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• A graph is chordal if every cycle of size four or more in the graph has a
chord.

• There are O(m + n) time algorithms to detect whether a graph is
chordal by computing what is called a perfect elimination ordering or a
clique tree decomposition of the graph.

• A perfect elimination ordering in a graph is an ordering of the vertices
of the graph such that for each vertex x, x and the neighbors of x that
occur after x in the ordering form a clique.

• A clique tree of a graph is a tree decomposition of the graph, where
the bags in each node of the decomposition induce a maximal clique.
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Previous Results

• Can we do better than O(m + n) if a single edge is either deleted or
added to an existing chordal graph?

• Ibarra developed two fully dynamic algorithms for maintaining
chordality.
First one has a query and update time of O(n),
the other has a query time of O(

√
m) and the update time of

O(m + n)

• Mezzini gave an algorithm which took O(1) query and O(n2) update
time

• Berry et al. improved upon Ibarra’s insertion query from O(n) to O(1),
while the other bounds remained the same
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• Our results are in the decremental setting.

• Our first result is based on the maximum size k of a bag in the clique
tree.

• In the worst case a delete query takes O(1) time and update takes
O(n + k2) time. Moreover, the update time is actually O(n2/∆ + k2)
amortized over ∆ edge deletions
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Our Results

• Our results are in the decremental setting.

• Our first result is based on the maximum size k of a bag in the clique
tree.

• In the worst case a delete query takes O(1) time and update takes
O(n + k2) time. Moreover, the update time is actually O(n2/∆ + k2)
amortized over ∆ edge deletions

• Our second result is based on maintaining a perfect elimination
ordering of the graph.

• We can detect chordality in O(min{degree(u), degree(v)}) and
update the resulting chordal graph in O(degree(u) + degree(v)) time.

• We show that any structure to maintain a chordal graph requires
Ω(log n) amortized time for a query or an update in the cell probe
model.



Worst Case

Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.



Worst Case

Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.

First, we state a lemma given by Ibarra,

Lemma

Given a chordal graph G, and an edge e = (u, v), G \ e is chordal if and
only if u and v are together present in exactly one maximal clique, and
hence in only one bag of the clique tree.



Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.

Y

u v

x y

u ∈ Cliqueu ∈ Clique v ∈ Clique

X2u Xlv
X1u

u

xy

u ∈ Clique u ∈ Clique

v

xy

v ∈ Cliquev ∈ Clique

Y1

Y2

XjuX1u

XjvX1v

A B

Figure: Figure A represents the clique tree with node Y , the only node containing the
edge (u, v). Figure B represents the clique tree after edge (u, v) is deleted.
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Worst Case

Theorem

Let G be a chordal graph. Let k be the maximum size of a clique in G. We
can construct a data structure such that given an edge (u, v) to be deleted
from G, we can report in O(1) time if G \ (u, v) is chordal and if it is, we
can update the structure in O(n + k2) time.

Algorithm

1 Check if the given edge (u, v) is present in only one bag, if not report
a negative answer, and if yes, then we need to update the clique tree.

2 If Y is the unique bag containing the edge (u, v), Y is split into two
nodes, Y1 and Y2. Y1 contains Y \ u and Y2 contains Y \ v. From the
neighbors of Y1 remove all nodes which contain u and make them
children of Y2. The other children remain as children of Y1.

3 Check whether the bags of any neighbor of these newly formed nodes
is a superset of the node. If yes, we “absorb” these nodes into the
corresponding neighbor.
To check whether one node is a superset of the other, maintain the
intersection size of two adjacent nodes X and Y . Let ` be the size of
Y before splitting. If |X ∩ Y | = `− 1 then X absorbs the new Y .
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First, we build a clique tree from the given graph G. The clique tree can be
represented by a pointer representation where each node points to its parent in
the tree. Furthermore, we maintain the following structures.

• For each edge in the graph G we store

a counter indicating the number of nodes of the clique tree to which
the edge belongs. We can store this structure as an adjacency matrix.
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Algorithm

First, we build a clique tree from the given graph G. The clique tree can be
represented by a pointer representation where each node points to its parent in
the tree. Furthermore, we maintain the following structures.

• For each edge in the graph G we store,

a counter indicating the number of nodes of the clique tree to which
the edge belongs. We can store this structure as an adjacency matrix.

• For each node X in the clique tree, we store

the list of vertices sorted according to their labels,

• For each node Y in the clique tree which is a neighbor of X, we store
|X ∩ Y | in non-increasing order of values in an array associated with
the bag X



Running Time-Worst case

• For update, for each of the cases above it takes O(k2) time to update
the counters and the pointers for all edges.



Running Time-Worst case

• For update, for each of the cases above it takes O(k2) time to update
the counters and the pointers for all edges.

• We need to update the pointers of all neighbors of Y to point to Y1

and Y2. This takes O(n) time.
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Amortized Analysis

Theorem

Let G be a chordal graph. We can construct a data structure such that
given a sequence of ∆ edge deletions, we can support deletion query in
O(1) time and deletion update in O(n2/∆ + k2) amortized time.

• Updation of the structures involve the time to split a node in the
clique tree and also to absorb the node into one of its neighbors and
updating the clique tree.

• We deal with the total time taken to perform the split and absorb
operations seperately.
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Let us denote these set of nodes to be Ysplit.
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Amortized Anaysis-Split

• Let d be the degree of the node Y . Y gets split into multiple nodes.
Let us denote these set of nodes to be Ysplit.

• Whenever a node from Ysplit splits into two the node size decreases by
one and the total cost incurred is the degree of that node.

• So the total time spent by Y is O(kd). k
∑

d is at most k(n− 1) and
hence we have the total time taken by the algorithm for splitting nodes
is O(kn).
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of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.



Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.



Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.

• If Y gets absorbed into Ynbr, we add a charge of d to Ynbr. So the new
charge at Ynbr is the old charge in that node plus the charge at Y plus
d.



Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.

• If Y gets absorbed into Ynbr, we add a charge of d to Ynbr. So the new
charge at Ynbr is the old charge in that node plus the charge at Y plus
d.

• The total charge accumulated at any node is at most d2.



Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.

• If Y gets absorbed into Ynbr, we add a charge of d to Ynbr. So the new
charge at Ynbr is the old charge in that node plus the charge at Y plus
d.

• The total charge accumulated at any node is at most d2.

• The total charge on the existing nodes at any point of time is at most
4n2.



Amortized Anaysis-Absorption

• Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree
of the node Y , and dnbr be the degree of the node Ynbr before
absorption. The cost of absorption to update the pointers of Ynbr is
equal to d.

• We associate a charge with every node to account for part of the work
done during the absorption.

• If Y gets absorbed into Ynbr, we add a charge of d to Ynbr. So the new
charge at Ynbr is the old charge in that node plus the charge at Y plus
d.

• The total charge accumulated at any node is at most d2.

• The total charge on the existing nodes at any point of time is at most
4n2.

• We spend another O(k2) time for each update to update the nodes
corresponding to every pair of vertices in the bag that got split.



Perfect Elimination Ordering

We now give a decremental algorithm using perfect elimination ordering (PEO).

Theorem

Let G be a chordal graph represented by its adjacency list. Given a perfect
elimination order of G whenever an edge (u, v) is deleted, we can determine
if G \ (u, v) is chordal in O(min{degree(u), degree(v)}) time, and update
the structures if it is the case, in O(degree(u) + degree(v)) time.



Perfect Elimination Ordering

We now give a decremental algorithm using perfect elimination ordering (PEO).

Theorem

Let G be a chordal graph represented by its adjacency list and adjacency
matrix. We can, in O(m + n) time, construct a PEO of G, such that
whenever an edge (u, v) is deleted, we can determine if G \ (u, v) is chordal
in O(min{degree(u), degree(v)}) time, and update the structures if it is
the case, in O(degree(u) + degree(v)) time.

Towards that we first state the following characterization.

Lemma

Let G be a chordal graph, and let e = (u, v) be an edge. G \ (u, v) is chordal if
and only if all the common neighbors of u and v are adjacent to each other, i.e.,
they form a clique.
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PEO

• Upon deletion of the edge (u, v), we scan and find the vertices that are
common neighbors to both u and v.

• Let the first vertex in the PEO be a1. It is sufficient to check a1’s
adjacency with everyone else.

• To update the PEO when the edge (u, v) is deleted, we first observe
that we only need to worry about common neighbors of u and v that
appear before u.

• Let a1, a2, . . . , ak be the set of all vertices which are common
neighbors of u and v that appear before u in the PEO. To fix the
PEO, we move all these vertices, in the same order, to the position
immediately after u in the PEO.



a1 a2 ak u v

u a1 ak v

Figure: a1, a2, ...ak represent the common neighbors of u and v. The top figure shows
the original PEO. The dotted edge {u, v} is deleted from the graph. The bottom figure
shows the new PEO after deletion of the edge {u, v}.
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Theorem

Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or
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We reduce the following to our problem,

Theorem

Patrascu had shown that any dynamic data structure that performs a sequence
of n edge insertions and deletions that maintains a forest starting from an
edgeless graph. Suppose the structure also supports queries of the form whether
a pair of vertices are in the same connected component. Then such a structure
requires Ω(log n) amortized time per query and update to support a sequence of
n query and update operations in the cell probe model of word size log n.
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Lower bound

Theorem

Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or
query in the cell probe model of word size log n.

• The main idea is to ensure that when a query for a pair (u, v) comes,
we add a new path of length three between u and v.

• Check whether the resulting graph is chordal.

• If the pair of vertices are in different components, then the new
additions don’t add any cycle,

• If they are in the same component, then new additions create a
chordless cycle of length greater than three.



Open Questions

• An interesting open problem is to prove a super logarithmic lower
bound for the query and update operations for maintenance of chordal
graphs.

• Another problem would be to make our algorithms fully dynamic.



Thank You!
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