
Grammar-based Compression of Unranked Trees

Carl Philipp Reh, University of Siegen, joint work with Adrià Gascón,
Markus Lohrey, Sebastian Maneth and Kurt Sieber

Compression on Text

Compression is used to save space. This is especially important when
a lot of data is transferred over slow connections.
Algorithms for string compression: LZ77, LZ78, RePair, etc.

A Straight-Line Program (SLP) compresses text by sharing common
sub-strings.

Example

A→ a very long text
B → AA

C → BB

An SLP is similar to a context-free grammar but produces exactly one
string instead of a language.

Ranked trees
Ranked trees are trees where the label of a node determines the number of
its children.

Example

not

and

false true

The unary not has one child, the binary and has two, and the nullary true
and false have none.

Compression of Ranked trees
A Tree Straight-Line Program (TSLP) compresses trees not only by sharing
common sub-trees but also by sharing common sub-tree contexts.

Example

A→ +(x , 3) F → A(A(5)) F = +(+(5, 3), 3)

A→ +

x 3

F → A

A

5

F = +

+

5 3

3

A context must contain exactly one x!

Unranked Trees
Unranked Trees are trees where the label of a node does not determine the
number of its children. A Forest is a list of unranked trees.

Forests are very common, for example in XML. In HTML, an
-node does not determine the number of its children.

Example

Short

List

A

Very

Long

List

Compression of Forests
A Forest Straight-Line Program (FSLP) compresses forests similar to a
TSLP. It can also concatenate forests horizontally.

Example

B → C C C → 4 5 A→ 1 2 ∗

3 x

F → A

B

F = 1 2 ∗

3 4 5 4 5

Algorithms on compressed data

FSLPs can be exponentially smaller, e.g. a2n can be represented by n
variables.
Instead of working on the uncompressed forest, we would like to work
on the FSLPs directly.

Example
We can compute the size of the uncompressed data.
We can navigate (go left, right, up, down, print the current symbol)
the uncompressed forest, where each step takes constant time.

Lemma
Given two variables, we can check in quadratic time if they produce the
same forest.

This has been proven for SLPs by Artur Jeż and is easy to adapt to FSLPs.

Associative symbols
Associative symbols allow to “delete” nested occurrences of them:

Example

+

+

1 2 3 4

+

5 6 7

= +

1 2 3 4 5 6 7

Lemma
For each pair of variables of an FSLP we can check in PTIME if they
produce forests that are equal w.r.t. associative symbols.

Commutative symbols
Commutative symbols allow for reordering of children:

Example

+

+

1 2

3 4

= +

3 +

2 1

4

Theorem
For each pair of variables of an FSLP we can check in PTIME if they
produce forests that are equal w.r.t. commutative symbols.

Proof ideas

General technique: Instead of checking whether P(f , g) for some
forests f , g and property P , we instead transform them into a normal
form nfP and check if nfP(f) = nfP(g).
Implement nfP on FSLPs directly without uncompressing them.
The size of the FSLP must not increase too much!
Then check if two variables produce the same forest.

Associative normal form
nfA: Delete all nested associative symbols.

Example

+

+

1 2

∗

3 4

5

⇒nfA +

1 2 ∗

3 4

5

FSLPs to nfA

Example

P → +

x

M → ∗

x

A→ P

P

1

B → P

M

1

A = +

+

1

nfA(A) = +

1

B = +

∗

1

nfA(B) = +

∗

1

FSLPs to nfA

Example

P → +

x

M → ∗

x

A→ P

P

1

B → P

M

1

A = +

+

1

nfA(A) = +

1

B = +

∗

1

nfA(B) = +

∗

1

FSLPs to nfA
Create multiple versions of each variable (Ac means “c is above A”).

Example

P+ → x P∗ → +

x

M+ → ∗

x

M∗ → x

A+ → P+

P+

1

A+ = 1 A∗ → P∗

P+

1

A∗ = +

1

FSLPs to nfA
Create multiple versions of each variable (Ac means “c is above A”).

Example

P+ → x P∗ → +

x

M+ → ∗

x

M∗ → x

A+ → P+

P+

1

A+ = 1 A∗ → P∗

P+

1

A∗ = +

1

Commutative normal form
nfC : Sort all forests below commutative symbols using a
length-lexicographical order (assume + < ∗):

Example

+

∗

4 3

1 +

2 3

⇒nfC +

1 +

2 3

∗

3 4

How do we deal with this?

FSLPs to nfC

Lemma
We can transform FSLPs in PTIME into the following form:

1 A→ ε,
2 A→ BC ,
3 A(x)→ z(LxR),
4 A(x)→ B(C (x)),
5 A→ a(B),
6 A→ B(C), where C must not contain x and produce a tree.

L and R in A(x)→ z(LxR) are produced by repeated use of A→ BC
until either A→ ε or A→ B(C) is reached.
B in A→ B(C) is produced by repeated use of A(x)→ B(C (x)) until
A(x)→ z(LxR) is reached again.

FSLPs to nfC

Lemma
We can transform FSLPs in PTIME into the following form:

1 A→ ε,
2 A→ BC ,
3 A(x)→ z(LxR),
4 A(x)→ B(C (x)),
5 A→ a(B),
6 A→ B(C), where C must not contain x and produce a tree.

L and R in A(x)→ z(LxR) are produced by repeated use of A→ BC
until either A→ ε or A→ B(C) is reached.
B in A→ B(C) is produced by repeated use of A(x)→ B(C (x)) until
A(x)→ z(LxR) is reached again.

FSLPs to nfC: A(x)→ z(LxR)

Key observation: Although L and R can yield exponentially wide forests,
they always consist of linearly many different trees.

Example

A(x) = z

T1 . . .T540 x T541 . . .T2000

Say {U1, . . . ,U20} are the different trees of {T1, . . . ,T2000} and
n1, . . . , n20 how often they occur. Assume U1 < · · · < U20.
We create 21 translations, A0, . . . ,A20, one for each x position, e.g.

A5(x)→ z

Un1
1 . . .Un5

5 x Un6
6 . . .Un20

20

FSLPs to nfC: A(x)→ z(LxR)

Key observation: Although L and R can yield exponentially wide forests,
they always consist of linearly many different trees.

Example

A(x) = z

T1 . . .T540 x T541 . . .T2000

Say {U1, . . . ,U20} are the different trees of {T1, . . . ,T2000} and
n1, . . . , n20 how often they occur. Assume U1 < · · · < U20.

We create 21 translations, A0, . . . ,A20, one for each x position, e.g.

A5(x)→ z

Un1
1 . . .Un5

5 x Un6
6 . . .Un20

20

FSLPs to nfC: A(x)→ z(LxR)

Key observation: Although L and R can yield exponentially wide forests,
they always consist of linearly many different trees.

Example

A(x) = z

T1 . . .T540 x T541 . . .T2000

Say {U1, . . . ,U20} are the different trees of {T1, . . . ,T2000} and
n1, . . . , n20 how often they occur. Assume U1 < · · · < U20.
We create 21 translations, A0, . . . ,A20, one for each x position, e.g.

A5(x)→ z

Un1
1 . . .Un5

5 x Un6
6 . . .Un20

20

FSLPs to nfC: A→ B(C)

When B is produced, this can lead to an exponentially long chain of
productions of the form A(x)→ B(C (x)).

Example

B → B1

B1

x

B1 → B2

B2

x

. . . Bn → D

D

x

D → z

L x R

So B(C) = D2n(C).

Problem: We cannot introduce 2n many different translations for D.

FSLPs to nfC: A→ B(C)

When B is produced, this can lead to an exponentially long chain of
productions of the form A(x)→ B(C (x)).

Example

B → B1

B1

x

B1 → B2

B2

x

. . . Bn → D

D

x

D → z

L x R

So B(C) = D2n(C).

Problem: We cannot introduce 2n many different translations for D.

FSLPs to nfC: A→ B(C)

Key observation: When D occurs more than once, then in all occurrences
of D except the lowest, x must go in the last position.

Example
D(E (D(C))), D → zD(LDxRD), E → zE (LExRE)

zD

LD zE

LE zD

LD C RD

RE

RD

⇒ zD

LD RD zE

LE zD

LD C RD

RE

Since |E (D(C))| > |LDRD |, E (D(C)) comes after LDRD .

Other formalisms
In FSLPs we allow arbitrary horizontal composition, e.g. fg .

FCNS: Canonical representation like Head/Tail for lists: a(f)g .
TSLPs are used to compress FCNS.

Top Trees: Most basic forms are a(b) and a(bx). When concatenating,
the same symbols are merged, e.g. a(b)a(c) becomes a(bc)
and a(bx(b(c))) becomes a(b(c)). Top Dags are used to
compress Top Trees.

Lemma
We can translate between TSLPs for FCNS and FSLPs in each
direction and maintain the size.
We can translate from Top Dags to FSLPs and maintain the size.
We can translate from FSLPs to Top Dags but the size increases by a
factor of |Σ|.

Summary

FSLPs compress forests. They allow for sharing of forest contexts and
arbitrary horizontal composition.
We can check if two variables produce forests that are equal w.r.t.
associative or commutative symbols without uncompressing the FSLP.

Thank you!

