On vertex coloring without monochromatic triangles

Michał Karpiński, Krzysztof Piecuch

Institute of Computer Science University of Wrocław Poland

7 June, 2018

- Definitions
- ② Graph-theoretical results
- Ositive results
- O Negative results
- What's next?

э

Definition

A classic k-coloring of a graph is a function $c: V \to \{1, ..., k\}$, such that there are no two adjacent vertices u and v, for which c(u) = c(v).

Definition

A triangle-free k-coloring of a graph is a function $c: V \to \{1, \ldots, k\}$, such that there are no three mutually adjacent vertices u, v and w, for which c(u) = c(v) = c(w). If such vertices exist, then the induced subgraph (K_3) is called a monochromatic triangle.

伺 ト く ヨ ト く ヨ ト

Definitions

Definitions

▲口> ▲圖> ▲注> ▲注> 三注

Definition

Given G, the smallest k for which there exists a classic k-coloring for G is called the *chromatic number* and is denoted as $\chi(G)$.

Definition

Given G, the smallest k for which there exists a triangle-free k-coloring for G we call the *triangle-free chromatic number* and we denote it as $\chi_3(G)$.

TRIANGLEFREE-q-COLORING Input: A finite, undirected, simple graph *G*. *Question:* Is there a triangle-free *q*-coloring of *G*? Why this problem?

- Coloring problems are fun!
- Olassic coloring is HARD!

 $TRIANGLEFREE\mbox{-}q\mbox{-}COLORING\mbox{ is}...$

- **1** a special case of 3-uniform Hypergraph Coloring problem.
- **2** a special case of Bipartitioning without Subgraph *H* problem, where $H = K_3$ and q = 2.

- 4 B b 4 B b

For any graph G:
$$\left\lceil \frac{\omega(G)}{2} \right\rceil \leq \chi_3(G) \leq \left\lceil \frac{\chi(G)}{2} \right\rceil$$
.

→ 3 → < 3</p>

For any graph G:
$$\left\lceil \frac{\omega(G)}{2} \right\rceil \leq \chi_3(G) \leq \left\lceil \frac{\chi(G)}{2} \right\rceil$$
.

э

→ 3 → < 3</p>

For any graph
$$G: \left\lceil \frac{\omega(G)}{2} \right\rceil \leq \chi_3(G) \leq \left\lceil \frac{\chi(G)}{2} \right\rceil$$
.

э

伺 と く ヨ と く ヨ と

For any graph G:
$$\left\lceil \frac{\omega(G)}{2} \right\rceil \leq \chi_3(G) \leq \left\lceil \frac{\chi(G)}{2} \right\rceil$$
.

э

э

- ∢ ≣ ▶

For any $k \ge 1$, there exists a graph G for which $\chi_3(G) = 1$ and $\chi(G) = k$.

伺 ト く ヨ ト く ヨ ト

For any $k \ge 1$, there exists a graph G for which $\chi_3(G) = 1$ and $\chi(G) = k$.

Proof.

Just take Mycielski graphs.

同 ト イ ヨ ト イ ヨ ト

-

Graph-theoretical results

Hypothesis:
$$\chi_3(G) \leq \left\lceil \frac{\omega(G)}{2} \right\rceil + c.$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Graph-theoretical results

Hypothesis:
$$\chi_3(G) \leq \left\lceil \frac{\omega(G)}{2} \right\rceil + \epsilon$$
.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$\mathsf{Hypothesis:} \ \chi_3(G) \leq \left\lceil \frac{\omega(G)}{2} \right\rceil + c.$$

For every k, there exist a graph G where $\omega(G) \leq 3$, such that $\chi_3(G) > k$.

伺 ト く ヨ ト く ヨ ト

Hypothesis:
$$\chi_3(G) \leq \left\lceil \frac{\omega(G)}{2} \right\rceil + c$$
.

For every k, there exist a graph G where $\omega(G) \leq 3$, such that $\chi_3(G) > k$.

Proof.

We know that for every k, t and g there exists t-uniform hypergraph with girth at least g that cannot be colored using only k colors (Erdos 1959). Take such H with t = 3 and g = 4.

Let G = (V, E) be any graph where |V| > 3, where G is not a complete graph of odd number of vertices. Then $\chi_3(G) \le \left\lceil \frac{\Delta(G)}{2} \right\rceil$.

同 ト イ ヨ ト イ ヨ ト

Let G = (V, E) be any graph where |V| > 3, where G is not a complete graph of odd number of vertices. Then $\chi_3(G) \leq \left\lceil \frac{\Delta(G)}{2} \right\rceil$.

Proof.

- If G is an odd cycle of length at least 5, then $\chi_3(G) = 1$ and $\left\lceil \frac{\Delta}{2} \right\rceil = 1$.
- ② If G is a complete graph (a clique) of n (even) vertices, then $\chi_3(G) = \lceil \frac{n}{2} \rceil$ and $\Delta = n 1$.
- Otherwise use Brook's Theorem: $\chi_3(G) \leq \left\lceil \frac{\chi(G)}{2} \right\rceil \leq \left\lceil \frac{\Delta(G)}{2} \right\rceil$.

通 と イ ヨ と イ ヨ と

Definition

Let \mathcal{G} be a class of graphs. We say that the triangle-free coloring problem is solvable in time O(f(n, m), g(n, m)) on \mathcal{G} , iff there exist algorithms \mathcal{A} and \mathcal{B} , such that for every input $G \in \mathcal{G}$, (i) algorithm \mathcal{A} outputs $\chi_3(G)$ in O(f(n, m)) time, and (ii) algorithm \mathcal{B} outputs the triangle-free coloring that uses exactly $\chi_3(G)$ colors, in O(g(n, m)) time.

Definition

Let \mathcal{G} be a class of graphs. We say that the triangle-free coloring problem is solvable in time O(f(n, m), g(n, m)) on \mathcal{G} , iff there exist algorithms \mathcal{A} and \mathcal{B} , such that for every input $G \in \mathcal{G}$, (i) algorithm \mathcal{A} outputs $\chi_3(G)$ in O(f(n, m)) time, and (ii) algorithm \mathcal{B} outputs the triangle-free coloring that uses exactly $\chi_3(G)$ colors, in O(g(n, m)) time.

Theorem

The triangle-free coloring problem is solvable:

- in time $O(n, n^2)$ on planar graphs,
- in time O(n, n) on: outerplanar graphs, chordal graphs, graphs with bounded maximum degree Δ, with Δ ≤ 4.

・ロト ・同ト ・ヨト ・ヨト

Observation

If $\chi(G) \leq 4$ (and therefore $\chi_3(G) \leq 2$) then:

- $\chi_3(G) = 0$ iff G is empty,
- 2 $\chi_3(G) = 1$ iff G is triangle-free (K₃-free),
- $\chi_3(G) = 2$ iff the above two cases do not hold.

Positive results

- planar graphs
 - check if G is triangle-free in O(n) time (Papadimitriou and Yannakakis, 1981)
 - color graph with 4 colors in $O(n^2)$ time (Appel and Haken, 1989) and use SRS
- outerplanar graphs
 - check if G is triangle-free in O(n) time (Papadimitriou and Yannakakis, 1981)
 - procude the classic $\chi(G)$ -coloring in O(n) time (Proskurowski and Sysło, 1986) and use SRS
- graphs with $\Delta \leq 4$
 - check if G is triangle-free in $O(n \cdot \Delta^2) = O(n)$
 - produce the classic Δ -coloring in O(n) time (Skulrattanakulchai, 2006) and use SRS
- chordal graphs
 - $\chi(G) = \omega(G) \Rightarrow \chi_3(G) = \left\lceil \frac{\chi(G)}{2} \right\rceil = \left\lceil \frac{\omega(G)}{2} \right\rceil$
 - produce the classic χ(G)-coloring in O(n) time (Golumbic, 1980) and use SRS

For planar graphs:

- finding $\chi(G)$ is NP-hard, even if G is 4-regular (Dailey, 1980)
- finding classic 4-coloring is done in $O(n^2)$, even if G is classically 3-colorable (Kawarabayashi, 2010)

The TRIANGLEFREE-q-COLORING problem is \mathcal{FPT} when parametrized by the vertex cover number.

A B > A B >

э

The TRIANGLEFREE-q-COLORING problem is \mathcal{FPT} when parametrized by the vertex cover number.

Proof.

Let W be a minimum vertex cover of G = (V, E), and let |W| = k. Then $I = V \setminus W$ is an independent set. Then:

- find the triangle-free q-coloring of W by exhaustive search, then
- color *I* by greedy strategy.

The total running time of the algorithm is $O(k^{\lceil k/2 \rceil + 1}n)$.

Previous work:

- Vertex 2-coloring without monochromatic cycles of fixed size is NP-complete (Karpinski 2017; Farrugia 2004) ⇒ TF-2-COL is NP-complete.
- TRIANGLEFREEPOLAR-2-COLORING problem is NP-complete (Shitov 2017)

TRIANGLEFREEPOLAR-q-COLORING Input: A finite, undirected, simple graph G = (V, E) and a subset $S \subseteq E$.

Question: Is there a triangle-free q-coloring of G, such that no edge in S is monochromatic?

• • = • • = •

For any fixed $q \geq 2$, the TRIANGLEFREE-q-COLORING problem is \mathcal{NP} -complete.

Theorem

The TRIANGLEFREE-2-COLORING problem is \mathcal{NP} -complete on K_4 -free graphs.

Theorem

The TRIANGLEFREEPOLAR-2-COLORING problem is \mathcal{NP} -complete on graphs with maximum degree at most 3, but it is linear-time solvable on graphs with maximum degree at most 2.

NOTALLEQUAL 3-SAT-4

Input: Boolean formula ϕ in conjunctive normal form, where each clause consists of exactly three literals and every variable appears at most four times in the formula.

Question: Does ϕ have a nae-satisfying assignment, i.e., in each clause at least one literal is true and at least one literal is false?

Negative results

Negative results

- Sub-quadratic algorithm for finding a triangle-free coloring in planar graphs.
- 2 Algorithm that finds $\chi_3(G)$ in graphs with $\Delta(G) \geq 5$.
- Solution The smallest $\Delta(G)$, for which the TRIANGLEFREE-q-COLORING problem is \mathcal{NP} -hard.
- Where the problems proved to be *NP*-complete here reside in *W*-hierarchy?

- 4 B b 4 B b

Generalize χ_3 to get the parameter χ_r , for any $r \geq 3$:

- **1** not allow monochromatic K_r
- Int allow monochromatic C_{r'} (cycle of length r'), for any 3 ≤ r' ≤ r.

伺 ト く ヨ ト く ヨ ト

Thank You!

æ

同 ト イヨ ト イヨ