On Emptiness and Membership Problems for Set Automata

Alexander Rubtsov ${ }^{1,2} \quad$ Mikhail Vyalyi ${ }^{3,1,2}$
arubtsov@hse.ru
vyalyi@gmail.com
${ }^{1}$ Higher School of Economics
${ }^{2}$ Moscow Institute of Physics and Technology
${ }^{3}$ Dorodnicyn Computing Centre, FRC CSC RAS

CSR1

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$

Callback

- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$

Callback

- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

Callback

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

Callback

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

Callback

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

Callback

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

Callback

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$

- write mode

> - test+: $x \in \mathbb{S}$
> - test- $: x \notin \mathbb{S}$

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$

Callback

- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations

Callback

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations
Callback

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations
Callback

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

a	a	a	b	b	b	c	c	c	\triangleleft

Operations
Callback

- in $: \mathbb{S} \rightarrow \mathbb{S} \cup\{x\}$
- out $: \mathbb{S} \rightarrow \mathbb{S} \backslash\{x\}$
- test : $x \stackrel{?}{\in} \mathbb{S}$
- test+: $x \in \mathbb{S}$
- test- : $x \notin \mathbb{S}$
- write mode

Set Automata

Formal Definition

Set automaton M is defined by the tuple

$$
M=\left\langle S, \Sigma, \Gamma, \triangleleft, \delta, s_{0}, F\right\rangle, \text { where }
$$

- S is the finite set of states;
- Σ is the alphabet of the input tape;
- Γ is the alphabet of the work tape;
- $\triangleleft \notin \Sigma$ is the right endmarker;
- $s_{0} \in S$ is the initial state;
- $F \subseteq S$ is the set of accepting states;
- δ is the transition relation:

$$
\delta: S \times(\Sigma \cup\{\varepsilon, \triangleleft\}) \times\left[S \times\left(\Gamma^{*} \cup\{\text { in }, \text { out }\}\right) \cup S \times\{\text { test }\} \times S\right]
$$

Set Automata

Formal Definition

Set automaton M is defined by the tuple

$$
M=\left\langle S, \Sigma, \Gamma, \triangleleft, \delta, s_{0}, F\right\rangle, \text { where }
$$

- S is the finite set of states;
- Σ is the alphabet of the input tape;
- Γ is the alphabet of the work tape;
- $\triangleleft \notin \Sigma$ is the right endmarker;
- $s_{0} \in S$ is the initial state;
- $F \subseteq S$ is the set of accepting states;
- δ is the transition function (for the deterministic case):

$$
\delta: S \times(\Sigma \cup\{\varepsilon, \triangleleft\}) \rightarrow\left[S \times\left(\Gamma^{*} \cup\{\text { in, out }\}\right) \cup S \times\{\text { test }\} \times S\right]
$$

Known Results for DSA

M. Kutrib, A. Malcher, M. Wendlandt, 2014

Decidability Properties			
	DSA	CFL	DCFL
$L \stackrel{?}{=} \varnothing$	+	+	+
$L \stackrel{?}{\oplus}$ REG	+	-	+
$L \stackrel{?}{=} R$	+	-	+
$\|L\| \stackrel{?}{<} \infty$	+	+	+

Known Results for DSA

M. Kutrib, A. Malcher, M. Wendlandt, 2014

Closure Properties

	DSA	CFL	DCFL
$L_{1} \cdot L_{2}$	-	+	-
$L_{1} \cup L_{2}$	-	+	-
$L_{1} \cap L_{2}$	-	-	-
$\Sigma^{*} \backslash L$	+	-	+
$L \cup R$	+	+	+
$L \cap R$	+	+	+

R stands for a regular language.

Known Results for DSA

M. Kutrib, A. Malcher, M. Wendlandt, 2014

Closure Properties

	DSA	CFL	DCFL
$L_{1} \cdot L_{2}$	-	+	-
$L_{1} \cup L_{2}$	-	+	-
$L_{1} \cap L_{2}$	-	-	-
$\Sigma^{*} \backslash L$	+	-	+
$L \cup R$	+	+	+
$L \cap R$	+	+	+

R stands for a regular language.
Theorem
The classes DCFL and DSA are incomparable.

Known results for SA

 A.R., M.V. DLT-2017
Complexity Results

- DSA $\subseteq \mathbf{P}$
- $\mathrm{SA} \subseteq \mathbf{N P}$
- Emptiness (SA) is PSPACE-hard
- Emptiness (SA) is NP-hard for 1-ry alphabet of the work tape
- There are P- and NP-complete languages.

Known results for SA

 A.R., M.V. DLT-2017
Complexity Results

- DSA $\subseteq \mathbf{P}$
- $\mathrm{SA} \subseteq \mathbf{N P}$
- Emptiness (SA) is PSPACE-hard
- Emptiness (SA) is NP-hard for 1-ry alphabet of the work tape

Structural Result

- SA is a rational cone
- There are P- and NP-complete languages.

Known results for SA

 A.R., M.V. DLT-2017
Complexity Results

- DSA $\subseteq \mathbf{P}$
- $\mathrm{SA} \subseteq \mathbf{N P}$
- Emptiness (SA) is PSPACE-hard \uparrow
- Emptiness (SA) is NP-hard \uparrow for 1-ry alphabet of the work tape

Structural Result

- SA is a rational cone
- There are P- and NP-complete languages.

Lange-Reinhardt Set Automata

K. J. Lange and K. Reinhardt introduced similar model in 1996.

- Only test operation
- Word is added in the case test-
- No ε-moves

Lange-Reinhardt Set Automata

K. J. Lange and K. Reinhardt introduced similar model in 1996.

- Only test operation
- Word is added in the case test-
- No ε-moves

Remark

They obtained similar complexity results, but the clue difference is ε-moves.

Main results

- Emptiness (SA)
- PSPACE-hard (A.R., M.V., [DLT'17])
- in PSPACE (this work)
\uparrow Membership (SA)
- Membership (DSA, 1-ry alphabet of the work tape)
- PSPACE-hard (this work)*
- Membership (DSA without ε-transitions)
- in \mathbf{P} [DLT'17]

Main results

- Emptiness (SA)
- PSPACE-hard (A.R., M.V., [DLT'17])
- in PSPACE (this work)
\uparrow Membership (SA)
- Membership (DSA, 1-ry alphabet of the work tape)
- PSPACE-hard (this work)*
- Membership (DSA without ε-transitions)
- in \mathbf{P} [DLT'17]
* Improves the result [DLT'17]:
- Emptiness (SA, 1-ry alphabet of the work tape)
- NP-hard

Main results

- Emptiness (SA)
- PSPACE-hard (A.R., M.V., [DLT'17])
- in PSPACE (this work)
\uparrow Membership (SA)
- Membership (DSA, 1-ry alphabet of the work tape)
- PSPACE-hard (this work)*
- Membership (DSA without ε-transitions)
- in \mathbf{P} [DLT'17]

Main result

Membership and Emptiness problems are PSPACE-complete even for DSA with 1-ry alphabet of the work tape.

Membership (DSA) is PSPACE-hard

TM simulation by DSA

$$
k=3
$$

DSA input tape doesn't matter

$$
(3,(1, q), \ldots)
$$

Set content

Membership and Emptiness

Proposition

Membership is polynomially time reduced to non-Emptiness:

$$
L\left(M^{\prime}\right)=L(M) \cap\{w\}
$$

Membership and Emptiness

Proposition

Membership is polynomially time reduced to non-Emptiness:

$$
L\left(M^{\prime}\right)=L(M) \cap\{w\}
$$

Plan
\checkmark Membership is PSPACE-hard
\checkmark Membership $\leqslant \mathrm{p}$ non-Emptines

Membership and Emptiness

Proposition

Membership is polynomially time reduced to non-Emptiness:

$$
L\left(M^{\prime}\right)=L(M) \cap\{w\}
$$

Plan
\checkmark Membership is PSPACE-hard
\checkmark Membership $\leqslant \mathbf{p}$ non-Emptines
$\checkmark \uparrow$ non-Emptiness is PSPACE-hard

Membership and Emptiness

Proposition

Membership is polynomially time reduced to non-Emptiness:

$$
L\left(M^{\prime}\right)=L(M) \cap\{w\}
$$

Plan

\checkmark Membership is PSPACE-hard
\checkmark Membership $\leqslant \mathrm{p}$ non-Emptines
$\checkmark \uparrow$ non-Emptiness is PSPACE-hard
\square non-Emptiness in PSPACE

Membership and Emptiness

Proposition

Membership is polynomially time reduced to non-Emptiness:

$$
L\left(M^{\prime}\right)=L(M) \cap\{w\}
$$

Plan
\checkmark Membership is PSPACE-hard
\checkmark Membership $\leqslant \mathbf{p}$ non-Emptines
$\checkmark \uparrow$ non-Emptiness is PSPACE-hard
\square non-Emptiness in PSPACE
$\square \uparrow \uparrow$ Emptiness is PSPACE-complete

Membership and Emptiness

Proposition

Membership is polynomially time reduced to non-Emptiness:

$$
L\left(M^{\prime}\right)=L(M) \cap\{w\}
$$

Plan
\checkmark Membership is PSPACE-hard
\checkmark Membership $\leqslant \mathbf{p}$ non-Emptines
$\checkmark \uparrow$ non-Emptiness is PSPACE-hard
\square non-Emptiness in PSPACE
$\square \uparrow \uparrow$ Emptiness is PSPACE-complete
$\square \uparrow \uparrow$ Membership is PSPACE-complete
*All results hold even for DSA with 1-ry alphabet of the work tape!

Regular Realizability Problem

- We fix a language $F \subseteq \Sigma^{*}$, which we call the filter.

Regular Realizability Problem

- We fix a language $F \subseteq \Sigma^{*}$, which we call the filter.
- $L(\mathcal{A}) \in$ REG is the input of the problem, where \mathcal{A} is NFA.

Regular Realizability Problem

- We fix a language $F \subseteq \Sigma^{*}$, which we call the filter.
- $L(\mathcal{A}) \in$ REG is the input of the problem, where \mathcal{A} is NFA.

Regular Realizability Problem

- We fix a language $F \subseteq \Sigma^{*}$, which we call the filter.
- $L(\mathcal{A}) \in$ REG is the input of the problem, where \mathcal{A} is NFA.

Defnition

$$
\operatorname{NRR}(F)=\{\mathcal{A} \mid \mathcal{A} \in \operatorname{NFA}, L(\mathcal{A}) \cap F \neq \varnothing\}
$$

non-Emptines v.s. Regular Realizability Problem

Lemma (A.R., M.V. DLT'17)
non-Emptiness problem is equivalent to the NRR-problem:

$$
\operatorname{NRR}\left(L\left(M^{\prime}\right)\right) \leqslant_{\log }(L(M) \stackrel{?}{\neq \varnothing)}
$$

non-Emptines v.s. Regular Realizability Problem

Lemma (A.R., M.V. DLT'17)
non-Emptiness problem is equivalent to the NRR-problem:

$$
\operatorname{NRR}\left(L\left(M^{\prime}\right)\right) \leqslant_{\log }\left(L(M) \stackrel{?}{\neq \varnothing} \leqslant_{\log } \operatorname{NRR}(\mathrm{SA}-\mathrm{PROT})\right.
$$

*We define language SA-PROTof correct protocols on the next slide

Protocols

Definition

- A protocol - is a word of form

$$
\# u_{1} \# \mathrm{op}_{1} \# u_{2} \#_{\mathrm{op}_{2}} \# \cdots \# u_{n} \# \mathrm{op}_{n}
$$ where $u_{i} \in \Gamma^{*}, \# \notin \Gamma$, and op ${ }_{i} \in\{$ in, out, test+, test- $\}$.

Protocols

Definition

- A protocol - is a word of form

$$
\# u_{1} \# \mathrm{op}_{1} \# u_{2} \# \mathrm{op}_{2} \# \cdots \# u_{n} \# \mathrm{op}_{n}
$$

where $u_{i} \in \Gamma^{*}, \# \notin \Gamma$, and op ${ }_{i} \in\{$ in, out, test+, test- $\}$.

- We say that p is a correct protocol for SA M on an input $w \in L(M)$, if there exists a run of M on the input w such that M performs the operation op_{i} with the word u_{i}.

Protocols

Definition

- A protocol - is a word of form

$$
\# u_{1} \# \mathrm{op}_{1} \# u_{2} \#_{\mathrm{op}_{2}} \# \cdots \# u_{n} \# \mathrm{op}_{n}
$$

where $u_{i} \in \Gamma^{*}, \# \notin \Gamma$, and op ${ }_{i} \in\{$ in, out, test+, test- $\}$.

- We say that p is a correct protocol for SA M on an input $w \in L(M)$, if there exists a run of M on the input w such that M performs the operation op_{i} with the word u_{i}.
- SA-PROT is the language of all correct protocols over the alphabet of the work tape $\Gamma=\{a, b\}$.

Correctness and Support

Lemma

A protocol is correct iff each test+ segment is supported and each test-segment is either supported or standalone.

NRR-problem: Steps of the Solution

Protocols' transformation

$$
q_{0} \xrightarrow[L_{q_{0}, q_{1}}]{\# u_{1} \# \mathbf{i n}} q_{1} \xrightarrow[L_{q_{1}, q_{2}}]{\# u_{2} \# \mathbf{i n}} q_{2} \xrightarrow[L_{q_{2}, q_{3}}]{\# u_{3} \# \text { test+ }} q_{3} \xrightarrow[L_{q_{3}, q_{4}}^{\# u_{4} \# \mathbf{o u t}}]{L_{q_{4}, q_{5}}} q_{4} \xrightarrow[L_{q_{5}, q_{6}}^{\# u_{5} \# \text { test- }}]{L_{5}} q_{6} \xrightarrow{\# u_{6} \# \text { test- }} q_{6}
$$

NRR-problem: Steps of the Solution

$$
q_{0} \xrightarrow[L_{q_{0}, q_{1}}]{\# u_{1} \# \text { in }} q_{1} \xrightarrow[L_{q_{1}, q_{2}}^{\# u_{2} \# \text { in }}]{L_{q_{2}, q_{3}}} q_{2} \xrightarrow[L_{a_{3}, q_{4}}^{\# u_{3} \# \text { test+ }}]{L_{a_{4}, q_{5}}} q_{3} \xrightarrow[L_{q_{5}, q_{6}}^{\# \text { out }}]{L_{4}} q_{6}
$$

$$
\Downarrow
$$

$$
q_{0} \xrightarrow[L_{q_{0}, q_{1}}]{\# u_{1}^{\prime} \# \mathbf{i n}} q_{1} \xrightarrow[L_{q_{1}, q_{2}}^{\# u_{2}^{\prime} \# \mathbf{i n}}]{\rightarrow} q_{2} \xrightarrow[L_{q_{2}, q_{3}}]{\# u_{3}^{\prime} \# \text { test+ }} q_{3} \xrightarrow[L_{a_{3}, q_{4}}^{\# u_{4}^{\prime} \# \mathbf{o u t}}]{\longrightarrow} q_{4} \xrightarrow[L_{q_{4}, q_{5}}]{\# u_{5}^{\prime} \# \text { test- }} q_{5} \xrightarrow[L_{q_{5}, q_{6}}^{\# u_{6}^{\prime} \# \text { test- }}]{L_{6}} q_{6}
$$

$$
\checkmark u_{i}, u_{i}^{\prime} \in L_{q_{i-1}, q_{i}}
$$

$\checkmark|\mathbb{S}|$ is small at each step

PSPACE algorithm guesses and verifies the modified protocol.

NRR-problem: Steps of the Solution

Verification of the correctness
stable stable unstable unstable unstable

NRR-problem: Steps of the Solution

Verification of the correctness

$$
q_{0} \xrightarrow[L_{q_{0}, q_{1}}]{\# u_{1} \# \mathbf{i n}} q_{1} \xrightarrow[L_{q_{1}, q_{2}}]{\# u_{2} \# \mathbf{i n}} q_{2} \xrightarrow[L_{q_{2}, q_{3}}]{\# u_{3} \# \text { test+ }} q_{3} \xrightarrow[L_{q_{3}, q_{4}}^{\# u_{4} \# \text { out }}]{L_{q_{4}, q_{5}}} q_{4} \xrightarrow[L_{q_{5}, q_{6}}^{\# u_{5} \# \text { test- }}]{L_{5}} q_{6}
$$

Stable words belong to small languages
Unstable words don't

NRR-problem: Steps of the Solution

Verification of the correctness

$$
q_{0} \xrightarrow[L_{q_{0}, q_{1}}]{\# u_{1} \# \mathbf{i n}} q_{1} \xrightarrow[L_{q_{1}, q_{2}}]{\# u_{2} \# \mathbf{i n}} q_{2} \xrightarrow[L_{q_{2}, q_{3}}]{\# u_{3} \# \text { test+ }} q_{3} \xrightarrow[L_{q_{3}, q_{4}}^{\# u_{4} \# \text { out }}]{L_{q_{4}, q_{5}}} q_{4} \xrightarrow[L_{q_{5}, q_{6}}^{\# u_{5} \# \text { test- }}]{L_{5}} q_{6}
$$

Stable words belong to small languages
Unstable words don't

NRR-problem: Steps of the Solution

Protocols' transformation

$$
q_{0} \xrightarrow[L_{q_{0}, q_{1}}]{\# u_{1}^{\prime \#} \mathbf{n}} q_{1} \xrightarrow[L_{q_{1}, q_{2}}]{\# u_{2}^{\prime \# \mathbf{n}}} q_{2} \xrightarrow[L_{q_{2}, q_{3}}]{\# u_{3}^{\prime \# \text { test+ }}} q_{3} \xrightarrow[L_{q_{3}, q_{4}}]{\# u_{4}^{\prime \# \mathbf{u t}}} q_{4} \xrightarrow[L_{q_{4}, q_{5}}]{\# u_{5}^{\prime} \# \text { test- }} q_{5} \xrightarrow[L_{q_{5}, q_{6}}]{\# u_{6}^{\prime} \# \text { test- }} q_{6}
$$

Each $L_{q_{i-1}, q_{i}}$ is either large or small.

We replace u_{i} by u_{i}^{\prime} such a way that

- $u_{i}^{\prime}=u_{i}$ if u^{i} is stable

NRR-problem: Steps of the Solution

Protocols' transformation

Each $L_{q_{i-1}, q_{i}}$ is either large or small.

We replace u_{i} by u_{i}^{\prime} such a way that

- $u_{i}^{\prime}=u_{i}$ if u^{i} is stable
- all $u_{i}^{\prime} \notin \mathbb{S}$ for $\# u_{i} \#$ test- and $\# u_{i} \#$ out if u_{i} is unstable

NRR-problem: Steps of the Solution

Each $L_{q_{i-1}, q_{i}}$ is either large or small.

We replace u_{i} by u_{i}^{\prime} such a way that

- $u_{i}^{\prime}=u_{i}$ if u^{i} is stable
- all $u_{i}^{\prime} \notin \mathbb{S}$ for $\# u_{i} \#$ test- and $\# u_{i} \#$ out if u_{i} is unstable
- for each large $L_{q_{i}, q_{j}}$ there is at most one word in \mathbb{S}.

NRR-problem: Steps of the Solution

Another problem

- u_{i} may be long.

NRR-problem: Steps of the Solution

Another problem

- u_{i} may be long. So we describe u_{i} by the language R_{i} :

$$
R_{l}=\bigcap_{k \in I} R_{k} \cap \bigcap_{k \notin I} \overline{R_{k}}, \quad I \subseteq\{1,2, \ldots, N\} .
$$

NRR-problem: Steps of the Solution

Another problem

- u_{i} may be long. So we describe u_{i} by the language R_{i} :

$$
R_{l}=\bigcap_{k \in I} R_{k} \cap \bigcap_{k \notin I} \overline{R_{k}}, \quad I \subseteq\{1,2, \ldots, N\} .
$$

- There are exponentialy many I

NRR-problem: Steps of the Solution

Another problem

- u_{i} may be long. So we describe u_{i} by the language R_{i} :

$$
R_{l}=\bigcap_{k \in I} R_{k} \cap \bigcap_{k \notin I} \overline{R_{k}}, \quad I \subseteq\{1,2, \ldots, N\} .
$$

- There are exponentialy many I

NRR-problem: Steps of the Solution

Another problem

- u_{i} may be long. So we describe u_{i} by the language R_{i} :

$$
R_{I}=\bigcap_{k \in I} R_{k} \cap \bigcap_{k \notin I} \overline{R_{k}}, \quad I \subseteq\{1,2, \ldots, N\} .
$$

- There are exponentialy many I, but not in the modified protocol since the number of unstable words is small.

The Plan is Complete

\checkmark Membership is PSPACE-hard
\checkmark Membership $\leqslant \mathbf{p}$ non-Emptines
$\checkmark \uparrow$ non-Emptiness is PSPACE-hard
\checkmark non-Emptiness in PSPACE
$\checkmark \uparrow \uparrow$ Emptiness is PSPACE-complete
$\checkmark \uparrow \uparrow$ Membership is PSPACE-complete

The Plan is Complete

\checkmark Membership is PSPACE-hard
\checkmark Membership $\leqslant \mathbf{p}$ non-Emptines
$\checkmark \uparrow$ non-Emptiness is PSPACE-hard
\checkmark non-Emptiness in PSPACE
$\checkmark \uparrow \uparrow$ Emptiness is PSPACE-complete
$\checkmark \uparrow \uparrow$ Membership is PSPACE-complete

Thank you!

