On Strong NP-completeness of Rational Problems

Dominik Wojtczak

CSR 2018

Motivation

What we found

A rather subtle point is the question of rational coefficients. Indeed, most textbooks get rid of this case, where some or all input values are non-integer, by the trivial statement that multiplying with a suitable factor, e.g. with the smallest common multiple of the denominators, if the values are given as fractions or by a suitable power of 10 , transforms the data into integers. Clearly, this may transform even a problem of moderate size into a rather unpleasant problem with huge coefficients.

- Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.

Definitions (1)

A rational number is given as (numerator, denominator) written in unary.

Definitions (1)

A rational number is given as (numerator, denominator) written in unary.

Definition (KnAPSACK problems)

Assume there are n items whose non-negative rational weights and profits are given as a list $L=\left\{\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)\right\}$. Let the capacity be $W \in \mathbb{Q} \geq 0$ and the profit threshold be $V \in \mathbb{Q} \geq 0$.

Definitions (1)

A rational number is given as (numerator, denominator) written in unary.

Definition (KnAPSACK problems)

Assume there are n items whose non-negative rational weights and profits are given as a list $L=\left\{\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)\right\}$. Let the capacity be $W \in \mathbb{Q} \geq 0$ and the profit threshold be $V \in \mathbb{Q} \geq 0$.

0-1 Knapsack: Is there a subset of L whose total weight does not exceed W and total profit is at least V ?

Definitions (1)

A rational number is given as (numerator, denominator) written in unary.

Definition (KnAPSACK problems)

Assume there are n items whose non-negative rational weights and profits are given as a list $L=\left\{\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)\right\}$. Let the capacity be $W \in \mathbb{Q} \geq 0$ and the profit threshold be $V \in \mathbb{Q} \geq 0$.

0-1 Knapsack: Is there a subset of L whose total weight does not exceed W and total profit is at least V ?

Unbounded Knapsack: Is there a list of non-negative integers $\left(q_{1}, \ldots, q_{n}\right)$ such that

$$
\sum_{i=1}^{n} q_{i} \cdot w_{i} \leq W \quad \text { and } \quad \sum_{i=1}^{n} q_{i} \cdot v_{i} \geq V ?
$$

(Intuitively, q_{i} denotes the number of times the i-th item in A is chosen.)

Definitions (2)

Definition (Subset Sum problems)

Assume we are given a list of n items with rational non-negative weights $A=\left\{w_{1}, \ldots, w_{n}\right\}$ and a target total weight $W \in \mathbb{Q} \geq 0$.

0-1 Subset Sum: Does there exists a subset B of A such that the total weight of B is equal to W ?

Unbounded Subset Sum: Does there exist a list of non-negative integer quantities $\left(q_{1}, \ldots, q_{n}\right)$ such that

$$
\sum_{i=1}^{n} q_{i} \cdot w_{i}=W ?
$$

(Intuitively, q_{i} denotes the number of times the i-th item in A is chosen.)

Definitions (3)

Definition (Partition problem)

Assume we are given a list of n items with non-negative rational weights $A=\left\{w_{1}, \ldots, w_{n}\right\}$.
Can the set A be partitioned into two sets with equal total weights?

Definitions (3)

Definition (Partition problem)

Assume we are given a list of n items with non-negative rational weights $A=\left\{w_{1}, \ldots, w_{n}\right\}$.
Can the set A be partitioned into two sets with equal total weights?

Example Problem

Money in 18th century England

The Reductions

The Actual Reductions

One-In-Three-SAT for $3-\mathrm{CNF} \leq_{m}^{p}$ One-In-Three-SAT for $3-\mathrm{CNF}_{\leq 4}$ \leq_{m}^{p} All-The-Same-SAT for $3-\mathrm{CNF}_{\leq 4} \leq_{m}^{p}$ Unbounded Subset Sum \leq_{m}^{p} Unbounded Knapsack

All-The-SAME-SAT for $3-\mathrm{CNF}_{\leq 4} \leq_{m}^{p}$ Partition

All-The-SAme-SAT for $3-\mathrm{CNF}_{\leq 4} \leq_{m}^{p}$ Subset $\operatorname{Sum} \leq_{m}^{p}$ Knapsack

In the Pursuit of Satisfaction

The One-in-Three-SAT problem for 3-CNF formulae asks for an truth assignment that makes exactly one literal in each clause true.

In the Pursuit of Satisfaction

The One-in-Three-SAT problem for 3-CNF formulae asks for an truth assignment that makes exactly one literal in each clause true.
$3-\mathrm{CNF}_{\leq 4}$ is the set of 3 -CNF formulae that use each variable at most four times.

Theorem

The One-IN-Three-SAT problem for $3-C N F_{\leq 4}$ is NP-complete.

In the Pursuit of Satisfaction

The One-in-Three-SAT problem for 3-CNF formulae asks for an truth assignment that makes exactly one literal in each clause true.
$3-\mathrm{CNF}_{\leq 4}$ is the set of 3 -CNF formulae that use each variable at most four times.

Theorem

The One-IN-Three-SAT problem for $3-C N F_{\leq 4}$ is NP-complete.

We define All-THE-SAme-SAT for 3-CNF formulae to be a problem of checking for a valuation that makes exactly the same number of literals true in every clause (this may be zero).

In the Pursuit of Satisfaction

The One-in-Three-SAT problem for 3-CNF formulae asks for an truth assignment that makes exactly one literal in each clause true.
$3-\mathrm{CNF}_{\leq 4}$ is the set of 3 -CNF formulae that use each variable at most four times.

Theorem

The One-IN-Three-SAT problem for $3-C N F_{\leq 4}$ is NP-complete.

We define All-The-SAme-SAT for 3-CNF formulae to be a problem of checking for a valuation that makes exactly the same number of literals true in every clause (this may be zero).

Theorem

The AlL-THE-SAME-SAT problem for $3-\mathrm{CNF}_{\leq 4}$ formulae is NP-complete.

Prime Suspects (1)

Theorem (Rosser (1962))

$$
\pi_{i}<i(\log i+\log \log i) \quad \text { for } \quad i \geq 6
$$

Prime Suspects (1)

Theorem (Rosser (1962))

$$
\pi_{i}<i(\log i+\log \log i) \quad \text { for } \quad i \geq 6
$$

Corollary

The total size of the first n prime numbers, when written down in unary, is $\mathcal{O}\left(n^{2} \log n\right)$. Furthermore, they can be computed in polynomial time.

Prime Suspects (2)

Lemma

Let $\left(p_{1}, \ldots, p_{n}\right)$ be a list of n different prime numbers.

Prime Suspects (2)

Lemma

Let $\left(p_{1}, \ldots, p_{n}\right)$ be a list of n different prime numbers.
Let $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ and $\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ be two lists of integers such that $\left|a_{i}-b_{i}\right|<p_{i}$ holds for all $i=1, \ldots, n$.

Prime Suspects (2)

Lemma

Let $\left(p_{1}, \ldots, p_{n}\right)$ be a list of n different prime numbers.
Let $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ and $\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ be two lists of integers such that $\left|a_{i}-b_{i}\right|<p_{i}$ holds for all $i=1, \ldots, n$.
We then have

$$
\begin{gathered}
a_{0}+\frac{a_{1}}{p_{1}}+\ldots+\frac{a_{n}}{p_{n}}=b_{0}+\frac{b_{1}}{p_{1}}+\ldots+\frac{b_{n}}{p_{n}} \\
\quad \text { if and only if } \\
a_{i}=b_{i} \text { for all } i=0, \ldots, n .
\end{gathered}
$$

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 Assume we are given a $3-\mathrm{CNF}_{\leq 4}$ formula$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with m clauses C_{1}, \ldots, C_{m} and n propositional variables x_{1}, \ldots, x_{n},

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 Assume we are given a $3-\mathrm{CNF}_{\leq 4}$ formula$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with m clauses C_{1}, \ldots, C_{m} and n propositional variables x_{1}, \ldots, x_{n}, where $C_{j}=a_{j} \vee b_{j} \vee c_{j}$ for $j=1, \ldots, m$,

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 Assume we are given a $3-\mathrm{CNF}_{\leq 4}$ formula$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with m clauses C_{1}, \ldots, C_{m} and n propositional variables x_{1}, \ldots, x_{n}, where $C_{j}=a_{j} \vee b_{j} \vee c_{j}$ for $j=1, \ldots, m$, each a_{j}, b_{j}, c_{j} is a literal equal to x_{i} or $\neg x_{i}$ for some i.

All-the-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 Assume we are given a $3-\mathrm{CNF}_{\leq 4}$ formula$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with m clauses C_{1}, \ldots, C_{m} and n propositional variables x_{1}, \ldots, x_{n}, where $C_{j}=a_{j} \vee b_{j} \vee c_{j}$ for $j=1, \ldots, m$, each a_{j}, b_{j}, c_{j} is a literal equal to x_{i} or $\neg x_{i}$ for some i.
For a literal I, we write that $I \in C_{j}$ iff I is equal to a_{j}, b_{j} or c_{j}.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 Assume we are given a $3-\mathrm{CNF}_{\leq 4}$ formula$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with m clauses C_{1}, \ldots, C_{m} and n propositional variables x_{1}, \ldots, x_{n}, where $C_{j}=a_{j} \vee b_{j} \vee c_{j}$ for $j=1, \ldots, m$, each a_{j}, b_{j}, c_{j} is a literal equal to x_{i} or $\neg x_{i}$ for some i.
For a literal I, we write that $I \in C_{j}$ iff I is equal to a_{j}, b_{j} or c_{j}.
Let $p_{i}:=\pi_{i+n+5}$ for all $i=1, \ldots, n+m$.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 Assume we are given a $3-\mathrm{CNF}_{\leq 4}$ formula$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with m clauses C_{1}, \ldots, C_{m} and n propositional variables x_{1}, \ldots, x_{n}, where $C_{j}=a_{j} \vee b_{j} \vee c_{j}$ for $j=1, \ldots, m$, each a_{j}, b_{j}, c_{j} is a literal equal to x_{i} or $\neg x_{i}$ for some i.
For a literal I, we write that $I \in C_{j}$ iff I is equal to a_{j}, b_{j} or c_{j}.
Let $p_{i}:=\pi_{i+n+5}$ for all $i=1, \ldots, n+m$.
The set of items A will contain one item per each literal.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 Assume we are given a $3-\mathrm{CNF}_{\leq 4}$ formula$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with m clauses C_{1}, \ldots, C_{m} and n propositional variables x_{1}, \ldots, x_{n}, where $C_{j}=a_{j} \vee b_{j} \vee c_{j}$ for $j=1, \ldots, m$, each a_{j}, b_{j}, c_{j} is a literal equal to x_{i} or $\neg x_{i}$ for some i.
For a literal I, we write that $I \in C_{j}$ iff I is equal to a_{j}, b_{j} or c_{j}.
Let $p_{i}:=\pi_{i+n+5}$ for all $i=1, \ldots, n+m$.
The set of items A will contain one item per each literal.
The weight of the item corresponding to the literal x_{i} is set to

$$
1+\frac{1}{p_{i}}-\frac{1}{p_{i \oplus_{n} 1}}+\sum_{\left\{j \mid x_{i} \in C_{j}\right\}}\left(\frac{1}{p_{n+j}}-\frac{1}{p_{n+j \oplus_{m} 1}}\right)
$$

and corresponding to the literal $\neg x_{i}$ is set to

$$
1+\frac{1}{p_{i}}-\frac{1}{p_{i \oplus_{n} 1}}+\sum_{\left\{j \mid \neg x_{i} \in C_{j}\right\}}\left(\frac{1}{p_{n+j}}-\frac{1}{p_{n+j \oplus_{m} 1}}\right)
$$

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

Notice that the total weight of A is equal to

$$
2 n+\sum_{i=1}^{n}\left(\frac{2}{p_{i}}-\frac{2}{p_{i \oplus_{n} 1}}\right)+\sum_{j=1}^{m}\left(\frac{3}{p_{n+j}}-\frac{3}{p_{n+j \oplus_{m} 1}}\right)
$$

because there are $2 n$ literals, each variable corresponds to two literals, and each clause contains exactly three literals.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

Notice that the total weight of A is equal to

$$
2 n+\sum_{i=1}^{n}\left(\frac{2}{p_{i}}-\frac{2}{p_{i \oplus_{n} 1}}\right)+\sum_{j=1}^{m}\left(\frac{3}{p_{n+j}}-\frac{3}{p_{n+j \oplus_{m} 1}}\right)
$$

because there are $2 n$ literals, each variable corresponds to two literals, and each clause contains exactly three literals.

Both of these sums are telescoping and we get that the total weight is equal to $2 n$.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

Notice that the total weight of A is equal to

$$
2 n+\sum_{i=1}^{n}\left(\frac{2}{p_{i}}-\frac{2}{p_{i \oplus_{n} 1}}\right)+\sum_{j=1}^{m}\left(\frac{3}{p_{n+j}}-\frac{3}{p_{n+j \oplus_{m} 1}}\right)
$$

because there are $2 n$ literals, each variable corresponds to two literals, and each clause contains exactly three literals.

Both of these sums are telescoping and we get that the total weight is equal to $2 n$.

We claim that the target weight $W=n$ is achievable by picking items from A (each item possibly multiple times) iff ϕ is a positive instance of All-the-Same-SAT.

All-the-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.
All-the-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.- For $i=1, \ldots, n$, we define $t_{i}:=q_{i}+q_{i}^{\prime}$.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.- For $i=1, \ldots, n$, we define $t_{i}:=q_{i}+q_{i}^{\prime}$.
- For $j=1, \ldots, m$, we define t_{n+j} to be the number of times an item corresponding to a literal in C_{j} is chosen.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.- For $i=1, \ldots, n$, we define $t_{i}:=q_{i}+q_{i}^{\prime}$.
- For $j=1, \ldots, m$, we define t_{n+j} to be the number of times an item corresponding to a literal in C_{j} is chosen.
- For example, if $C_{j}=x_{1} \vee \neg x_{2} \vee x_{5}$ then $t_{n+j}=q_{1}+q_{2}^{\prime}+q_{5}$.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.- For $i=1, \ldots, n$, we define $t_{i}:=q_{i}+q_{i}^{\prime}$.
- For $j=1, \ldots, m$, we define t_{n+j} to be the number of times an item corresponding to a literal in C_{j} is chosen.
- For example, if $C_{j}=x_{1} \vee \neg x_{2} \vee x_{5}$ then $t_{n+j}=q_{1}+q_{2}^{\prime}+q_{5}$.
- Finally, let $T:=\sum_{i=1}^{n} q_{i}+q_{i}^{\prime}$ be the total number of items chosen.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.- For $i=1, \ldots, n$, we define $t_{i}:=q_{i}+q_{i}^{\prime}$.
- For $j=1, \ldots, m$, we define t_{n+j} to be the number of times an item corresponding to a literal in C_{j} is chosen.
- For example, if $C_{j}=x_{1} \vee \neg x_{2} \vee x_{5}$ then $t_{n+j}=q_{1}+q_{2}^{\prime}+q_{5}$.
- Finally, let $T:=\sum_{i=1}^{n} q_{i}+q_{i}^{\prime}$ be the total number of items chosen.
- Notice that $T \leq W /\left(1-\frac{5}{p_{1}}\right)<n /\left(1-\frac{5}{n+5}\right)=n+5$.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.- For $i=1, \ldots, n$, we define $t_{i}:=q_{i}+q_{i}^{\prime}$.
- For $j=1, \ldots, m$, we define t_{n+j} to be the number of times an item corresponding to a literal in C_{j} is chosen.
- For example, if $C_{j}=x_{1} \vee \neg x_{2} \vee x_{5}$ then $t_{n+j}=q_{1}+q_{2}^{\prime}+q_{5}$.
- Finally, let $T:=\sum_{i=1}^{n} q_{i}+q_{i}^{\prime}$ be the total number of items chosen.
- Notice that $T \leq W /\left(1-\frac{5}{p_{1}}\right)<n /\left(1-\frac{5}{n+5}\right)=n+5$.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.- For $i=1, \ldots, n$, we define $t_{i}:=q_{i}+q_{i}^{\prime}$.
- For $j=1, \ldots, m$, we define t_{n+j} to be the number of times an item corresponding to a literal in C_{j} is chosen.
- For example, if $C_{j}=x_{1} \vee \neg x_{2} \vee x_{5}$ then $t_{n+j}=q_{1}+q_{2}^{\prime}+q_{5}$.
- Finally, let $T:=\sum_{i=1}^{n} q_{i}+q_{i}^{\prime}$ be the total number of items chosen.
- Notice that $T \leq W /\left(1-\frac{5}{p_{1}}\right)<n /\left(1-\frac{5}{n+5}\right)=n+5$.

The total weight of the selected items can be expressed as:

$$
\sum_{i=1}^{n} t_{i}+\sum_{i=1}^{n} \frac{t_{i}-t_{i \ominus_{n} 1}}{p_{i}}+\sum_{j=1}^{m} \frac{t_{n+j}-t_{n+j \ominus_{m} 1}}{p_{n+j}}
$$

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.- For $i=1, \ldots, n$, we define $t_{i}:=q_{i}+q_{i}^{\prime}$.
- For $j=1, \ldots, m$, we define t_{n+j} to be the number of times an item corresponding to a literal in C_{j} is chosen.
- For example, if $C_{j}=x_{1} \vee \neg x_{2} \vee x_{5}$ then $t_{n+j}=q_{1}+q_{2}^{\prime}+q_{5}$.
- Finally, let $T:=\sum_{i=1}^{n} q_{i}+q_{i}^{\prime}$ be the total number of items chosen.
- Notice that $T \leq W /\left(1-\frac{5}{p_{1}}\right)<n /\left(1-\frac{5}{n+5}\right)=n+5$.

The total weight of the selected items can be expressed as:

$$
\sum_{i=1}^{n} t_{i}+\sum_{i=1}^{n} \frac{t_{i}-t_{i \ominus_{n} 1}}{p_{i}}+\sum_{j=1}^{m} \frac{t_{n+j}-t_{n+j \ominus_{m} 1}}{p_{n+j}}
$$

- Note that $\left|t_{i}-t_{i \ominus_{n} 1}\right|<n+5$ for all $i=1, \ldots, n$, and

$$
\left|t_{n+j}-t_{n+j \ominus_{m} 1}\right|<n+5 \text { for all } j=1, \ldots, m
$$

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

 (\Rightarrow) Let q_{i} and q_{i}^{\prime} be the number of times an item corresponding to, respectively, literal x_{i} and $\neg x_{i}$ is chosen.- For $i=1, \ldots, n$, we define $t_{i}:=q_{i}+q_{i}^{\prime}$.
- For $j=1, \ldots, m$, we define t_{n+j} to be the number of times an item corresponding to a literal in C_{j} is chosen.
- For example, if $C_{j}=x_{1} \vee \neg x_{2} \vee x_{5}$ then $t_{n+j}=q_{1}+q_{2}^{\prime}+q_{5}$.
- Finally, let $T:=\sum_{i=1}^{n} q_{i}+q_{i}^{\prime}$ be the total number of items chosen.
- Notice that $T \leq W /\left(1-\frac{5}{p_{1}}\right)<n /\left(1-\frac{5}{n+5}\right)=n+5$.

The total weight of the selected items can be expressed as:

$$
\sum_{i=1}^{n} t_{i}+\sum_{i=1}^{n} \frac{t_{i}-t_{i \ominus_{n} 1}}{p_{i}}+\sum_{j=1}^{m} \frac{t_{n+j}-t_{n+j \ominus_{m} 1}}{p_{n+j}}
$$

- Note that $\left|t_{i}-t_{i \ominus_{n} 1}\right|<n+5$ for all $i=1, \ldots, n$, and

$$
\left|t_{n+j}-t_{n+j \ominus_{m} 1}\right|<n+5 \text { for all } j=1, \ldots, m
$$

- From the previously showed lemma this is equal to $W=n$ iff $\sum_{i=1}^{n} t_{i}=n$, and $t_{1}=t_{2}=\ldots=t_{n}$, and $t_{n+1}=t_{n+2}=\ldots=t_{n+m}$.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

If $\sum_{i=1}^{n} t_{i}=n$, and $t_{1}=t_{2}=\ldots=t_{n}$, and $t_{n+1}=t_{n+2}=\ldots=t_{n+m}$, then we have:

- The first two imply that $t_{i}=1$ for all $i=1, \ldots, n$.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

If $\sum_{i=1}^{n} t_{i}=n$, and $t_{1}=t_{2}=\ldots=t_{n}$, and $t_{n+1}=t_{n+2}=\ldots=t_{n+m}$, then we have:

- The first two imply that $t_{i}=1$ for all $i=1, \ldots, n$.
- The last one implies that in each clause exactly the same number of items corresponding to its literals is chosen.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

If $\sum_{i=1}^{n} t_{i}=n$, and $t_{1}=t_{2}=\ldots=t_{n}$, and $t_{n+1}=t_{n+2}=\ldots=t_{n+m}$, then we have:

- The first two imply that $t_{i}=1$ for all $i=1, \ldots, n$.
- The last one implies that in each clause exactly the same number of items corresponding to its literals is chosen.
(\Leftarrow) Let ν be a valuation for which ϕ satisfies the All-THE-SAME-SAT condition.
- If $\nu\left(x_{i}\right)=\top$ then we set $q_{i}=1$ and $q_{i}^{\prime}=0$.
- If $\nu\left(x_{i}\right)=\perp$ then we set $q_{i}=0$ and $q_{i}^{\prime}=1$.

Let us define t_{i}-s as before.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

If $\sum_{i=1}^{n} t_{i}=n$, and $t_{1}=t_{2}=\ldots=t_{n}$, and $t_{n+1}=t_{n+2}=\ldots=t_{n+m}$, then we have:

- The first two imply that $t_{i}=1$ for all $i=1, \ldots, n$.
- The last one implies that in each clause exactly the same number of items corresponding to its literals is chosen.
(\Leftarrow) Let ν be a valuation for which ϕ satisfies the All-the-Same-SAT condition.
- If $\nu\left(x_{i}\right)=T$ then we set $q_{i}=1$ and $q_{i}^{\prime}=0$.
- If $\nu\left(x_{i}\right)=\perp$ then we set $q_{i}=0$ and $q_{i}^{\prime}=1$.

Let us define t_{i}-s as before.
We now have $t_{i}=1$ for all $i=1, \ldots, n$ and $t_{n+1}=t_{n+2}=\ldots=t_{n+m}$, because the All-the-Same-SAT condition is satisfied by ν.

All-The-Same-SAT \leq_{m}^{p} Unbounded Subset Sum

If $\sum_{i=1}^{n} t_{i}=n$, and $t_{1}=t_{2}=\ldots=t_{n}$, and $t_{n+1}=t_{n+2}=\ldots=t_{n+m}$, then we have:

- The first two imply that $t_{i}=1$ for all $i=1, \ldots, n$.
- The last one implies that in each clause exactly the same number of items corresponding to its literals is chosen.
(\Leftarrow) Let ν be a valuation for which ϕ satisfies the All-the-Same-SAT condition.
- If $\nu\left(x_{i}\right)=T$ then we set $q_{i}=1$ and $q_{i}^{\prime}=0$.
- If $\nu\left(x_{i}\right)=\perp$ then we set $q_{i}=0$ and $q_{i}^{\prime}=1$.

Let us define t_{i}-s as before.
We now have $t_{i}=1$ for all $i=1, \ldots, n$ and $t_{n+1}=t_{n+2}=\ldots=t_{n+m}$, because the All-the-Same-SAT condition is satisfied by ν.
From (\star) it follows that the total weight of these items is n.

The Other Reductions

We can simply repeat this proof to show.

Theorem

The Partition problem with rational weights is strongly NP-complete.

The Other Reductions

We can simply repeat this proof to show.

```
Theorem
The Partition problem with rational weights is strongly NP-complete.
```

```
Corollary
The Subset Sum problem with rational weights is strongly NP-complete.
```


The Other Reductions

We can simply repeat this proof to show.

Theorem

The Partition problem with rational weights is strongly NP-complete.

Corollary

The Subset Sum problem with rational weights is strongly NP-complete.

Corollary

The 0-1 Knapsack and Unbounded Knapsack problems with rational weights are strongly NP-complete.

Conclusions

- Subset Sum, Unbounded Subset Sum, Knapsack, Unbounded Knapsack, Partition are all strongly NP-hard with rational coefficients

Conclusions

- Subset Sum, Unbounded Subset Sum, Knapsack, Unbounded Knapsack, Partition are all strongly NP-hard with rational coefficients
- In other words:

Being rational makes you stronger!

Conclusions

- Subset Sum, Unbounded Subset Sum, Knapsack, Unbounded Knapsack, Partition are all strongly NP-hard with rational coefficients
- In other words:

Being rational makes you stronger!

- At the same time all these problems admit an FPTAS.

Conclusions

- Subset Sum, Unbounded Subset Sum, Knapsack, Unbounded Knapsack, Partition are all strongly NP-hard with rational coefficients
- In other words:

Being rational makes you stronger!

- At the same time all these problems admit an FPTAS.
- As expected?

Conclusions

- Subset Sum, Unbounded Subset Sum, Knapsack, Unbounded Knapsack, Partition are all strongly NP-hard with rational coefficients
- In other words:

> Being rational makes you stronger!

- At the same time all these problems admit an FPTAS.
- As expected?

Conclusions

- Subset Sum, Unbounded Subset Sum, Knapsack, Unbounded Knapsack, Partition are all strongly NP-hard with rational coefficients
- In other words:

> Being rational makes you stronger!

- At the same time all these problems admit an FPTAS.
- As expected?

Thanks!

