Structural Parameterizations of Dominating Set Variants

Dishant Goyal Ashwin Jacob Kaushtubh Kumar Diptapriyo Majumdar Venkatesh Raman

June 6, 2018, CSR, Moscow, Russia

Outline

- 1 Definition and Properties
- 2 Our Results
- 3 Deletion Distance to Cluster Graphs
 Algorithm
 Lower Bounds
- 4 Deletion Distance to Split Graphs

• Dominating Set (DS): A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.

- DOMINATING SET (DS): A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.
- INDEPENDENT DOMINATING SET (IDS):
 S is also independent.

- DOMINATING SET (DS): A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.
- INDEPENDENT DOMINATING SET (IDS):
 S is also independent.
- Efficient Dominating Set (EDS) : For every vertex $v \in V$, $|N[v] \cap S| = 1$.

- DOMINATING SET (DS): A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.
- INDEPENDENT DOMINATING SET (IDS):
 S is also independent.
- Efficient Dominating Set (EDS) : For every vertex $v \in V$, $|N[v] \cap S| = 1$.
- Threshold Dominating Set (ThDS) with threshold r: For every vertex $v, |N(v) \cap S| \geq r$.

- DOMINATING SET (DS): A subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to at least one member of S.
- INDEPENDENT DOMINATING SET (IDS):
 S is also independent.
- Efficient Dominating Set (EDS) : For every vertex $v \in V$, $|N[v] \cap S| = 1$.
- Threshold Dominating Set (ThDS) with threshold r: For every vertex $v, |N(v) \cap S| \ge r$.
- Total Dominating Set (TDS): ThDS with r = 1.

 $\{B, D\}$ is a Dominating Set. Also an IDS.

- $\{B, D\}$ is a Dominating Set. Also an IDS.
- $\{B, F\}$ is an EDS.

- $\{B, D\}$ is a Dominating Set. Also an IDS.
- $\{B, F\}$ is an EDS.
- $\{A, B, D\}$ is a Total Dominating Set.

Parameterized Problem

• A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$. Input instance of L is (x, k) where $x \in \Sigma^*, k \in \mathbb{N}$. k is called parameter.

į

Parameterized Problem

- A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$. Input instance of L is (x, k) where $x \in \Sigma^*, k \in \mathbb{N}$. k is called parameter.
- Example: Feedback Vertex Set parameterized by Solution Size.
 - $L = \{(G, k) | \exists S \subseteq V(G) \text{ such that } |S| \leq k \text{ and } G \setminus S \text{ is acyclic} \}.$

Fixed-Parameter Tractability (FPT)

- Algorithm \mathcal{A} runs in $f(k) \cdot |x|^c$ time.
- A is called FIXED PARAMETER ALGORITHM.

- FEEDBACK VERTEX SET parameterized by solution size k admits $\mathcal{O}(3.618^k \cdot n^{\mathcal{O}(1)})$ time algorithm [KP'14].
- Vertex Cover parameterized by solution size k admits $\mathcal{O}(1.27^k \cdot n^{\mathcal{O}(1)})$ time algorithm [CKJ'01].

• W[1]-hard: Problems unlikely to be FPT.

å

• W[1]-hard: Problems unlikely to be FPT. Examples: INDEPENDENT SET, CLIQUE parameterized by solution size k

- W[1]-hard: Problems unlikely to be FPT. Examples: INDEPENDENT SET, CLIQUE parameterized by solution size k
- Para *NP*-hard : Problems that are *NP*-hard for a constant value for the parameter.

- W[1]-hard: Problems unlikely to be FPT. Examples: INDEPENDENT SET, CLIQUE parameterized by solution size k
- Para NP-hard : Problems that are NP-hard for a constant value for the parameter.

Example: k-coloring

- All dominating set variants parameterized by solution size are W[1]-hard. Most of them are actually W[2]-hard.
- Other parameters?

Structural Parameterizations

- Parameters based on the structural properties of the input.
- Example : Maximum degree, treewidth, Minimum Vertex Cover, deletion distance to an easy instance

Cluster graph and Split graph

Cluster graph and Split graph

• Cluster graph: Every connected component of the graph is a clique.

Cluster graph and Split graph

- Cluster graph: Every connected component of the graph is a clique.
- Split graph: The vertex set of the graph can be partitioned into a clique and an independent set.

- All dominating set variants are solvable in polynomial time on cluster graphs.
- Dominating Set, TDS and ThDS are NP-hard on split graphs.
- EDS and IDS are solvable in polynomial time on split graphs.

Outline

- 1 Definition and Properties
- 2 Our Results
- 3 Deletion Distance to Cluster Graphs
 Algorithm
 Lower Bounds
- 4 Deletion Distance to Split Graphs

Results for deletion distance to cluster graph

	Algorithms	Lower Bounds
DS, TDS	$\mathcal{O}^*(3^k)$	$\mathcal{O}^*((2-\varepsilon)^k)$
IDS	$\mathcal{O}^*(3^k)$	$\mathcal{O}^*((2-\varepsilon)^k)$
EDS	$\mathcal{O}^*(3^k)$	$\mathcal{O}^*(2^{o(k)})$
THDS	$\mathcal{O}^*((r+2)^k)$	

Table: Results for deletion distance to cluster graph

Results for deletion distance to split graph

	${ m Algorithms}$	Lower Bounds
DS, TDS		para- NP -hard
IDS	$\mathcal{O}^*(2^k)$	$\mathcal{O}^*((2-\varepsilon)^k)$
EDS	$\mathcal{O}^*(3^{k/2})$	$\mathcal{O}^*(2^{o(k)})$
THDS		para- NP -hard

Table: Results for deletion distance to split graph

Outline

- 1 Definition and Properties
- 2 Our Results
- 3 Deletion Distance to Cluster Graphs
 Algorithm
 Lower Bounds
- 4 Deletion Distance to Split Graphs

Problem Definition

DOMINATING SET-CLUSTER VD

Input: An undirected graph $G = (V, E), S \subseteq V(G)$ such that

every component of $G \setminus S$ is a clique and an integer ℓ .

Parameter: |S|

Question: Is there a dominating set in G of size ℓ ?

Problem Definition

DOMINATING SET-CLUSTER VD

Input: An undirected graph $G = (V, E), S \subseteq V(G)$ such that every component of $G \setminus S$ is a clique and an integer ℓ .

Parameter: |S|

Question: Is there a dominating set in G of size ℓ ?

• Assume S is given as part of input. If not use the algorithm by [BCKP'16] to get S in time $\mathcal{O}^*(1.9102^k)$.

Algorithm

Algorithm

- Guess S', the part of the solution intersecting with S.
- Delete $N[S'] \cap S$.

Algorithm

- Guess S', the part of the solution intersecting with S.
- Delete $N[S'] \cap S$.

Disjoint Problem Definition

DS-disjointcluster

Input: An undirected graph G = (V, E), $S \subseteq V$ such that every connected component of $G \setminus S$ is a clique, a (0,1) vector (f_1, f_2, \ldots, f_q) corresponding for the cliques (C_1, C_2, \ldots, C_q) and an integer ℓ .

Parameter: |S|

Question: Does there exist a subset $T \subseteq V \setminus S$ of size ℓ , that dominates all vertices of S and all vertices of all cliques C_i with flags $f_i = 1$?

A detour

Set Cover

Input: A universe U, a family of sets $\mathcal{F} = \{S_1, \ldots, S_m\}$ of subsets of U and an integer ℓ .

Parameter: |U| = k

Question: Does there exist a subset $\mathcal{F}' \subseteq \mathcal{F}$ of size ℓ covering U?

Equivalent problem

SET-COVER WITH PARTITION

Input: A universe U, a family of sets $\mathcal{F} = \{S_1, \ldots, S_m\}$, a partition $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_q)$ of \mathcal{F} , a (0,1) vector (f_1, f_2, \ldots, f_q) corresponding to each block in the partition $(\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_q)$ and an integer ℓ .

Parameter: |U| = k

Question: Does there exist a subset $\mathcal{F}' \subseteq \mathcal{F}$ of size ℓ covering U and from each block \mathcal{B}_i with flags $f_i = 1$ at least one set is picked?

Universe U = S. For each vertex $v \in V \setminus S$, we define a set $S_v = N(v) \cap S$. Family of sets $\mathcal{F} = \{S_v : v \in V \setminus S\}$. $(\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_q) = (C_1, C_2, \dots, C_q)$

Dynamic Programming Algorithm for SET-COVER WITH PARTITION

Dynamic Programming Algorithm for SET-COVER WITH PARTITION

For $W \subseteq U$, index j of set S_j and flag $f \in \{0, 1\}$

OPT[W,j,f] : cardinality of the minimum subset X of $\{S_1,\ldots,S_j\}$ covering W such that

OPT[W,j,f] : cardinality of the minimum subset X of $\{S_1,\ldots,S_j\}$ covering W such that

• from each block \mathcal{B}_i with $f_i = 1$, there is at least one set in X

OPT[W, j, f]: cardinality of the minimum subset X of $\{S_1, \ldots, S_j\}$ covering W such that

- from each block \mathcal{B}_i with $f_i = 1$, there is at least one set in X
- except the block \mathcal{B}_x containing the set S_j where we reset the flag to f to indicate that at least f sets are required in that block.

• Case 1: S_{j+1} is not the first set in its block \mathcal{B}_x .

• Case 1: S_{j+1} is not the first set in its block \mathcal{B}_x .

$$OPT[W, j+1, f] = min \Big\{ OPT[W, j, f], 1 + OPT[W \setminus S_{j+1}, j, 0] \Big\}$$

• Case 1: S_{j+1} is not the first set in its block \mathcal{B}_x .

$$OPT[W,j+1,f] = \min \Big\{ OPT[W,j,f], 1 + OPT[W \backslash S_{j+1},j,0] \Big\}$$

• Case 2: S_{j+1} is the first set in its block \mathcal{B}_x .

• Case 1: S_{j+1} is not the first set in its block \mathcal{B}_x .

$$OPT[W,j+1,f] = min \Big\{ OPT[W,j,f], 1 + OPT[W \backslash S_{j+1},j,0] \Big\}$$

• Case 2: S_{j+1} is the first set in its block \mathcal{B}_x .

$$OPT[W, j+1, f] = \begin{cases} 1 + OPT[W \setminus S_{j+1}, j, f_{x-1}] & \text{if } f = 1\\ min \Big\{ OPT[W, j, f_{x-1}], \\ 1 + OPT[W \setminus S_{j+1}, j, f_{x-1}] \Big\} \\ & \text{if } f = 0 \end{cases}$$

• Number of subproblems : $2^{|U|+1} \cdot m$

- Number of subproblems : $2^{|U|+1} \cdot m$
- Running time for Set-Cover with Partition: $\mathcal{O}(2^{|U|} \cdot m^2)$.

- Number of subproblems : $2^{|U|+1} \cdot m$
- Running time for Set-Cover with Partition: $\mathcal{O}(2^{|U|} \cdot m^2)$.
- Running time for Dominating Set-Cluster VD : $\sum_{i=1}^k {k \choose i} \mathcal{O}^*(2^{k-i}) = \mathcal{O}^*(3^k)$

Other Variants

• EDS ,IDS, TDS : $\mathcal{O}^*(3^k)$

• ThDS: $\mathcal{O}^*((r+2)^k)$

• EXPONENTIAL TIME HYPOTHESIS (ETH) ([IPZ01,IP01]) 3-CNF-SAT cannot be solved in $\mathcal{O}^*(2^{o(n)})$ time where the input formula has n variables and m clauses.

- EXPONENTIAL TIME HYPOTHESIS (ETH) ([IPZ01,IP01]) 3-CNF-SAT cannot be solved in $\mathcal{O}^*(2^{o(n)})$ time where the input formula has n variables and m clauses.
- STRONG EXPONENTIAL TIME HYPOTHESIS (SETH)([IPZ01])

There is no $\varepsilon > 0$ such that $\forall q \geq 3$, q-CNFSAT can be solved in $\mathcal{O}^*((2-\varepsilon)^n)$ time where n is the number of variables in input formula.

- EXPONENTIAL TIME HYPOTHESIS (ETH) ([IPZ01,IP01]) 3-CNF-SAT cannot be solved in $\mathcal{O}^*(2^{o(n)})$ time where the input formula has n variables and m clauses.
- STRONG EXPONENTIAL TIME HYPOTHESIS (SETH)([IPZ01])
 - There is no $\varepsilon > 0$ such that $\forall q \geq 3$, q-CNFSAT can be solved in $\mathcal{O}^*((2-\varepsilon)^n)$ time where n is the number of variables in input formula.
- SET COVER CONJECTURE (SCC)

 There is no $\varepsilon > 0$ such that SET COVER can be solved in $\mathcal{O}^*((2-\varepsilon)^n)$ time where n is the size of the universe.

Lower Bounds

• DOMINATING SET-CLUSTER VD and cannot be solved in $O^*((2-\varepsilon)^k)$ running time for any $\varepsilon > 0$ unless SCC fails.

Lower Bounds cont'd

- IDS-ClusterVD cannot be solved in time $\mathcal{O}^*((2-\varepsilon)^k)$ for any $\varepsilon > 0$ unless SETH fails.
- EDS-Vertex Cover cannot be solved in $2^{o(|S|)}$ time unless ETH fails.

Outline

- 1 Definition and Properties
- 2 Our Results
- 3 Deletion Distance to Cluster Graphs
 Algorithm
 Lower Bounds
- 4 Deletion Distance to Split Graphs

Para-NP-hardness

- Dominating Set and Total Dominating Set are NP-hard on Split graphs.
- Hence para-NP-hard for deletion Distance to Split Graphs.

Algorithm for EDS and IDS

• EDS and IDS can be solved in $\mathcal{O}^*(2^k)$ time.

Lower Bounds

- IDS-SplitVD cannot be solved in $\mathcal{O}^*((2-\varepsilon)^k)$ time unless SETH fails.
- EDS-SplitVD cannot be solved in $2^{o(k)}$ time unless ETH fails.

Improved Algorithm for EDS

- EDS-SplitVD can be solved in $\mathcal{O}^*(3^{k/2})$ time.
 - Color all the vertices of *G* blue initially.
 - Whenever a vertex gets undeletable, make it red.
 - Measure = Number of blue vertices in S, initial value k.

Branching Rule 1

• $x, y \in S$ blue vertices with distance at most 2.

Reduction Rule 1

• Blue vertices are forced below.

- Guess the intersection of the clique part of the split graph
 C in the solution.
- One-time branch on at most |C| + 1 cases.
- Now only vertices of independent set part *I* left below.
- Note that after Branching Rule 1, any vertex in I have exactly one blue vertex in S as its neighbour.

Reduction Rule 2

• x is forced in the solution.

Branching Rule 2.1

Branching Rule 2.2

- After applying every above rules, look at blue vertices $u \in S, v \in I$ and $(u, v) \in E(G)$.
- Either u or v in solution as $N(u) \setminus \{v\} = N(v) \setminus \{u\}$.

Future Work

- Close the $3^k 2^k$ upper-lower bound gap for (DS/IDS/TDS)-Cluster VD.
- Deletion distance to other easy instances.
- Other dominating set variants.

THANK YOU