
On the decision trees with symmetries

Artur Riazanov

SPbAU, PDMI

CSR, 2018



Definitions

Definition
ϕ is a propositional formula in conjunctive normal form (CNF) if

ϕ =
m∧

i=1

 `i∨
j=1

zij


where zij are literals.

A formula ϕ with variables x1, . . . , xn is satisfiable if there exist
α1, . . . , αn ∈ {0, 1}, such that the assignment xi := αi makes ϕ
true. The proof of satisfiability is a proper assignment.
It is much harder to prove that a formula is unsatisfiable.



Definitions

Definition
ϕ is a propositional formula in conjunctive normal form (CNF) if

ϕ =
m∧

i=1

 `i∨
j=1

zij


where zij are literals.
A formula ϕ with variables x1, . . . , xn is satisfiable if there exist
α1, . . . , αn ∈ {0, 1}, such that the assignment xi := αi makes ϕ
true.

The proof of satisfiability is a proper assignment.
It is much harder to prove that a formula is unsatisfiable.



Definitions

Definition
ϕ is a propositional formula in conjunctive normal form (CNF) if

ϕ =
m∧

i=1

 `i∨
j=1

zij


where zij are literals.
A formula ϕ with variables x1, . . . , xn is satisfiable if there exist
α1, . . . , αn ∈ {0, 1}, such that the assignment xi := αi makes ϕ
true. The proof of satisfiability is a proper assignment.
It is much harder to prove that a formula is unsatisfiable.



How to prove unsatisfiability?

The resolution rule:

x ∨ A ¬x ∨ B
A ∨ B

A resolution refutation of a CNF
formula ϕ is a derivation of the
empty clause � from the clauses
of ϕ by the resolution rule.
A decision tree for a CNF formula
ϕ is a protocol of backtracking
search of a falsified clause.

Fact
The resolution polynomially
simulates decision trees.

¬x1

∧(x1 ∨ x2)
∧(x1 ∨ ¬x2 ∨ x3)
∧(x1 ∨ ¬x2 ∨ ¬x3)

x1

x2

x3

0 1

0 1

0 1

x1 ∨ x2

¬x1

x1 ∨ ¬x2 ∨ x3 x1 ∨ ¬x2 ∨ ¬x3



How to prove unsatisfiability?

The resolution rule:

x ∨ A ¬x ∨ B
A ∨ B

A resolution refutation of a CNF
formula ϕ is a derivation of the
empty clause � from the clauses
of ϕ by the resolution rule.

A decision tree for a CNF formula
ϕ is a protocol of backtracking
search of a falsified clause.

Fact
The resolution polynomially
simulates decision trees.

¬x1

∧(x1 ∨ x2)
∧(x1 ∨ ¬x2 ∨ x3)
∧(x1 ∨ ¬x2 ∨ ¬x3)

x1

x2

x3

0 1

0 1

0 1

x1 ∨ x2

¬x1

x1 ∨ ¬x2 ∨ x3 x1 ∨ ¬x2 ∨ ¬x3



How to prove unsatisfiability?

The resolution rule:

x ∨ A ¬x ∨ B
A ∨ B

A resolution refutation of a CNF
formula ϕ is a derivation of the
empty clause � from the clauses
of ϕ by the resolution rule.
A decision tree for a CNF formula
ϕ is a protocol of backtracking
search of a falsified clause.

Fact
The resolution polynomially
simulates decision trees.

¬x1

∧(x1 ∨ x2)
∧(x1 ∨ ¬x2 ∨ x3)
∧(x1 ∨ ¬x2 ∨ ¬x3)

x1

x2

x3

0 1

0 1

0 1

x1 ∨ x2

¬x1

x1 ∨ ¬x2 ∨ x3 x1 ∨ ¬x2 ∨ ¬x3



Symmetries in formal proof systems

I In informal proofs we use symmetrical reasoning every time we
say “without losing the generality” or simply “analougeously”.

I Krishnamurthy suggested using of this construction for
Resolution. The Resolution with the symmetry rule is SR-I.

I There is a short SR-I refutation for the pigeonhole principle
(Urquhart, 1999) and for the clique-coloring tautology (Arai,
2000).

I We are going to consider decision trees equipped with
symmetry-based pruning.



Symmetries in formal proof systems

I In informal proofs we use symmetrical reasoning every time we
say “without losing the generality” or simply “analougeously”.

I Krishnamurthy suggested using of this construction for
Resolution. The Resolution with the symmetry rule is SR-I.

I There is a short SR-I refutation for the pigeonhole principle
(Urquhart, 1999) and for the clique-coloring tautology (Arai,
2000).

I We are going to consider decision trees equipped with
symmetry-based pruning.



Symmetries in formal proof systems

I In informal proofs we use symmetrical reasoning every time we
say “without losing the generality” or simply “analougeously”.

I Krishnamurthy suggested using of this construction for
Resolution. The Resolution with the symmetry rule is SR-I.

I There is a short SR-I refutation for the pigeonhole principle
(Urquhart, 1999) and for the clique-coloring tautology (Arai,
2000).

I We are going to consider decision trees equipped with
symmetry-based pruning.



Symmetries in formal proof systems

I In informal proofs we use symmetrical reasoning every time we
say “without losing the generality” or simply “analougeously”.

I Krishnamurthy suggested using of this construction for
Resolution. The Resolution with the symmetry rule is SR-I.

I There is a short SR-I refutation for the pigeonhole principle
(Urquhart, 1999) and for the clique-coloring tautology (Arai,
2000).

I We are going to consider decision trees equipped with
symmetry-based pruning.



Symmetries

Definition
Let ϕ be a CNF formula with variables from X . A bijection
π : X → X is a symmetry of ϕ if π(ϕ) = ϕ i.e. the renaiming π
permutes clauses of the formula ϕ.
For example renaiming π(x) = y ; π(y) = x is a symmetry of a
formula x ∧ y .
The proof system SR-I is defined as the resolution system with
additional rule

A
π(A)

where π is a symmetry of the formula ϕ.



Decision trees with symmetries

Consider a decision tree for an unsatisfiable formula ϕ.



Symmetries in decision trees

Two paths are isomorphic to eachother, i.e. there exists a
symmetry of ϕ that transforms the assignment associated with the
first one into the assignment associated with the another one.



Symmetries in decision trees

Then we can prune the subtree of one of the vertices. SDT is a
decision tree with removed symmetrical branches.

Proposition
SR-I polynomially simulates SDT.



PHP: Pigeonhole Principle

For m > n we define a formula stating the pigeonhole principle: i.e.
that there exists a way for m pigeons to fly into n holes such that
no two pigeons fly into the same hole.

n

m

P1,1 P1,2 P1,3 P1,4 P1,5

P2,1 P2,2 P2,3 P2,4 P2,5

P3,1 P3,2 P3,3 P3,4 P3,5

P4,1 P4,2 P4,3 P4,4 P4,5

P5,1 P5,2 P5,3 P5,4 P5,5

P6,1 P6,2 P6,3 P6,4 P6,5



PHP: Pigeonhole Principle

A variable Pij states wherther the i ’th pigeon flies into the j ’th
hole or not.

n

m

P1,1 P1,2 P1,3 P1,4 P1,5

P2,1 P2,2 P2,3 P2,4 P2,5

P3,1 P3,2 P3,3 P3,4 P3,5

P4,1 P4,2 P4,3 P4,4 P4,5

P5,1 P5,2 P5,3 P5,4 P5,5

P6,1 P6,2 P6,3 P6,4 P6,5



PHP: Pigeonhole Principle

PHPm
n =

m∧
i=1

 n∨
j=1

Pij

 ∧ ∧
k∈[m]
i ,j∈[n]

i 6=j

(¬Pki ∨ ¬Pkj)

n

m

P1,1 P1,2 P1,3 P1,4 P1,5

P2,1 P2,2 P2,3 P2,4 P2,5

P3,1 P3,2 P3,3 P3,4 P3,5

P4,1 P4,2 P4,3 P4,4 P4,5

P5,1 P5,2 P5,3 P5,4 P5,5

P6,1 P6,2 P6,3 P6,4 P6,5

n

m

P1,1 P1,2 P1,3 P1,4 P1,5

P2,1 P2,2 P2,3 P2,4 P2,5

P3,1 P3,2 P3,3 P3,4 P3,5

P4,1 P4,2 P4,3 P4,4 P4,5

P5,1 P5,2 P5,3 P5,4 P5,5

P6,1 P6,2 P6,3 P6,4 P6,5



PHP: Pigeonhole Principle

PHPm
n =

m∧
i=1

 n∨
j=1

Pij

 ∧ ∧
k∈[n]

∧
i ,j∈[m]

i 6=j

(¬Pik ∨ ¬Pjk)

n

m

P1,1 P1,2 P1,3 P1,4 P1,5

P2,1 P2,2 P2,3 P2,4 P2,5

P3,1 P3,2 P3,3 P3,4 P3,5

P4,1 P4,2 P4,3 P4,4 P4,5

P5,1 P5,2 P5,3 P5,4 P5,5

P6,1 P6,2 P6,3 P6,4 P6,5

n

m

P1,1 P1,2 P1,3 P1,4 P1,5

P2,1 P2,2 P2,3 P2,4 P2,5

P3,1 P3,2 P3,3 P3,4 P3,5

P4,1 P4,2 P4,3 P4,4 P4,5

P5,1 P5,2 P5,3 P5,4 P5,5

P6,1 P6,2 P6,3 P6,4 P6,5



FPHP: Functional Pigeonhole Principle

FPHPm
n = PHPm

n ∧
∧

k∈[m]

∧
i ,j∈[n]

i 6=j

(¬Pki ∨ ¬Pkj)

n

m

P1,1 P1,2 P1,3 P1,4 P1,5

P2,1 P2,2 P2,3 P2,4 P2,5

P3,1 P3,2 P3,3 P3,4 P3,5

P4,1 P4,2 P4,3 P4,4 P4,5

P5,1 P5,2 P5,3 P5,4 P5,5

P6,1 P6,2 P6,3 P6,4 P6,5

n

m

P1,1 P1,2 P1,3 P1,4 P1,5

P2,1 P2,2 P2,3 P2,4 P2,5

P3,1 P3,2 P3,3 P3,4 P3,5

P4,1 P4,2 P4,3 P4,4 P4,5

P5,1 P5,2 P5,3 P5,4 P5,5

P6,1 P6,2 P6,3 P6,4 P6,5



CLIQUE-COLORING

The formula CLIQUE-COLORINGn,k(x , y , z) states that a graph
defined by the adjascency matrix z , contains a clique of size k,
defined by x and has a (k − 1)-coloring defined by y .
There are exponential lower bounds for the sizes of refutations of
all encodings of CLIQUE-COLORING in the Resolution and the
Cutting Planes proof systems (Pudlak, 1997).

Theorem (Urquhart, 1999)
There is a SR-I refutation of the standard encoding of
CLIQUE-COLORINGn,k of size poly(n, k).

Theorem
There is an SDT for one of the encodings of
CLIQUE-COLORINGn,k of size poly(n, k).



CLIQUE-COLORING

The formula CLIQUE-COLORINGn,k(x , y , z) states that a graph
defined by the adjascency matrix z , contains a clique of size k,
defined by x and has a (k − 1)-coloring defined by y .
There are exponential lower bounds for the sizes of refutations of
all encodings of CLIQUE-COLORING in the Resolution and the
Cutting Planes proof systems (Pudlak, 1997).

Theorem (Urquhart, 1999)
There is a SR-I refutation of the standard encoding of
CLIQUE-COLORINGn,k of size poly(n, k).

Theorem
There is an SDT for one of the encodings of
CLIQUE-COLORINGn,k of size poly(n, k).



FPHP

Theorem
There exists an SDT for FPHPn+1

n of size O(n3).

n

n+ 1



FPHP

Theorem
There exists an SDT for FPHPn+1

n of size O(n3).

n

n+ 1

n

n+ 1



FPHP

Theorem
There exists an SDT for FPHPn+1

n of size O(n3).

n

n+ 1

n

n+ 1



FPHP

Theorem
There exists an SDT for FPHPn+1

n of size O(n3).

n

n+ 1

n

n+ 1



FPHP

Theorem
There exists an SDT for FPHPn+1

n of size O(n3).

n

n+ 1 FPHPn
n−1

n

n+ 1 FPHPn
n−1



FPHP and PHP

For PHPn+1
n there are multiple non-isomorphic assignments to the

variables of the first row.

The approach that worked for FPHPn+1
n yields an SDT of size

2O(
√

n).



FPHP and PHP

For PHPn+1
n there are multiple non-isomorphic assignments to the

variables of the first row.

The approach that worked for FPHPn+1
n yields an SDT of size

2O(
√

n).



Lower bound for the size of an SDT for PHPn+1
n

Suppose there is only one symmetry pruning in an SDT.

x1 y1

x2 x3

x4 x5

x1 y1

x2 y2x3 y3

x4 y4x5 y5

SDT Decision tree

It is easy to see that xi ∼ yi (i.e. the assignments corresponding to
xi and to yi are isomorphic).

The number of vertices in an SDT for ϕ is at least the number of
equivalence classes on the set of vertices of a plain decision tree
with respect to ∼.



Lower bound for the size of an SDT for PHPn+1
n

Suppose there is only one symmetry pruning in an SDT.

x1 y1

x2 x3

x4 x5

x1 y1

x2 y2x3 y3

x4 y4x5 y5

SDT Decision tree

It is easy to see that xi ∼ yi (i.e. the assignments corresponding to
xi and to yi are isomorphic).
The number of vertices in an SDT for ϕ is at least the number of
equivalence classes on the set of vertices of a plain decision tree
with respect to ∼.



Game interpretation
Let S be a set of non-falsifying partial assignments to PHPn+1

n .
Alice and Bob maintain an assignment α to variables of PHPn+1

n .
Initially it is empty. At each turn Alice chooses a variable x then
Bob chooses a value b ∈ {0, 1} and they assign α(x) := b.
I Alice wins if α falsifies a clause of PHPn+1

n ;
I Bob wins if α ∈ S at some moment of the game.

Lemma
Bob has a winning strategy in the game with set S iff every
decision tree has a vertex with the assignment from S.

Proposition
Suppose there exists a family of sets of assignments to variables of
PHPn+1

n that do not falsify the formula, S1, . . . ,Sk such that
I two assignments from different sets are not isomorphic;
I Bob has a winning strategy for each of the sets S1, . . . ,Sk .

Then every SDT for PHPn+1
n contains at least k vertices.



Game interpretation
Let S be a set of non-falsifying partial assignments to PHPn+1

n .
Alice and Bob maintain an assignment α to variables of PHPn+1

n .
Initially it is empty. At each turn Alice chooses a variable x then
Bob chooses a value b ∈ {0, 1} and they assign α(x) := b.
I Alice wins if α falsifies a clause of PHPn+1

n ;
I Bob wins if α ∈ S at some moment of the game.

Lemma
Bob has a winning strategy in the game with set S iff every
decision tree has a vertex with the assignment from S.

Proposition
Suppose there exists a family of sets of assignments to variables of
PHPn+1

n that do not falsify the formula, S1, . . . ,Sk such that
I two assignments from different sets are not isomorphic;
I Bob has a winning strategy for each of the sets S1, . . . ,Sk .

Then every SDT for PHPn+1
n contains at least k vertices.



Game interpretation
Let S be a set of non-falsifying partial assignments to PHPn+1

n .
Alice and Bob maintain an assignment α to variables of PHPn+1

n .
Initially it is empty. At each turn Alice chooses a variable x then
Bob chooses a value b ∈ {0, 1} and they assign α(x) := b.
I Alice wins if α falsifies a clause of PHPn+1

n ;
I Bob wins if α ∈ S at some moment of the game.

Lemma
Bob has a winning strategy in the game with set S iff every
decision tree has a vertex with the assignment from S.

Proposition
Suppose there exists a family of sets of assignments to variables of
PHPn+1

n that do not falsify the formula, S1, . . . ,Sk such that
I two assignments from different sets are not isomorphic;
I Bob has a winning strategy for each of the sets S1, . . . ,Sk .

Then every SDT for PHPn+1
n contains at least k vertices.



Invariant

We denote the set of assignments to the variables of ϕ by Aϕ. A
function µ : Aϕ → {a1, . . . , ak} is an invariant wrt symmetries of
ϕ if for two assignments α and β, µ(α) 6= µ(β) =⇒ α 6∼ β.

Let S1 := µ−1(a1), . . . ,Sk := µ−1(ak).
Let µ0(α) = {(#{j : α(Pij) = 0},#{j : α(Pij) = 1): i ∈ [n + 1]}.

1 0 0 (2, 1)
0 1 1 (1, 2)
0 0 1 0 (3, 1)

(0, 0)
0 0 (2, 0)
0 0 (2, 0)
0 0 1 (2, 1)

{(0, 0), (1, 2), (2, 0), (2, 1), (3, 1)}
0

0

1

1

2

2

3

3

4

4

5

5

6

6



Invariant

We denote the set of assignments to the variables of ϕ by Aϕ. A
function µ : Aϕ → {a1, . . . , ak} is an invariant wrt symmetries of
ϕ if for two assignments α and β, µ(α) 6= µ(β) =⇒ α 6∼ β.
Let S1 := µ−1(a1), . . . ,Sk := µ−1(ak).

Let µ0(α) = {(#{j : α(Pij) = 0},#{j : α(Pij) = 1): i ∈ [n + 1]}.
1 0 0 (2, 1)
0 1 1 (1, 2)
0 0 1 0 (3, 1)

(0, 0)
0 0 (2, 0)
0 0 (2, 0)
0 0 1 (2, 1)

{(0, 0), (1, 2), (2, 0), (2, 1), (3, 1)}
0

0

1

1

2

2

3

3

4

4

5

5

6

6



Invariant

We denote the set of assignments to the variables of ϕ by Aϕ. A
function µ : Aϕ → {a1, . . . , ak} is an invariant wrt symmetries of
ϕ if for two assignments α and β, µ(α) 6= µ(β) =⇒ α 6∼ β.
Let S1 := µ−1(a1), . . . ,Sk := µ−1(ak).
Let µ0(α) = {(#{j : α(Pij) = 0},#{j : α(Pij) = 1): i ∈ [n + 1]}.

1 0 0 (2, 1)
0 1 1 (1, 2)
0 0 1 0 (3, 1)

(0, 0)
0 0 (2, 0)
0 0 (2, 0)
0 0 1 (2, 1)

{(0, 0), (1, 2), (2, 0), (2, 1), (3, 1)}

0

0

1

1

2

2

3

3

4

4

5

5

6

6



Invariant

We denote the set of assignments to the variables of ϕ by Aϕ. A
function µ : Aϕ → {a1, . . . , ak} is an invariant wrt symmetries of
ϕ if for two assignments α and β, µ(α) 6= µ(β) =⇒ α 6∼ β.
Let S1 := µ−1(a1), . . . ,Sk := µ−1(ak).
Let µ0(α) = {(#{j : α(Pij) = 0},#{j : α(Pij) = 1): i ∈ [n + 1]}.

1 0 0 (2, 1)
0 1 1 (1, 2)
0 0 1 0 (3, 1)

(0, 0)
0 0 (2, 0)
0 0 (2, 0)
0 0 1 (2, 1)

{(0, 0), (1, 2), (2, 0), (2, 1), (3, 1)}
0

0

1

1

2

2

3

3

4

4

5

5

6

6



Invariant issues

Fact
Alice has a winning strategy for most of the pre-images of µ0.

Alice can put a pebble into
one of the hetched cells and
then falsify the formula using
the remaining pebbles.

Alice can make Bob move the
top pebble and then Bob will
be unable to obtain the
needed picture.



Invariant issues

Fact
Alice has a winning strategy for most of the pre-images of µ0.

Alice can put a pebble into
one of the hetched cells and
then falsify the formula using
the remaining pebbles.

Alice can make Bob move the
top pebble and then Bob will
be unable to obtain the
needed picture.



Robust invariant

Instead of the set of pebbles itself we use the set of colors under
the pebbles as the invariant.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

⇒



Plan

I We color the board in
a clever way:

I Images of the
invariant are subsets
of colors containing
white.

I For example

I By default Bob moves all
pebbles to the right on the
white strip and, as soon as he
can, moves pebbles to the
invariant set colors.



Plan

I We color the board in
a clever way:

I Images of the
invariant are subsets
of colors containing
white.

I For example

I By default Bob moves all
pebbles to the right on the
white strip and, as soon as he
can, moves pebbles to the
invariant set colors.



Plan

I We color the board in
a clever way:

I Images of the
invariant are subsets
of colors containing
white.

I For example

I By default Bob moves all
pebbles to the right on the
white strip and, as soon as he
can, moves pebbles to the
invariant set colors.



Plan

I We color the board in
a clever way:

I Images of the
invariant are subsets
of colors containing
white.

I For example

I By default Bob moves all
pebbles to the right on the
white strip and, as soon as he
can, moves pebbles to the
invariant set colors.



Robust invariant

When Alice chooses a variable Pij Bob moves the i ’th pebble one
cell up (b = 1) or one cell right (b = 0).

Bob must not change the color under a checker if it is not white.



Robust invariant

When Alice chooses a variable Pij Bob moves the i ’th pebble one
cell up (b = 1) or one cell right (b = 0).

Bob must not change the color under a checker if it is not white.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Robust invariant

But sometimes Bob have to forcefuly assign 0 (when the hole is
already occupied by another pigeon). We ignore such moves and
make the pebbles wide enough in order to be able to move the
wide ones such that cells under the wide pebble have the same
color throughout the game and move the real ones inside wide
ones in case of forceful moves.



Comparison with CP, Decision Trees and the Resolution
PHP FPHP CLIQUE-COLORING

RES 2Θ(n) 2Θ(n) 2Ω(n1/4)

CP poly(n) poly(n) 2nΩ(1)

SR-I poly(n) poly(n) poly(n)
DT 2Θ(n log n) 2Θ(n log n) 2Ω(n)

SDT 2Ω(n1/3−o(1)); 2O(n1/2) O(n3) O(nk2)

RES

CP

SDT

SR-I

DT

CLIQUE-
COLORING

PHP

FPHP


	Introduction
	Symmetries
	Results

