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A subset S C V(@) such that every vertex not in S is
adjacent to at least one member of S.

INDEPENDENT DOMINATING SET (IDS) :

S is also independent.

EFFICIENT DOMINATING SET (EDS) :

For every vertex v € V,|[N[v] N S| = 1.

THRESHOLD DOMINATING SET (ThDS) with threshold 7 :
For every vertex v, [N (v) N S| > r.

ToTAL DOMINATING SET (TDS) : ThDS with » = 1.
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{B, D} is a Dominating Set. Also an IDS.

{B, F} is an EDS.
{A, B, D} is a Total Dominating Set.
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Parameterized Problem

e A parameterized problem is a language L C 3* x N. Input
instance of L is (z, k) where x € ¥* k € N. k is called
parameter.

e Example: Feedback Vertex Set parameterized by Solution
Size.

L ={(G,k)|3S C V(G) such that |S| <k and G\ S is
acyclic}.



Fixed-Parameter Tractability (FPT)

A YES if (z,k) € L
{ No, otherwise

e Algorithm A runs in f(k) - || time.

e A is called FIXED PARAMETER ALGORITHM.



Examples

e FEEDBACK VERTEX SET parameterized by solution size k
admits O(3.618% - n®)) time algorithm [KP'14].

e VERTEX COVER parameterized by solution size k admits
O(1.27% . n°W) time algorithm [CKJ01].
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Hardness

e W[l]-hard : Problems unlikely to be F'PT.
Examples : INDEPENDENT SET, CLIQUE parameterized by
solution size k

e Para N P-hard : Problems that are N P-hard for a constant
value for the parameter.
Example: k-COLORING



Dominating Set Variants

e All dominating set variants parameterized by solution size
are W[l]-hard. Most of them are actually W [2]-hard.

e Other parameters?



Structural Parameterizations

e Parameters based on the structural properties of the input.

e Example : Maximum degree, treewidth, Minimum Vertex
Cover, deletion distance to an easy instance
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Cluster graph and Split graph

e CLUSTER GRAPH : Every connected component of the
graph is a clique.
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Cluster graph and Split graph

e CLUSTER GRAPH : Every connected component of the
graph is a clique.

e SPLIT GRAPH : The vertex set of the graph can be
partitioned into a clique and an independent set.

XXV
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e All dominating set variants are solvable in polynomial time
on cluster graphs.

e Dominating Set, TDS and ThDS are N P-hard on split
graphs.

e EDS and IDS are solvable in polynomial time on split
graphs.



@ Our Results
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Results for deletion distance to cluster

graph

Algorithms Lower Bounds
DS, TDS O*(3F) O ((2-¢)F)
DS O*(3F) O ((2-¢)F)
EDS O*(3%) O*(2°)
TuDS | O*((r +2)%)

Table: Results for deletion distance to cluster graph
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Results for deletion

distance to split
graph

Algorithms Lower Bounds
DS, TDS para-N P-hard
DS O*(2F) O*((2 —¢e)F)
EDS O*(3+/7?) O*(2°0R)
TuDS para-N P-hard

Table: Results for deletion distance to split graph



© Deletion Distance to Cluster Graphs
Algorithm
Lower Bounds
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Problem Definition

DOMINATING SET-CLUSTER VD

Input: An undirected graph G = (V, E),S C V(G) such that
every component of G \ S is a clique and an integer /.
Parameter: |S|

Question: Is there a dominating set in G of size (7




Problem Definition

DOMINATING SET-CLUSTER VD

Input: An undirected graph G = (V, E),S C V(G) such that
every component of G \ S is a clique and an integer /.
Parameter: |S|

Question: Is there a dominating set in G of size (7

e Assume S is given as part of input. If not use the algorithm
by [BCKP'16] to get S in time O*(1.9102%).




Algorithm
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Algorithm

e Guess S’, the part of the solution intersecting with S.
e Delete N[S']|NS.



Algorithm

e Guess S’, the part of the solution intersecting with S.
e Delete N[S']|NS.
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Disjoint Problem Definition

DS-DISJOINTCLUSTER

Input: An undirected graph G = (V,E), S C V such that
every connected component of G \ S is a clique, a (0,1) vec-
tor (fi, fa,. .., fq) corresponding for the cliques (C1,Cs,...,Cy)
and an integer /.

Parameter: |S|

Question: Does there exist a subset 7" C V' \ S of size /, that
dominates all vertices of S and all vertices of all cliques C; with
flags f; =17




A detour

SET COVER

Input: A universe U, a family of sets F = {S1,...,5,} of
subsets of U and an integer /.

Parameter: |U| =k

Question: Does there exist a subset F' C F of size ¢ covering
U?




Equivalent problem

SET-COVER WITH PARTITION

Input: A universe U, a family of sets 7 = {51,...,S,}, a par-
tition B = (B, Ba,...,By) of F, a (0,1) vector (fi, fa,.... fq)
corresponding to each block in the partition (Bi, Ba, ..., B;) and
an integer /.

Parameter: |U| =k

Question: Does there exist a subset F' C F of size £ covering
U and from each block B; with flags f; = 1 at least one set is
picked?

Universe U = S.

For each vertex v € V' \ S, we define a set S, = N(v) N S.
Family of sets F = {S, :v e V\ S}.

(B1,Ba,...,By) = (C1,Cy,...,Cy)



Dynamic Programming Algorithm for
SET-COVER WITH PARTITION
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Dynamic Programming Algorithm for
SET-COVER WITH PARTITION

For W C U, index j of set S; and flag f € {0,1}




OPT[W, j, f] : cardinality of the minimum subset X of
{S1,...,5;} covering W such that



OPT[W, j, f] : cardinality of the minimum subset X of
{S1,...,5;} covering W such that

e from each block B; with f; = 1, there is at least one set in X



OPT[W, j, f] : cardinality of the minimum subset X of
{S1,...,5;} covering W such that
e from each block B; with f; = 1, there is at least one set in X

e except the block B, containing the set S; where we reset
the flag to f to indicate that at least f sets are required in
that block.
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Dynamic Programming Recurrence

e Case 1: 541 is not the first set in its block B,.
OPTIW, j+1, f] = min{OPTIW,j, f], 1+OPT[W\S;.1,5,0]}
e Case 2 : Sj41 is the first set in its block B,.

1 +OPT[W\S]+]7]7 fxfl] lff =1
1 +OPT[W\S]+1777 fiL‘*l]}
it f=0

OPT[W,j+1, f] =
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e Number of subproblems : -m
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Running Time

e Number of subproblems : 2/UI+1 . m

e Running time for SET-COVER WITH PARTITION:
o2V m?).

e Running time for DOMINATING SET-CLUSTER VD :
k .
> (5o 2k = 0%(3H)

i=1



Other Variants

e EDS IDS, TDS : O*(3¥)
e ThDS : O*((r + 2)¥)

S/




Lower Bound Conjectures
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Lower Bound Conjectures
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Lower Bound Conjectures

e ExpONENTIAL TiME HypoTHESIS (ETH) ([ITPZ01,1P01])
3-CNF-SAT cannot be solved in O0*(2°0")) time where the
input formula has n variables and m clauses.

e STRONG EXPONENTIAL TIME HYPOTHESIS
(SETH)(|TPZ01])

There is no € > 0 such that Vg > 3, ¢-CNFSAT can be
solved in O*((2 —¢)") time where n is the number of
variables in input formula.

e SET COVER CONJECTURE (SCC)

There is no € > 0 such that SET COVER can be solved in
O*((2 — €)") time where n is the size of the universe.



Lower Bounds

e DOMINATING SET-CLUSTER VD and cannot be solved in
O*((2 — ¢)*) running time for any ¢ > 0 unless SCC fails.




Lower Bounds cont’d

e IDS-ClusterVD cannot be solved in time O*((2 — )*) for
any € > 0 unless SETH fails.

e EDS-Vertex Cover cannot be solved in 2°U5D time unless
ETH fails.



@ Decletion Distance to Split Graphs
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Para-NP-hardness

e DOMINATING SET and TOTAL DOMINATING SET are
N P-hard on Split graphs.

e Hence para-NP-hard for deletion Distance to Split Graphs.



Algorithm for EDS and IDS
e EDS and IDS can be solved in O*(2¥) time.

VS




Lower Bounds

e IDS-SplitVD cannot be solved in O*((2 — £)*) time unless
SETH fails.

e EDS-SplitVD cannot be solved in 2°%) time unless ETH
fails.



Improved Algorithm for EDS

o EDS-SplitVD can be solved in O*(3¥/2) time.

e Color all the vertices of G blue initially.
e Whenever a vertex gets undeletable, make it red.

e Measure = Number of blue vertices in .S, initial value k.
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Branching Rule 1

e 1,y € S blue vertices with distance at most 2.

Add z into D,
delete N[z] from G and
color N2(z) by red.

yeS
e

resS

z

Add y into D,
delete N[y] from G and
color N2(y) by red.

rzes

yes

T

Color z and y by red

xeS yes
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Reduction Rule 1

e Blue vertices are forced below.

/x\

o & 6 ® e e Nul)

X

o & 6 ® e e Nul)




Guess the intersection of the clique part of the split graph
C' in the solution.

Omne-time branch on at most |C| + 1 cases.
Now only vertices of independent set part I left below.

Note that after Branching Rule 1, any vertex in I have
exactly one blue vertex in S as its neighbour .



e 1 is forced in the solution.

Reduction Rule 2



Branching Rule 2.1

acy;s
’e !

Add u into D.
So, z,y get deleted.

‘o’s

v gets red color. v

. Color u,v by red.

This forces Add v into D. This fotrces

~ into D. So, z, z get deleted. I

y, z into D.

So, z gets u gets red color. So, v,z get
deleted too. This forces deleted too.

y into D.
2 So, y gets T Yy z
deleted too.
S

<




Branching Rule 2.2

Add w into D. :

So, =,y get deleted. \‘ ‘
v gets red color.
u z

This forces Add v into D.

z into D. So, z, z get deleted.
So, z gets u gets red color.
deleted too. This forces
y into D.
So, y gets

deleted too.

Color u, v by red.

This forces
Y,z into D.
So y, z get
deleted too.

r Y

(%



o After applying every above rules, look at blue vertices
u € S,v el and (u,v) € E(G).
e Either u or v in solution as N(u) \ {v} = N(v) \ {u}.



Future Work

e Close the 3% — 2F upper-lower bound gap for
(DS/IDS/TDS)-Cluster VD.

e Deletion distance to other easy instances.

e Other dominating set variants.



THANK YOU
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