
On Strong NP-completeness of Rational

Problems

Dominik Wojtczak

University of Liverpool

CSR 2018



Motivation

Dominik Wojtczak On Strong NP-completeness of Rational Problems 2/18



What we found

A rather subtle point is the question of rational coefficients. In-
deed, most textbooks get rid of this case, where some or all input
values are non-integer, by the trivial statement that multiplying
with a suitable factor, e.g. with the smallest common multiple
of the denominators, if the values are given as fractions or by a
suitable power of 10, transforms the data into integers. Clearly,
this may transform even a problem of moderate size into a rather
unpleasant problem with huge coefficients.

— Hans Kellerer, Ulrich Pferschy, and David Pisinger.
Knapsack problems. Springer, 2004.
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Definitions (1)

A rational number is given as (numerator, denominator) written in unary.

Definition (Knapsack problems)

Assume there are n items whose non-negative rational weights and profits
are given as a list L = {(w1, v1), . . . , (wn, vn)}. Let the capacity be
W ∈ Q≥0 and the profit threshold be V ∈ Q≥0.

0-1 Knapsack: Is there a subset of L whose total weight does not exceed
W and total profit is at least V ?

Unbounded Knapsack: Is there a list of non-negative integers
(q1, . . . , qn) such that

n∑
i=1

qi · wi ≤W and
n∑

i=1

qi · vi ≥ V ?

(Intuitively, qi denotes the number of times the i-th item in A is chosen.)
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Definitions (2)

Definition (Subset Sum problems)

Assume we are given a list of n items with rational non-negative weights
A = {w1, . . . ,wn} and a target total weight W ∈ Q≥0.

0-1 Subset Sum: Does there exists a subset B of A such that the total
weight of B is equal to W ?

Unbounded Subset Sum: Does there exist a list of non-negative
integer quantities (q1, . . . , qn) such that

n∑
i=1

qi · wi = W ?

(Intuitively, qi denotes the number of times the i-th item in A is chosen.)
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Definitions (3)

Definition (Partition problem)

Assume we are given a list of n items with non-negative rational weights
A = {w1, . . . ,wn}.
Can the set A be partitioned into two sets with equal total weights?

Example Problem
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Money in 18th century England
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The Reductions
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The Actual Reductions

One-in-Three-SAT for 3-CNF ≤p
m One-in-Three-SAT for 3-CNF≤4

≤p
m All-the-Same-SAT for 3-CNF≤4 ≤p

m Unbounded Subset Sum
≤p

m Unbounded Knapsack

All-the-Same-SAT for 3-CNF≤4 ≤p
m Partition

All-the-Same-SAT for 3-CNF≤4 ≤p
m Subset Sum ≤p

m Knapsack
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In the Pursuit of Satisfaction

The One-in-Three-SAT problem for 3-CNF formulae asks for an truth
assignment that makes exactly one literal in each clause true.

3-CNF≤4 is the set of 3-CNF formulae that use each variable at most four
times.

Theorem

The One-in-Three-SAT problem for 3-CNF≤4 is NP-complete.

We define All-the-Same-SAT for 3-CNF formulae to be a problem of
checking for a valuation that makes exactly the same number of literals
true in every clause (this may be zero).

Theorem

The All-the-Same-SAT problem for 3-CNF≤4 formulae is
NP-complete.
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Prime Suspects (1)

Theorem (Rosser (1962))

πi < i(log i + log log i) for i ≥ 6

Corollary

The total size of the first n prime numbers, when written down in unary, is
O(n2 log n). Furthermore, they can be computed in polynomial time.
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Prime Suspects (2)

Lemma

Let (p1, . . . , pn) be a list of n different prime numbers.

Let (a0, a1, . . . , an) and (b0, b1, . . . , bn) be two lists of integers such that
|ai − bi | < pi holds for all i = 1, . . . , n.
We then have

a0 +
a1
p1

+ . . .+
an
pn

= b0 +
b1
p1

+ . . .+
bn
pn

if and only if

ai = bi for all i = 0, . . . , n.
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All-the-Same-SAT ≤p
m Unbounded Subset Sum

Assume we are given a 3-CNF≤4 formula

φ = C1 ∧ C2 ∧ . . . ∧ Cm

with m clauses C1, . . . ,Cm and n propositional variables x1, . . . , xn,

where Cj = aj ∨ bj ∨ cj for j = 1, . . . ,m,
each aj , bj , cj is a literal equal to xi or ¬xi for some i .

For a literal l , we write that l ∈ Cj iff l is equal to aj , bj or cj .
Let pi := πi+n+5 for all i = 1, . . . , n + m.

The set of items A will contain one item per each literal.
The weight of the item corresponding to the literal xi is set to

1 +
1

pi
− 1

pi⊕n1
+

∑
{j |xi∈Cj}

(
1

pn+j
− 1

pn+j⊕m1

)
and corresponding to the literal ¬xi is set to

1 +
1

pi
− 1

pi⊕n1
+

∑
{j |¬xi∈Cj}

(
1

pn+j
− 1

pn+j⊕m1

)
.
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All-the-Same-SAT ≤p
m Unbounded Subset Sum

Notice that the total weight of A is equal to

2n +
n∑

i=1

(
2

pi
− 2

pi⊕n1

)
+

m∑
j=1

(
3

pn+j
− 3

pn+j⊕m1

)
because there are 2n literals, each variable corresponds to two literals, and
each clause contains exactly three literals.

Both of these sums are telescoping and we get that the total weight is
equal to 2n.

We claim that the target weight W = n is achievable by picking items
from A (each item possibly multiple times) iff φ is a positive instance of
All-the-Same-SAT.

Dominik Wojtczak On Strong NP-completeness of Rational Problems 14/18



All-the-Same-SAT ≤p
m Unbounded Subset Sum

Notice that the total weight of A is equal to

2n +
n∑

i=1

(
2

pi
− 2

pi⊕n1

)
+

m∑
j=1

(
3

pn+j
− 3

pn+j⊕m1

)
because there are 2n literals, each variable corresponds to two literals, and
each clause contains exactly three literals.

Both of these sums are telescoping and we get that the total weight is
equal to 2n.

We claim that the target weight W = n is achievable by picking items
from A (each item possibly multiple times) iff φ is a positive instance of
All-the-Same-SAT.

Dominik Wojtczak On Strong NP-completeness of Rational Problems 14/18



All-the-Same-SAT ≤p
m Unbounded Subset Sum

Notice that the total weight of A is equal to

2n +
n∑

i=1

(
2

pi
− 2

pi⊕n1

)
+

m∑
j=1

(
3

pn+j
− 3

pn+j⊕m1

)
because there are 2n literals, each variable corresponds to two literals, and
each clause contains exactly three literals.

Both of these sums are telescoping and we get that the total weight is
equal to 2n.

We claim that the target weight W = n is achievable by picking items
from A (each item possibly multiple times) iff φ is a positive instance of
All-the-Same-SAT.

Dominik Wojtczak On Strong NP-completeness of Rational Problems 14/18



All-the-Same-SAT ≤p
m Unbounded Subset Sum

(⇒) Let qi and q′i be the number of times an item corresponding to,
respectively, literal xi and ¬xi is chosen.

For i = 1, . . . , n, we define ti := qi + q′i .

For j = 1, . . . ,m, we define tn+j to be the number of times an item
corresponding to a literal in Cj is chosen.

For example, if Cj = x1 ∨ ¬x2 ∨ x5 then tn+j = q1 + q′2 + q5.

Finally, let T :=
∑n

i=1 qi + q′i be the total number of items chosen.

Notice that T ≤W /(1− 5
p1

) < n/(1− 5
n+5) = n + 5.

The total weight of the selected items can be expressed as:
n∑

i=1

ti +
n∑

i=1

ti − ti	n1

pi
+

m∑
j=1

tn+j − tn+j	m1

pn+j
(?)

Note that |ti − ti	n1| < n + 5 for all i = 1, . . . , n, and
|tn+j − tn+j	m1| < n + 5 for all j = 1, . . . ,m.

From the previously showed lemma this is equal to W = n iff∑n
i=1 ti = n, and t1 = t2 = . . . = tn, and tn+1 = tn+2 = . . . = tn+m.
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All-the-Same-SAT ≤p
m Unbounded Subset Sum

If
∑n

i=1 ti = n, and t1 = t2 = . . . = tn, and tn+1 = tn+2 = . . . = tn+m,
then we have:

The first two imply that ti = 1 for all i = 1, . . . , n.

The last one implies that in each clause exactly the same number of
items corresponding to its literals is chosen.

(⇐) Let ν be a valuation for which φ satisfies the All-the-Same-SAT
condition.

If ν(xi ) = > then we set qi = 1 and q′i = 0.

If ν(xi ) = ⊥ then we set qi = 0 and q′i = 1.

Let us define ti -s as before.

We now have ti = 1 for all i = 1, . . . , n and tn+1 = tn+2 = . . . = tn+m,
because the All-the-Same-SAT condition is satisfied by ν.

From (?) it follows that the total weight of these items is n.
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The Other Reductions

We can simply repeat this proof to show.

Theorem

The Partition problem with rational weights is strongly NP-complete.

Corollary

The Subset Sum problem with rational weights is strongly NP-complete.

Corollary

The 0-1 Knapsack and Unbounded Knapsack problems with rational
weights are strongly NP-complete.
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Conclusions
Subset Sum, Unbounded Subset Sum, Knapsack,
Unbounded Knapsack, Partition are all strongly NP-hard with
rational coefficients

In other words:

Being rational makes you stronger!
At the same time all these problems admit an FPTAS.
As expected?

Thanks!
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