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Classical Problem

Q
Input: An instance I .
Question:



Classical Problems: Running Examples

Minimum Weight Spanning Tree (MST)
Input: A Graph G = (V ,E ), and a weight function w : E → Z+

Output: A spanning tree T of G , of minimum weight.

Feedback Vertex Set (FVS) Parameter: k
Input: A Graph G = (V ,E ) and a positive integer k .
Question: Does there exist a set S ⊆ V of size at most k such that
G − S does not contain any cycle?
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Classical Problems

A lot of studies on problems that satisfy additional
constraints.

FVS
I Solution induces a connected subgraph in G (Connected FVS)
I Solution induces an independent set in G (Independent FVS)

MST
I At least (most) k leaves.
I At least (most) k internal nodes.



Classical Problems

A lot of studies on problems that satisfy additional
constraints.

FVS

I Solution induces a connected subgraph in G (Connected FVS)
I Solution induces an independent set in G (Independent FVS)

MST
I At least (most) k leaves.
I At least (most) k internal nodes.



Classical Problems

A lot of studies on problems that satisfy additional
constraints.

FVS
I Solution induces a connected subgraph in G (Connected FVS)

I Solution induces an independent set in G (Independent FVS)

MST
I At least (most) k leaves.
I At least (most) k internal nodes.



Classical Problems

A lot of studies on problems that satisfy additional
constraints.

FVS
I Solution induces a connected subgraph in G (Connected FVS)
I Solution induces an independent set in G (Independent FVS)

MST
I At least (most) k leaves.
I At least (most) k internal nodes.



Classical Problems

A lot of studies on problems that satisfy additional
constraints.

FVS
I Solution induces a connected subgraph in G (Connected FVS)
I Solution induces an independent set in G (Independent FVS)

MST

I At least (most) k leaves.
I At least (most) k internal nodes.



Classical Problems

A lot of studies on problems that satisfy additional
constraints.

FVS
I Solution induces a connected subgraph in G (Connected FVS)
I Solution induces an independent set in G (Independent FVS)

MST
I At least (most) k leaves.

I At least (most) k internal nodes.



Classical Problems
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Conflict free Problem

Conflict Free-Q (CF-Q)
Input: An instance I of classical problem Q, a conflict graph H.
Output: A solution to I in Q, which is also an independent set in H.



Running Examples

CF-MST
Input: A Graph G = (V ,E ), a conflict graph H = (E ,E ′), and a weight
function w : E → Z+

Output: A spanning tree T of G , with minimum weight such that E (T )
is an independent set in H.

CF-FVS Parameter: k
Input: A Graph G = (V ,E ), a conflict graph H = (V ,E ′) and a positive
integer k.
Question: Does there exist a set S ⊆ V of size at most k such that
G − S does not contain any cycle and S is an independent set in H?
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Conflict free Problems

Shortest Path

Maximum Flow

Knapsack

Bin Packing

Scheduling

Maximum Matching

Minimum Weight Spanning Tree

. . .

By Kann, Pferchy , Epstein, Even. . . .
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Why Conflict Free Problems?



Take a detour and introduce vertex deletion graph problems.

First introduce the notion of graph properties.



Graph Property

A graph property Π is a family of graphs.

Π is Edgeless graphs

Π is Forest

Π is Bipartite graphs

Π is Chordal graphs
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Π-Vertex Deletion

Π - Graph property.

Π-Vertex Deletion Parameter: k
Input: A graph G and a non-negative integer k .
Question: Does there exist S ⊆ V (G ), such that |S | ≤ k and G − S is
in Π?

Π is Edgeless graphs - Vertex Cover (VC).

Π is Forest - Feedback Vertex Set (FVS).

Π is Bipartite graphs - Odd Cycle Transversal (OCT).

Π is Chordal graphs - Chordal Vertex Deletion (CVD).

Π is Interval graphs - Interval Vertex Deletion (IVD).
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CF-Π-VD

Conflict Free Π-Vertex Deletion (CF-Π-VD) Parameter: k
Input: A graph G , a conflict graph H on vertex set V (G ) and a non-
negative integer k .
Question: Does there exist a set S ⊆ V (G ), such that |S | ≤ k , G − S
is in Π and S is an independent set in H?

Π is Edgeless graphs - CF-VC.
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Π is Bipartite graphs - CF-OCT.

Π is Chordal graphs - CF-CVD.

Π is Interval graphs - CF-IVD.
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Motivation I: Generalizes Classical Graph Problem

When H is edgeless:
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Motivation II: Generalizes Independence Constraint

When G = H
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Motivation II: Generalizes Independence Constraint
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Models CSP like dichotomy for specific graph problem

which graph family does the input belongs?

which graph family does the conflict graphs belongs?

(G,H)-CF-Π-VD
Input: A graph G ∈ G, a conflict graph H ∈ H on vertex set V (G ) and
a non-negative integer k.
Question: Does there exist a set S ⊆ V (G ), such that |S | ≤ k , G − S
is in Π and S is an independent set in H?
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Framework of Our Study –
Parameterized Complexity



Parameterized Complexity : Quick Overview

Associate a parameter k to an instance I of a classical problem.

Parameterized problem (I , k) is fixed-parameter tractable (FPT) if
there is an algorithm that solves it in time O(f (k) · |I |O(1)).

Not all problems (for given parameter) admit such an algorithm

W[t]-hard, for some t ∈ N.
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Our Results



Forbidden Characterization

F(Π): Forbidden set characterization of Π.

Graphs in Π does not contain any graph in F(Π) as an induced
subgraph (subgraph).

VC- F(Π) is an edge (finite).

FVS- F(Π) is set of all cycles (infinite).



Forbidden Characterization

F(Π): Forbidden set characterization of Π.

Graphs in Π does not contain any graph in F(Π) as an induced
subgraph (subgraph).

VC- F(Π) is an edge (finite).

FVS- F(Π) is set of all cycles (infinite).



Forbidden Characterization

F(Π): Forbidden set characterization of Π.

Graphs in Π does not contain any graph in F(Π) as an induced
subgraph (subgraph).

VC- F(Π) is an edge (finite).

FVS- F(Π) is set of all cycles (infinite).



Forbidden Characterization

F(Π): Forbidden set characterization of Π.

Graphs in Π does not contain any graph in F(Π) as an induced
subgraph (subgraph).

VC- F(Π) is an edge (finite).

FVS- F(Π) is set of all cycles (infinite).



Forbidden Characterization

F(Π) is finite:
I CF-Π-VD is FPT with running time (O(αk · n · T (m, n))), where

T (m, n) is time to recognize a graph in Π and α is the size of largest
graph in F(Π).

F Split Vertex Deletion
F F(Π) is {C4,C5, 2K2}
F O(5knO(1)) time algorithm

I Admits O(α2α!kα) vertex kernel.

F(Π) is (well behaved) infinite: CF-Π-VD is W[1]-hard.
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Finite Forbidden Characterization

Can we give better than
O(αk · n · T (m, n)) running
time algorithm?



Faster Running Time

VC CF-VC

2k-vertex kernel 2k-vertex kernel

Factor 2- approximation algorithm Factor 2- approximation algorithm

O?(1.2738k) FPT algorithm 1 O?(1.2738k) FPT algorithm

O?(1.1996n) exact algorithm O?(1.1996n) exact algorithm

Polynomial time- when graph G is of
degree at most 2

NP-complete even when graph G is
of degree at most 2 ( G is disjoint
union of P3 )

Polynomial time- G has degree at
most one, or both G and H have a
perfect matching

1O? suppresses the polynomial factor in the running time.
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Faster Running Time

Problem Name Classical Conflict Free

d-Hitting Set O?((d−0.7262)k) time
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O?((d−0.7262)k) time
algorithm

Split Vertex Dele-
tion

O?(1.2738kkO(log k))
time algorithm

O?(1.2738kkO(log k))
time algorithm

FVS in Tourna-
ments

O?(1.618k) time algo-
rithm

O?(2k) time algorithm
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Finite Forbidden Characterization

Theorem

CF-VC admits a 2k-vertex kernel, a factor 2-approximation algorithm, an
O?(1.2738k) FPT algorithm and a O?(1.1996n) exact algorithm.

Polynomial time parameter preserving reduction from CF-VC to
Min Ones 2-SAT.

Min Ones 2-SAT can be solved as fast as VC.

In polynomial time we can test whether there exists a solution to
CF-VC for pair (G ,H).
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Finite Forbidden Characterization

Min Ones 2-SAT
Input: A 2-CNF formula φ
Output: A satisfying assignment for φ formula that minimizes the num-
ber of variables that are set to 1
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Let (G ,H, k) be an instance of CF-VC.

For every edge uv ∈ E (G ), introduce a clause (u ∨ v)

for every edge uv ∈ E (H), introduce a clause (ū ∨ v̄) in Φ.

Φ =
∧

uv∈E(G)

(u ∨ v)
∧

uv∈E(H)

(ū ∨ v̄).
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Infinite Forbidden Characterization

Theorem

CF-FVS is W[1]-hard, when parameterized by the solution size.

Polynomial time parameter preserving reduction from
Multicolored Independent Set to CF-FVS.

Multicolored Independent Set is W[1]-hard.

A similar result holds for Conflict Free Odd Cycle
Transversal (CF-OCT), Conflict Free Chordal Vertex
Deletion (CF-CVD) and Conflict Free Interval Vertex
Deletion (CF-IVD)
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CF-FVS Parameter: k
Input: A graph G , a conflict graph H on vertex set V (G ), an integer k .
Question: Does there exist S ⊆ V (G ), such that |S | ≤ k , G − S is a
forest and S is an independent set in H?

Multicolored Independent Set Parameter: k
Input: A graph G = (V ,E ), and a partition V1,V2, · · · ,Vk of V .
Question: Is there a set S ⊆ V such that S is an independent set in G ,
and for each i ∈ [k], we have |S ∩ Vi | = 1?
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Infinite Forbidden Characterization

When does CF-Π-VD admits
an FPT algorithm?
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Independence Covering Lemma [Lokshtanov et al., SODA
2018]

k-Independence Covering Family (F(H?, k)):

A family of independent sets of graph H?

For any independent set X in H? of size at most k there exists a set
Y in F(H?, k) such that X ⊆ Y

Independence Covering Lemma

Given a d-degenerate graph H∗, integer k .

There exist two deterministic algorithms running in time polynomial
in the family size to compute independence covering families

F1(H?, k) of size at most
(k(d+1)

k

)
2o(k(d+1)) log n

F2(H?, k) of size at most
(k2(d+1)2

k

)
(k(d + 1))O(1) log n

A similar lemma exist for Nowhere Dense graphs.
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FPT algorithm for (?,Dd )-CF-FVS

For conflict graph H, find independence covering family, F(H?, k)

For each Y ∈ F(H?, k), find a solution of FVS contained in Y
I Solve weighted version of FVS
I Assign weight k + 1 to all v ∈ V (G ) \ Y and 1 to v ∈ Y .
I Weighted FVS can be solved in time O(3.618knO(1))
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Open Problems:

What are other graph classes G,H and graph property Π, when
(G,H)-CF-Π-VD is FPT?

For what graph classes G,H and graph property Π does
(G,H)-CF-Π-VD admits polynomial kernel?



Open Problems:

What are other graph classes G,H and graph property Π, when
(G,H)-CF-Π-VD is FPT?

For what graph classes G,H and graph property Π does
(G,H)-CF-Π-VD admits polynomial kernel?



Open Problems:

What are other graph classes G,H and graph property Π, when
(G,H)-CF-Π-VD is FPT?

For what graph classes G,H and graph property Π does
(G,H)-CF-Π-VD admits polynomial kernel?



Questions?


