcal{O}^{*}\left(2^{k}\right)$	$\mathcal{O}^{*}\left((2-\varepsilon)^{k}\right)$
EDS	$\mathcal{O}^{*}\left(3^{k / 2}\right)$	$\mathcal{O}^{*}\left(2^{o(k)}\right)$
THDS		para- $N P$-hard

Table: Results for deletion distance to split graph

Outline

(1) Definition and Properties
(2) Our Results
(3) Deletion Distance to Cluster Graphs

Algorithm
Lower Bounds

4 Deletion Distance to Split Graphs

Problem Definition

Dominating Set-Cluster VD
Input: An undirected graph $G=(V, E), S \subseteq V(G)$ such that every component of $G \backslash S$ is a clique and an integer ℓ.
Parameter: $|S|$
Question: Is there a dominating set in G of size ℓ ?

Problem Definition

Dominating Set-Cluster VD
Input: An undirected graph $G=(V, E), S \subseteq V(G)$ such that every component of $G \backslash S$ is a clique and an integer ℓ.
Parameter: $|S|$
Question: Is there a dominating set in G of size ℓ ?

- Assume S is given as part of input. If not use the algorithm by [BCKP'16] to get S in time $\mathcal{O}^{*}\left(1.9102^{k}\right)$.

Algorithm

Algorithm

- Guess S^{\prime}, the part of the solution intersecting with S.
- Delete $N\left[S^{\prime}\right] \cap S$.

Algorithm

- Guess S^{\prime}, the part of the solution intersecting with S.
- Delete $N\left[S^{\prime}\right] \cap S$.

Disjoint Problem Definition

DS-DISJOINTCLUSTER
Input: An undirected graph $G=(V, E), S \subseteq V$ such that every connected component of $G \backslash S$ is a clique, a $(0,1)$ vector $\left(f_{1}, f_{2}, \ldots, f_{q}\right)$ corresponding for the cliques $\left(C_{1}, C_{2}, \ldots, C_{q}\right)$ and an integer ℓ.
Parameter: $|S|$
Question: Does there exist a subset $T \subseteq V \backslash S$ of size ℓ, that dominates all vertices of S and all vertices of all cliques C_{i} with flags $f_{i}=1$?

A detour

Set Cover
Input: A universe U, a family of sets $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}$ of subsets of U and an integer ℓ.
Parameter: $|U|=k$
Question: Does there exist a subset $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ of size ℓ covering U ?

Equivalent problem

> Set-Cover with Partition
> Input: A universe U, a family of sets $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}$, a partition $\mathcal{B}=\left(\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{q}\right)$ of \mathcal{F}, a $(0,1)$ vector $\left(f_{1}, f_{2}, \ldots, f_{q}\right)$ corresponding to each block in the partition $\left(\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{q}\right)$ and an integer ℓ.
> Parameter: $|U|=k$
> Question: Does there exist a subset $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ of size ℓ covering U and from each block \mathcal{B}_{i} with flags $f_{i}=1$ at least one set is picked?

Universe $U=S$.
For each vertex $v \in V \backslash S$, we define a set $S_{v}=N(v) \cap S$.
Family of sets $\mathcal{F}=\left\{S_{v}: v \in V \backslash S\right\}$.
$\left(\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{q}\right)=\left(C_{1}, C_{2}, \ldots, C_{q}\right)$

Dynamic Programming Algorithm for Set-Cover with Partition

Dynamic Programming Algorithm for Set-Cover with Partition

For $W \subseteq U$, index j of set S_{j} and flag $f \in\{0,1\}$

$O P T[W, j, f]$: cardinality of the minimum subset X of $\left\{S_{1}, \ldots, S_{j}\right\}$ covering W such that
$O P T[W, j, f]$: cardinality of the minimum subset X of $\left\{S_{1}, \ldots, S_{j}\right\}$ covering W such that

- from each block \mathcal{B}_{i} with $f_{i}=1$, there is at least one set in X
$O P T[W, j, f]$: cardinality of the minimum subset X of $\left\{S_{1}, \ldots, S_{j}\right\}$ covering W such that
- from each block \mathcal{B}_{i} with $f_{i}=1$, there is at least one set in X
- except the block \mathcal{B}_{x} containing the set S_{j} where we reset the flag to f to indicate that at least f sets are required in that block.

Dynamic Programming Recurrence

Dynamic Programming Recurrence

- Case 1: S_{j+1} is not the first set in its block \mathcal{B}_{x}.

Dynamic Programming Recurrence

- Case 1: S_{j+1} is not the first set in its block \mathcal{B}_{x}.

$$
O P T[W, j+1, f]=\min \left\{O P T[W, j, f], 1+O P T\left[W \backslash S_{j+1}, j, 0\right]\right\}
$$

Dynamic Programming Recurrence

- Case 1: S_{j+1} is not the first set in its block \mathcal{B}_{x}.

$$
O P T[W, j+1, f]=\min \left\{O P T[W, j, f], 1+O P T\left[W \backslash S_{j+1}, j, 0\right]\right\}
$$

- Case 2 : S_{j+1} is the first set in its block \mathcal{B}_{x}.

Dynamic Programming Recurrence

- Case 1 : S_{j+1} is not the first set in its block \mathcal{B}_{x}.

$$
O P T[W, j+1, f]=\min \left\{O P T[W, j, f], 1+O P T\left[W \backslash S_{j+1}, j, 0\right]\right\}
$$

- Case 2 : S_{j+1} is the first set in its block \mathcal{B}_{x}.

$$
O P T[W, j+1, f]=\left\{\begin{array}{l}
1+O P T\left[W \backslash S_{j+1}, j, f_{x-1}\right] \quad \text { if } f=1 \\
\min \left\{O P T\left[W, j, f_{x-1}\right],\right. \\
\left.1+O P T\left[W \backslash S_{j+1}, j, f_{x-1}\right]\right\} \\
\text { if } f=0
\end{array}\right.
$$

Running Time

Running Time

- Number of subproblems : $2^{|U|+1} \cdot m$

Running Time

- Number of subproblems : $2^{|U|+1} \cdot m$
- Running time for Set-Cover with Partition: $\mathcal{O}\left(2^{|U|} \cdot m^{2}\right)$.

Running Time

- Number of subproblems : $2^{|U|+1} \cdot m$
- Running time for Set-Cover with Partition: $\mathcal{O}\left(2^{|U|} \cdot m^{2}\right)$.
- Running time for Dominating Set-Cluster VD :

$$
\sum_{i=1}^{k}\binom{k}{i} \mathcal{O}^{*}\left(2^{k-i}\right)=\mathcal{O}^{*}\left(3^{k}\right)
$$

Other Variants

- EDS ,IDS, TDS : $\mathcal{O}^{*}\left(3^{k}\right)$
- ThDS : $\mathcal{O}^{*}\left((r+2)^{k}\right)$

Lower Bound Conjectures

Lower Bound Conjectures

- Exponential Time Hypothesis (ETH) ([IPZ01,IP01]) 3-CNF-SAT cannot be solved in $\mathcal{O}^{*}\left(2^{o(n)}\right)$ time where the input formula has n variables and m clauses.

Lower Bound Conjectures

- Exponential Time Hypothesis (ETH) ([IPZ01,IP01]) 3-CNF-SAT cannot be solved in $\mathcal{O}^{*}\left(2^{o(n)}\right)$ time where the input formula has n variables and m clauses.
- Strong Exponential Time Hypothesis (SETH) ([IPZ01])
There is no $\varepsilon>0$ such that $\forall q \geq 3, q$-CNFSAT can be solved in $\mathcal{O}^{*}\left((2-\varepsilon)^{n}\right)$ time where n is the number of variables in input formula.

Lower Bound Conjectures

- Exponential Time Hypothesis (ETH) ([IPZ01,IP01]) 3-CNF-SAT cannot be solved in $\mathcal{O}^{*}\left(2^{o(n)}\right)$ time where the input formula has n variables and m clauses.
- Strong Exponential Time Hypothesis (SETH) ([IPZ01])
There is no $\varepsilon>0$ such that $\forall q \geq 3, q$-CNFSAT can be solved in $\mathcal{O}^{*}\left((2-\varepsilon)^{n}\right)$ time where n is the number of variables in input formula.
- Set Cover Conjecture (SCC)

There is no $\varepsilon>0$ such that SET COVER can be solved in $\mathcal{O}^{*}\left((2-\varepsilon)^{n}\right)$ time where n is the size of the universe.

Lower Bounds

- Dominating Set-Cluster VD and cannot be solved in $O^{*}\left((2-\varepsilon)^{k}\right)$ running time for any $\varepsilon>0$ unless SCC fails.

Lower Bounds cont'd

- IDS-ClusterVD cannot be solved in time $\mathcal{O}^{*}\left((2-\varepsilon)^{k}\right)$ for any $\varepsilon>0$ unless SETH fails.
- EDS-Vertex Cover cannot be solved in $2^{o(|S|)}$ time unless ETH fails.

Outline

(1) Definition and Properties
(2) Our Results
(3) Deletion Distance to Cluster Graphs Algorithm
Lower Bounds
(4) Deletion Distance to Split Graphs

Para-NP-hardness

- Dominating Set and Total Dominating Set are $N P$-hard on Split graphs.
- Hence para-NP-hard for deletion Distance to Split Graphs.

Algorithm for EDS and IDS

- EDS and IDS can be solved in $\mathcal{O}^{*}\left(2^{k}\right)$ time.

Lower Bounds

- IDS-SplitVD cannot be solved in $\mathcal{O}^{*}\left((2-\varepsilon)^{k}\right)$ time unless SETH fails.
- EDS-SplitVD cannot be solved in $2^{o(k)}$ time unless ETH fails.

Improved Algorithm for EDS

- EDS-SplitVD can be solved in $\mathcal{O}^{*}\left(3^{k / 2}\right)$ time.
- Color all the vertices of G blue initially.
- Whenever a vertex gets undeletable, make it red.
- Measure $=$ Number of blue vertices in S, initial value k.

Branching Rule 1

- $x, y \in S$ blue vertices with distance at most 2 .

Reduction Rule 1

- Blue vertices are forced below.

- Guess the intersection of the clique part of the split graph C in the solution.
- One-time branch on at most $|C|+1$ cases.
- Now only vertices of independent set part I left below.
- Note that after Branching Rule 1, any vertex in I have exactly one blue vertex in S as its neighbour .

Reduction Rule 2

- x is forced in the solution.

Branching Rule 2.1

Branching Rule 2.2

- After applying every above rules, look at blue vertices $u \in S, v \in I$ and $(u, v) \in E(G)$.
- Either u or v in solution as $N(u) \backslash\{v\}=N(v) \backslash\{u\}$.

Future Work

- Close the $3^{k}-2^{k}$ upper-lower bound gap for (DS/IDS/TDS)-Cluster VD.
- Deletion distance to other easy instances.
- Other dominating set variants.

THANK YOU

