On vertex coloring without monochromatic triangles

Michał Karpiński, Krzysztof Piecuch

Institute of Computer Science
University of Wrocław
Poland

7 June, 2018

Outline

(1) Definitions
(2) Graph-theoretical results
(3) Positive results
(1) Negative results
(5) What's next?

Definitions

Definition

A classic k-coloring of a graph is a function $c: V \rightarrow\{1, \ldots, k\}$, such that there are no two adjacent vertices u and v, for which $c(u)=c(v)$.

Definition

A triangle-free k-coloring of a graph is a function $c: V \rightarrow\{1, \ldots, k\}$, such that there are no three mutually adjacent vertices u, v and w, for which $c(u)=c(v)=c(w)$. If such vertices exist, then the induced subgraph $\left(K_{3}\right)$ is called a monochromatic triangle.

Definitions

Definitions

Definitions

Definition

Given G, the smallest k for which there exists a classic k-coloring for G is called the chromatic number and is denoted as $\chi(G)$.

Definition

Given G, the smallest k for which there exists a triangle-free k-coloring for G we call the triangle-free chromatic number and we denote it as $\chi_{3}(G)$.

Definitions

TriangleFree-q-Coloring
Input: A finite, undirected, simple graph G.
Question: Is there a triangle-free q-coloring of G ?

Definitions

Why this problem?
(1) Coloring problems are fun!
(2) Classic coloring is HARD!

Definitions

TriangleFree-q-Coloring is...
(1) a special case of 3-uniform Hypergraph Coloring problem.
(2) a special case of Bipartitioning without Subgraph H problem, where $H=K_{3}$ and $q=2$.

Graph-theoretical results

Theorem

For any graph $G:\left\lceil\frac{\omega(G)}{2}\right\rceil \leq \chi_{3}(G) \leq\left\lceil\frac{\chi(G)}{2}\right\rceil$.

Graph-theoretical results

Theorem

For any graph $G:\left\lceil\frac{\omega(G)}{2}\right\rceil \leq \chi_{3}(G) \leq\left\lceil\frac{\chi(G)}{2}\right\rceil$.

Graph-theoretical results

Theorem

For any graph $G:\left\lceil\frac{\omega(G)}{2}\right\rceil \leq \chi_{3}(G) \leq\left\lceil\frac{\chi(G)}{2}\right\rceil$.

Graph-theoretical results

Theorem

For any graph $G:\left\lceil\frac{\omega(G)}{2}\right\rceil \leq \chi_{3}(G) \leq\left\lceil\frac{\chi(G)}{2}\right\rceil$.

Graph-theoretical results

Theorem

For any $k \geq 1$, there exists a graph G for which $\chi_{3}(G)=1$ and $\chi(G)=k$.

Graph-theoretical results

Theorem

For any $k \geq 1$, there exists a graph G for which $\chi_{3}(G)=1$ and $\chi(G)=k$.

Proof.

Just take Mycielski graphs.

Graph-theoretical results

Hypothesis: $\chi_{3}(G) \leq\left\lceil\frac{\omega(G)}{2}\right\rceil+c$.

Graph-theoretical results

Hypothesis: $\chi 3(G) \leq\left\lceil\frac{\omega(G)}{2}\right\rceil+c$.

Graph-theoretical results

Hypothesis: $\chi_{3}(G) \leq\left[\frac{\omega(G)}{2}\right\rceil+c$.

Theorem

For every k, there exist a graph G where $\omega(G) \leq 3$, such that $\chi_{3}(G)>k$.

Graph-theoretical results

Hypothesis: $\chi_{3}(G) \leq\left\lceil\frac{\omega(G)}{2}\right\rceil+c$.

Theorem

For every k, there exist a graph G where $\omega(G) \leq 3$, such that $\chi_{3}(G)>k$.

Proof.

We know that for every k, t and g there exists t-uniform hypergraph with girth at least g that cannot be colored using only k colors (Erdos 1959). Take such H with $t=3$ and $g=4$.

Graph-theoretical results

Theorem

Let $G=(V, E)$ be any graph where $|V|>3$, where G is not a complete graph of odd number of vertices. Then $\chi_{3}(G) \leq\left\lceil\frac{\Delta(G)}{2}\right\rceil$.

Graph-theoretical results

Theorem

Let $G=(V, E)$ be any graph where $|V|>3$, where G is not a complete graph of odd number of vertices. Then $\chi_{3}(G) \leq\left\lceil\frac{\Delta(G)}{2}\right\rceil$.

Proof.

(1) If G is an odd cycle of length at least 5 , then $\chi_{3}(G)=1$ and

$$
\left\lceil\frac{\Delta}{2}\right\rceil=1
$$

(2) If G is a complete graph (a clique) of n (even) vertices, then $\chi_{3}(G)=\left\lceil\frac{n}{2}\right\rceil$ and $\Delta=n-1$.
(3) Otherwise use Brook's Theorem: $\chi_{3}(G) \leq\left\lceil\frac{\chi(G)}{2}\right\rceil \leq\left\lceil\frac{\Delta(G)}{2}\right\rceil$.

Definition

Let \mathcal{G} be a class of graphs. We say that the triangle-free coloring problem is solvable in time $O(f(n, m), g(n, m))$ on \mathcal{G}, iff there exist algorithms \mathcal{A} and \mathcal{B}, such that for every input $G \in \mathcal{G}$, (i) algorithm \mathcal{A} outputs $\chi_{3}(G)$ in $O(f(n, m)$) time, and (ii) algorithm \mathcal{B} outputs the triangle-free coloring that uses exactly $\chi_{3}(G)$ colors, in $O(g(n, m))$ time.

Positive results

Definition

Let \mathcal{G} be a class of graphs. We say that the triangle-free coloring problem is solvable in time $O(f(n, m), g(n, m))$ on \mathcal{G}, iff there exist algorithms \mathcal{A} and \mathcal{B}, such that for every input $G \in \mathcal{G}$, (i) algorithm \mathcal{A} outputs $\chi_{3}(G)$ in $O(f(n, m))$ time, and (ii) algorithm \mathcal{B} outputs the triangle-free coloring that uses exactly $\chi_{3}(G)$ colors, in $O(g(n, m))$ time.

Theorem

The triangle-free coloring problem is solvable:

- in time $O\left(n, n^{2}\right)$ on planar graphs,
- in time $O(n, n)$ on: outerplanar graphs, chordal graphs, graphs with bounded maximum degree Δ, with $\Delta \leq 4$.

Positive results

Observation

If $\chi(G) \leq 4$ (and therefore $\chi_{3}(G) \leq 2$) then:
(1) $\chi_{3}(G)=0$ iff G is empty,
(2) $\chi_{3}(G)=1$ iff G is triangle-free (K_{3}-free),
(0) $\chi_{3}(G)=2$ iff the above two cases do not hold.

Positive results

- planar graphs
- check if G is triangle-free in $O(n)$ time (Papadimitriou and Yannakakis, 1981)
- color graph with 4 colors in $O\left(n^{2}\right)$ time (Appel and Haken, 1989) and use SRS
- outerplanar graphs
- check if G is triangle-free in $O(n)$ time (Papadimitriou and Yannakakis, 1981)
- procude the classic $\chi(G)$-coloring in $O(n)$ time (Proskurowski and Systo, 1986) and use SRS
- graphs with $\Delta \leq 4$
- check if G is triangle-free in $O\left(n \cdot \Delta^{2}\right)=O(n)$
- produce the classic Δ-coloring in $O(n)$ time (Skulrattanakulchai, 2006) and use SRS
- chordal graphs
- $\chi(G)=\omega(G) \Rightarrow \chi_{3}(G)=\left\lceil\frac{\chi(G)}{2}\right\rceil=\left\lceil\frac{\omega(G)}{2}\right\rceil$
- produce the classic $\chi(G)$-coloring in $O(n)$ time (Golumbic, 1980) and use SRS

Positive results

For planar graphs:

- finding $\chi(G)$ is NP-hard, even if G is 4-regular (Dailey, 1980)
- finding classic 4-coloring is done in $O\left(n^{2}\right)$, even if G is classically 3-colorable (Kawarabayashi, 2010)

Theorem
The TriangleFree- q-Coloring problem is $\mathcal{F P \mathcal { T }}$ when parametrized by the vertex cover number.

Positive results

Theorem

The TriangleFree- q-Coloring problem is $\mathcal{F P \mathcal { T }}$ when parametrized by the vertex cover number.

Proof.

Let W be a minimum vertex cover of $G=(V, E)$, and let $|W|=k$. Then $I=V \backslash W$ is an independent set. Then:
(1) find the triangle-free q-coloring of W by exhaustive search, then
(2) color I by greedy strategy.

The total running time of the algorithm is $O\left(k^{\lceil k / 2\rceil+1} n\right)$.

Negative results

Previous work:
(1) Vertex 2-coloring without monochromatic cycles of fixed size is NP-complete (Karpinski 2017; Farrugia 2004) \Rightarrow TF-2-COL is NP-complete.
(2) TriangleFreePolar-2-Coloring problem is NP-complete (Shitov 2017)

TriangleFreePolar-q-Coloring
Input: A finite, undirected, simple graph $G=(V, E)$ and a subset $S \subseteq E$.
Question: Is there a triangle-free q-coloring of G, such that no edge in S is monochromatic?

Negative results

Theorem

For any fixed $q \geq 2$, the TriangleFree- q-Coloring problem is $\mathcal{N} \mathcal{P}$-complete.

Theorem

The TriangleFree-2-Coloring problem is $\mathcal{N} \mathcal{P}$-complete on K_{4}-free graphs.

Theorem

The TriangleFreePolar-2-Coloring problem is
$\mathcal{N} \mathcal{P}$-complete on graphs with maximum degree at most 3 , but it is linear-time solvable on graphs with maximum degree at most 2.

Negative results

NotAllEqual 3-Sat-4
Input: Boolean formula ϕ in conjunctive normal form, where each clause consists of exactly three literals and every variable appears at most four times in the formula.
Question: Does ϕ have a nae-satisfying assignment, i.e., in each clause at least one literal is true and at least one literal is false?

Negative results

Negative results

What's next?

(1) Sub-quadratic algorithm for finding a triangle-free coloring in planar graphs.
(2) Algorithm that finds $\chi_{3}(G)$ in graphs with $\Delta(G) \geq 5$.
(3) The smallest $\Delta(G)$, for which the TriangleFree-q-Coloring problem is $\mathcal{N} \mathcal{P}$-hard.
(9) Where the problems proved to be $\mathcal{N} \mathcal{P}$-complete here reside in W-hierarchy?

What's next?

Generalize χ_{3} to get the parameter χ_{r}, for any $r \geq 3$:
(1) not allow monochromatic K_{r}
(2) not allow monochromatic $C_{r^{\prime}}$ (cycle of length r^{\prime}), for any $3 \leq r^{\prime} \leq r$.

Thank You!

