
Maintaining chordal graphs dynamically: improved upper
and lower bounds

Niranka Banerjee1 Venkatesh Raman1 Srinivasa Rao Satti2

1The Institute of Mathematical Sciences, HBNI, Chennai, India

2Seoul National University

CSR 2018, Moscow

Outline

1 Introduction

2 Our Results

3 Worst Case bound

4 Amortized Bound

5 Bound using Perfect elimination ordering

6 Lower Bound

7 Open Questions

Introduction

• A graph is chordal if every cycle of size four or more in the graph has a
chord.

Introduction

• A graph is chordal if every cycle of size four or more in the graph has a
chord.

• There are O(m + n) time algorithms to detect whether a graph is
chordal by computing what is called a perfect elimination ordering or a
clique tree decomposition of the graph.

Introduction

• A graph is chordal if every cycle of size four or more in the graph has a
chord.

• There are O(m + n) time algorithms to detect whether a graph is
chordal by computing what is called a perfect elimination ordering or a
clique tree decomposition of the graph.

• A perfect elimination ordering in a graph is an ordering of the vertices
of the graph such that for each vertex x, x and the neighbors of x that
occur after x in the ordering form a clique.

Introduction

• A graph is chordal if every cycle of size four or more in the graph has a
chord.

• There are O(m + n) time algorithms to detect whether a graph is
chordal by computing what is called a perfect elimination ordering or a
clique tree decomposition of the graph.

• A perfect elimination ordering in a graph is an ordering of the vertices
of the graph such that for each vertex x, x and the neighbors of x that
occur after x in the ordering form a clique.

• A clique tree of a graph is a tree decomposition of the graph, where
the bags in each node of the decomposition induce a maximal clique.

Introduction

• Can we do better than O(m + n) if a single edge is either deleted or
added to an existing chordal graph?

Previous Results

• Can we do better than O(m + n) if a single edge is either deleted or
added to an existing chordal graph?

• Ibarra developed two fully dynamic algorithms for maintaining
chordality.
First one has a query and update time of O(n),
the other has a query time of O(

√
m) and the update time of

O(m + n)

• Mezzini gave an algorithm which took O(1) query and O(n2) update
time

• Berry et al. improved upon Ibarra’s insertion query from O(n) to O(1),
while the other bounds remained the same

Our Results

• Our results are in the decremental setting.

• Our first result is based on the maximum size k of a bag in the clique
tree.

• In the worst case a delete query takes O(1) time and update takes
O(n + k2) time. Moreover, the update time is actually O(n2/∆ + k2)
amortized over ∆ edge deletions

Our Results

• Our results are in the decremental setting.

• Our first result is based on the maximum size k of a bag in the clique
tree.

• In the worst case a delete query takes O(1) time and update takes
O(n + k2) time. Moreover, the update time is actually O(n2/∆ + k2)
amortized over ∆ edge deletions

• Our second result is based on maintaining a perfect elimination
ordering of the graph.

• We can detect chordality in O(min{degree(u), degree(v)}) and
update the resulting chordal graph in O(degree(u) + degree(v)) time.

Our Results

• Our results are in the decremental setting.

• Our first result is based on the maximum size k of a bag in the clique
tree.

• In the worst case a delete query takes O(1) time and update takes
O(n + k2) time. Moreover, the update time is actually O(n2/∆ + k2)
amortized over ∆ edge deletions

• Our second result is based on maintaining a perfect elimination
ordering of the graph.

• We can detect chordality in O(min{degree(u), degree(v)}) and
update the resulting chordal graph in O(degree(u) + degree(v)) time.

• We show that any structure to maintain a chordal graph requires
Ω(log n) amortized time for a query or an update in the cell probe
model.

Worst Case

Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.

Worst Case

Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.

First, we state a lemma given by Ibarra,

Lemma

Given a chordal graph G, and an edge e = (u, v), G \ e is chordal if and
only if u and v are together present in exactly one maximal clique, and
hence in only one bag of the clique tree.

Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.

Y

u v

x y

u ∈ Cliqueu ∈ Clique v ∈ Clique

X2u Xlv
X1u

u

xy

u ∈ Clique u ∈ Clique

v

xy

v ∈ Cliquev ∈ Clique

Y1

Y2

XjuX1u

XjvX1v

A B

Figure: Figure A represents the clique tree with node Y , the only node containing the
edge (u, v). Figure B represents the clique tree after edge (u, v) is deleted.

Worst Case

Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.

Algorithm

1 Check if the given edge (u, v) is present in only one bag, if not report
a negative answer, and if yes, then we need to update the clique tree.

Worst Case

Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.

Algorithm

1 Check if the given edge (u, v) is present in only one bag, if not report
a negative answer, and if yes, then we need to update the clique tree.

2 If Y is the unique bag containing the edge (u, v), Y is split into two
nodes, Y1 and Y2. Y1 contains Y \ u and Y2 contains Y \ v. From the
neighbors of Y1 remove all nodes which contain u and make them
children of Y2. The other children remain as children of Y1.

Worst Case

Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.

Algorithm

1 Check if the given edge (u, v) is present in only one bag, if not report
a negative answer, and if yes, then we need to update the clique tree.

2 If Y is the unique bag containing the edge (u, v), Y is split into two
nodes, Y1 and Y2. Y1 contains Y \ u and Y2 contains Y \ v. From the
neighbors of Y1 remove all nodes which contain u and make them
children of Y2. The other children remain as children of Y1.

3 Check whether the bags of any neighbor of these newly formed nodes
is a superset of the node. If yes, we “absorb” these nodes into the
corresponding neighbor.
To check whether one node is a superset of the other, maintain the
intersection size of two adjacent nodes X and Y . Let ` be the size of
Y before splitting. If |X ∩ Y | = `− 1 then X absorbs the new Y .

Algorithm

First, we build a clique tree from the given graph G. The clique tree can be
represented by a pointer representation where each node points to its parent in
the tree. Furthermore, we maintain the following structures.

• For each edge in the graph G we store

a counter indicating the number of nodes of the clique tree to which
the edge belongs. We can store this structure as an adjacency matrix.

Algorithm

First, we build a clique tree from the given graph G. The clique tree can be
represented by a pointer representation where each node points to its parent in
the tree. Furthermore, we maintain the following structures.

• For each edge in the graph G we store,

a counter indicating the number of nodes of the clique tree to which
the edge belongs. We can store this structure as an adjacency matrix.

• For each node X in the clique tree, we store

the list of vertices sorted according to their labels,

Algorithm

First, we build a clique tree from the given graph G. The clique tree can be
represented by a pointer representation where each node points to its parent in
the tree. Furthermore, we maintain the following structures.

• For each edge in the graph G we store,

a counter indicating the number of nodes of the clique tree to which
the edge belongs. We can store this structure as an adjacency matrix.

• For each node X in the clique tree, we store

the list of vertices sorted according to their labels,

• For each node Y in the clique tree which is a neighbor of X, we store
|X ∩ Y | in non-increasing order of values in an array associated with
the bag X

Running Time-Worst case

• For update, for each of the cases above it takes O(k2) time to update
the counters and the pointers for all edges.

Running Time-Worst case

• For update, for each of the cases above it takes O(k2) time to update
the counters and the pointers for all edges.

• We need to update the pointers of all neighbors of Y to point to Y1

and Y2. This takes O(n) time.

Amortized Analysis

Theorem

Let G be a chordal graph. We can construct a data structure such that
given a sequence of ∆ edge deletions, we can support deletion query in
O(1) time and deletion update in O(n2/∆ + k2) amortized time.

Amortized Analysis

Theorem

Let G be a chordal graph. We can construct a data structure such that
given a sequence of ∆ edge deletions, we can support deletion query in
O(1) time and deletion update in O(n2/∆ + k2) amortized time.

• Updation of the structures involve the time to split a node in the
clique tree and also to absorb the node into one of its neighbors and
updating the clique tree.

• We deal with the total time taken to perform the split and absorb
operations seperately.

Amortized Anaysis-Split

• Let d be the degree of the node Y . Y gets split into multiple nodes.
Let us denote these set of nodes to be Ysplit.

Amortized Anaysis-Split

• Let d be the degree of the node Y . Y gets split into multiple nodes.
Let us denote these set of nodes to be Ysplit.

• Whenever a node from Ysplit splits into two the node size decreases by
one and the total cost incurred is the degree of that node.

Amortized Anaysis-Split

• Let d be the degree of the node Y . Y gets split into multiple nodes.
Let us denote these set of nodes to be Ysplit.

• Whenever a node from Ysplit splits into two the node size decreases by
one and the total cost incurred is the degree of that node.

• So the total time spent by Y is O(kd). k
∑

d is at most k(n− 1) and
hence we have the total time taken by the algorithm for splitting nodes
is O(kn).

Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.

Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.

• If Y gets absorbed into Ynbr, we add a charge of d to Ynbr. So the new
charge at Ynbr is the old charge in that node plus the charge at Y plus
d.

Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.

• If Y gets absorbed into Ynbr, we add a charge of d to Ynbr. So the new
charge at Ynbr is the old charge in that node plus the charge at Y plus
d.

• The total charge accumulated at any node is at most d2.

Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.

• If Y gets absorbed into Ynbr, we add a charge of d to Ynbr. So the new
charge at Ynbr is the old charge in that node plus the charge at Y plus
d.

• The total charge accumulated at any node is at most d2.

• The total charge on the existing nodes at any point of time is at most
4n2.

Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.

• If Y gets absorbed into Ynbr, we add a charge of d to Ynbr. So the new
charge at Ynbr is the old charge in that node plus the charge at Y plus
d.

• The total charge accumulated at any node is at most d2.

• The total charge on the existing nodes at any point of time is at most
4n2.

• We spend another O(k2) time for each update to update the nodes
corresponding to every pair of vertices in the bag that got split.

Perfect Elimination Ordering

We now give a decremental algorithm using perfect elimination ordering (PEO).

Theorem

Let G be a chordal graph represented by its adjacency list. Given a perfect
elimination order of G whenever an edge (u, v) is deleted, we can determine
if G \ (u, v) is chordal in O(min{degree(u), degree(v)}) time, and update
the structures if it is the case, in O(degree(u) + degree(v)) time.

Perfect Elimination Ordering

We now give a decremental algorithm using perfect elimination ordering (PEO).

Theorem

Let G be a chordal graph represented by its adjacency list and adjacency
matrix. We can, in O(m + n) time, construct a PEO of G, such that
whenever an edge (u, v) is deleted, we can determine if G \ (u, v) is chordal
in O(min{degree(u), degree(v)}) time, and update the structures if it is
the case, in O(degree(u) + degree(v)) time.

Towards that we first state the following characterization.

Lemma

Let G be a chordal graph, and let e = (u, v) be an edge. G \ (u, v) is chordal if
and only if all the common neighbors of u and v are adjacent to each other, i.e.,
they form a clique.

PEO

• Upon deletion of the edge (u, v), we scan and find the vertices that are
common neighbors to both u and v.

PEO

• Upon deletion of the edge (u, v), we scan and find the vertices that are
common neighbors to both u and v.

• Let the first vertex in the PEO be a1. It is sufficient to check a1’s
adjacency with everyone else.

PEO

• Upon deletion of the edge (u, v), we scan and find the vertices that are
common neighbors to both u and v.

• Let the first vertex in the PEO be a1. It is sufficient to check a1’s
adjacency with everyone else.

• To update the PEO when the edge (u, v) is deleted, we first observe
that we only need to worry about common neighbors of u and v that
appear before u.

PEO

• Upon deletion of the edge (u, v), we scan and find the vertices that are
common neighbors to both u and v.

• Let the first vertex in the PEO be a1. It is sufficient to check a1’s
adjacency with everyone else.

• To update the PEO when the edge (u, v) is deleted, we first observe
that we only need to worry about common neighbors of u and v that
appear before u.

• Let a1, a2, . . . , ak be the set of all vertices which are common
neighbors of u and v that appear before u in the PEO. To fix the
PEO, we move all these vertices, in the same order, to the position
immediately after u in the PEO.

a1 a2 ak u v

u a1 ak v

Figure: a1, a2, ...ak represent the common neighbors of u and v. The top figure shows
the original PEO. The dotted edge {u, v} is deleted from the graph. The bottom figure
shows the new PEO after deletion of the edge {u, v}.

Lower bound

Theorem

Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or
query in the cell probe model of word size log n.

Lower bound

Theorem

Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or
query in the cell probe model of word size log n.

We reduce the following to our problem,

Theorem

Patrascu had shown that any dynamic data structure that performs a sequence
of n edge insertions and deletions that maintains a forest starting from an
edgeless graph. Suppose the structure also supports queries of the form whether
a pair of vertices are in the same connected component. Then such a structure
requires Ω(log n) amortized time per query and update to support a sequence of
n query and update operations in the cell probe model of word size log n.

Lower bound

Theorem

Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or
query in the cell probe model of word size log n.

• The main idea is to ensure that when a query for a pair (u, v) comes,
we add a new path of length three between u and v.

Lower bound

Theorem

Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or
query in the cell probe model of word size log n.

• The main idea is to ensure that when a query for a pair (u, v) comes,
we add a new path of length three between u and v.

• Check whether the resulting graph is chordal.

Lower bound

Theorem

Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or
query in the cell probe model of word size log n.

• The main idea is to ensure that when a query for a pair (u, v) comes,
we add a new path of length three between u and v.

• Check whether the resulting graph is chordal.

• If the pair of vertices are in different components, then the new
additions don’t add any cycle,

Lower bound

Theorem

Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or
query in the cell probe model of word size log n.

• The main idea is to ensure that when a query for a pair (u, v) comes,
we add a new path of length three between u and v.

• Check whether the resulting graph is chordal.

• If the pair of vertices are in different components, then the new
additions don’t add any cycle,

• If they are in the same component, then new additions create a
chordless cycle of length greater than three.

Open Questions

• An interesting open problem is to prove a super logarithmic lower
bound for the query and update operations for maintenance of chordal
graphs.

• Another problem would be to make our algorithms fully dynamic.

Thank You!

	Introduction
	Our Results
	Worst Case bound
	Amortized Bound
	Bound using Perfect elimination ordering
	Lower Bound
	Open Questions

