## The Clever Shopper Problem

Laurent Bulteau Danny Hermelin Anthony Labarre Stéphane Vialette

The 13th International Computer Science Symposium in Russia

June 6th, 2018


## Introduction

Clever Shopper

## Introduction

Clever Shopper

## Input:

a set of books $B$,

$b_{3}$


## Introduction



Clever Shopper

## Input:

a set of books $B$, a set of shops $S$,

## Introduction



## Introduction



## Clever Shopper

## Input:

a set of books $B$, a set of shops $S$, edges $E \subseteq B \times S$,

## Introduction



## Clever Shopper

## Input:

a set of books $B$, a set of shops $S$, edges $E \subseteq B \times S$, with weights $w: E \rightarrow \mathbb{N}^{+}$,

## Introduction



## Clever Shopper

## Input:

a set of books $B$, a set of shops $S$, edges $E \subseteq B \times S$, with weights $w: E \rightarrow \mathbb{N}^{+}$,

## Introduction



## Clever Shopper

## Input:

a set of books $B$, a set of shops $S$, edges $E \subseteq B \times S$, with weights $w: E \rightarrow \mathbb{N}^{+}$,

## Output:

$E^{\prime} \subseteq E$ such that:

- each $b \in B$ has 1 incident edge
- minimum total cost


## Introduction



## Clever Shopper

## Input:

a set of books $B$, a set of shops $S$, edges $E \subseteq B \times S$, with weights $w: ~ E \rightarrow \mathbb{N}^{+}$,

## Output:

$E^{\prime} \subseteq E$ such that:

- each $b \in B$ has 1 incident edge
- minimum total cost


## Introduction



## Clever Shopper

## Input:

a set of books $B$, a set of shops $S$, edges $E \subseteq B \times S$, with weights $w: E \rightarrow \mathbb{N}^{+}$, a discount function $\mathcal{D}$,

## Output:

$E^{\prime} \subseteq E$ such that:

- each $b \in B$ has 1 incident edge
- minimum total cost


## Introduction



## Clever Shopper

## Input:

a set of books $B$, a set of shops $S$, edges $E \subseteq B \times S$, with weights $w: E \rightarrow \mathbb{N}^{+}$, a discount function $\mathcal{D}$,

## Output:

$E^{\prime} \subseteq E$ such that:

- each $b \in B$ has 1 incident edge
- minimum total cost


## Introduction



## Introduction



## Clever Shopper

## Input:

a set of books $B$, a set of shops $S$, edges $E \subseteq B \times S$, with weights $w: E \rightarrow \mathbb{N}^{+}$, a discount function $\mathcal{D}$, a budget $K \in \mathbb{N}^{+}$

Output:
$E^{\prime} \subseteq E$ such that:

- each $b \in B$ has 1 incident edge
- total price $\leq K$


## Introduction

- Variant of Internet Shopping problem [Blazewicz et al., 2010]
- Discounts $\leftrightarrow$ free shipping depending on specific sets of purchased items
- Strongly NP-hard, even with free items and unit shipping costs


## Introduction

- Variant of Internet Shopping problem [Blazewicz et al., 2010]
- Discounts $\leftrightarrow$ free shipping depending on specific sets of purchased items
- Strongly NP-hard, even with free items and unit shipping costs
- We seek a complete picture of the tractability of Clever Shopper, with respect to:
- Number of books ( $n$ )
- Number of shops ( $m$ )
- Price range

Constant? Polynomially bounded? Unconstrained?

- Degree

Few books per shops ? Few shops selling each book?

## Introduction

- Variant of Internet Shopping problem [Blazewicz et al., 2010]
- Discounts $\leftrightarrow$ free shipping depending on specific sets of purchased items
- Strongly NP-hard, even with free items and unit shipping costs
- We seek a complete picture of the tractability of Clever Shopper, with respect to:
- Number of books ( $n$ )
- Number of shops ( $m$ )
- Price range

Constant? Polynomially bounded? Unconstrained?

- Degree

Few books per shops? Few shops selling each book?

- Any approximation algorithm?


## Results

Sparse instances:

## Results

Sparse instances:
每
으 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT

## Results

Sparse instances:

## Results

Sparse instances:
ㅇ. NP-hard with book-degree 2, shop-degree 3 and unit prices $\begin{array}{r}\text { 3-SAT } \\ \text { - Polynomial if shop degree } \leq 2\end{array}$ Matching
Few shops (parameter m):

## Results

Sparse instances:
으 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT

- Polynomial if shop degree $\leq 2$

Matching
Few shops (parameter $m$ ):
6?
Q NP-hard with 2 shops and unbounded prices

## Results

Sparse instances:
ㅇ. NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT - Polynomial if shop degree $\leq 2$

Matching
Few shops (parameter $m$ ):
tin
ㅇ. NP-hard with 2 shops and unbounded prices

- XP for $m$ with polynomial prices


## Results

Sparse instances:
ㅇ. NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT - Polynomial if shop degree $\leq 2$

Matching
Few shops (parameter $m$ ):
6
ㅇ. NP-hard with 2 shops and unbounded prices

XP for $m$ with polynomial prices
W[1]-hard for $m$ with polynomial prices
dynamic programming
Bin-Packing

## Results

Sparse instances:
ㅇ. NP-hard with book-degree 2, shop-degree 3 and unit prices
3-SAT - Polynomial if shop degree $\leq 2$

Matching
Few shops (parameter $m$ ):
6?
O NP-hard with 2 shops and unbounded prices

XP for $m$ with polynomial prices W[1]-hard for $m$ with polynomial prices FPT for $m$ with unit prices
dynamic programming
Bin-Packing
$f$-star subgraphs

## Results

Sparse instances:
ㅇ. NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT - Polynomial if shop degree $\leq 2$

Matching
Few shops (parameter $m$ ):

E?

- NP-hard with 2 shops and unbounded prices XP for $m$ with polynomial prices O W[1]-hard for $m$ with polynomial prices dynamic programming
- FPT for $m$ with unit prices Bin-Packing $f$-star subgraphs
으 W [1]-hard for "selected shops" with unit prices Perfect Code


## Results

Sparse instances:
ㅇ. NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT - Polynomial if shop degree $\leq 2$

Matching
Few shops (parameter $m$ ):
景
ㅇ NP-hard with 2 shops and unbounded prices

- XP for $m$ with polynomial prices
dynamic programming
6 - W[1]-hard for $m$ with polynomial prices Bin-Packing
- FPT for $m$ with unit prices $f$-star subgraphs E W[1]-hard for "selected shops" with unit prices Perfect Code Approximation:


## Results

Sparse instances:
응 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT - Polynomial if shop degree $\leq 2$

Matching
Few shops (parameter $m$ ):
E
ㅇ. NP-hard with 2 shops and unbounded prices

- XP for $m$ with polynomial prices

W[1]-hard for $m$ with polynomial prices
FPT for $m$ with unit prices flar subgraphs - W[1]-hard for "selected shops" with unit prices Perfect Code Approximation:
$6 ?$
ㄹ No approximation is possible NP-hard with $K=0$

## Results

Sparse instances:

# NP-hard with book-degree 2, shop-degree 3 and unit prices 

3-SAT

응Polynomial if shop degree $\leq 2$
Few shops (parameter $m$ ):
$\ominus$ - XP for $m$ with polynomial prices W[1]-hard for $m$ with polynomial prices FPT for $m$ with unit prices dynamic programming Bin-Packing $f$-star subgraphs - W[1]-hard for "selected shops" with unit prices Perfect Code Approximation:
은 No approximation is possible NP-hard with $K=0$

Max 3-Sat

## Results

Sparse instances:

# NP-hard with book-degree 2, shop-degree 3 and unit prices 

3-SAT

Polynomial if shop degree $\leq 2$
Few shops (parameter $m$ ):
$\ominus$ - XP for $m$ with polynomial prices Q W[1]-hard for $m$ with polynomial prices dynamic programming - FPT for $m$ with unit prices - W[1]-hard for "selected shops" with unit prices Perfect Code Approximation:
ㅇ. No approximation is possible
ㄹ APX-hard to maximise the total discount...

$$
\text { NP-hard with } K=0
$$

Max 3-Sat

## Results

Sparse instances:

# NP-hard with book-degree 2, shop-degree 3 and unit prices 

3-SAT

Polynomial if shop degree $\leq 2$
Few shops (parameter $m$ ):
$\ominus$ XP for $m$ with polynomial prices Q W[1]-hard for $m$ with polynomial prices dynamic programming - FPT for $m$ with unit prices - W[1]-hard for "selected shops" with unit prices Perfect Code Approximation:
ㅇ. No approximation is possible
E APX-hard to maximise the total discount...

$$
\text { NP-hard with } K=0
$$

Max 3-Sat

Few books (parameter n):

## Results

Sparse instances:

# NP-hard with book-degree 2, shop-degree 3 and unit prices 

3-SAT

Polynomial if shop degree $\leq 2$ Matching Few shops (parameter $m$ ): $\ominus$ - XP for $m$ with polynomial prices Q W[1]-hard for $m$ with polynomial prices dynamic programming - FPT for $m$ with unit prices - W[1]-hard for "selected shops" with unit prices Perfect Code Approximation:

E APX-hard to maximise the total discount...

$$
\begin{array}{r}
\text { NP-hard with } K=0 \\
\text { MAx } 3 \text {-SAT } \\
\text { greedy }
\end{array}
$$

Few books (parameter n):
ㅇ FPT

## Results

Sparse instances:

# NP-hard with book-degree 2, shop-degree 3 and unit prices 

3-SAT

Polynomial if shop degree $\leq 2$ Matching Few shops (parameter $m$ ):
$\ominus$ - XP for $m$ with polynomial prices - W[1]-hard for $m$ with polynomial prices dynamic programming - FPT for $m$ with unit prices - W[1]-hard for "selected shops" with unit prices Perfect Code Approximation:
O No approximation is possible

- APX-hard to maximise the total discount...

$$
\text { NP-hard with } K=0
$$

Max 3-Sat
ㅇ ... but $k$-approximable for shop-degree $k$
Few books (parameter n):

No polynomial kernel

## Results

Sparse instances:
O NP-hard with book-degree 2, shop-degree 3 and unit prices
3-SAT

- Polynomial if shop degree $\leq 2$

Matching
Few shops (parameter $m$ ):
응 NP-hard with 2 shops and unbounded prices

Approximation:

으 No approximation is possible

Few books (parameter n):

ㄹ NP-hard with book-degree 2, shop-degree 3, unit prices Reduction from Max 3-SAT, with 2 occurrences per literal

$m$ clauses, $n$ variables

ㄹ NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal

$m$ clauses, $n$ variables

ㄹ NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal

$m$ clauses, $n$ variables

ㄹ NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal


All prices $=1$
$m$ clauses, $n$ variables

ㄹ NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal


All prices $=1$
$m$ clauses, $n$ variables

ㄹ NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal


All prices $=1$
$m$ clauses, $n$ variables

ㄹ NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal


All prices $=1$
$m$ clauses, $n$ variables

ㄹ NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal


All prices $=1$
$m$ clauses, $n$ variables

ㄹ NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal


All prices $=1$

$m$ clauses, $n$ variables

## $\bullet$ Polynomial for shop-degree $\leq 2$

Algorithm

- Subtract minimum price for each book from its incident edges



## $\bullet$ Polynomial for shop-degree $\leq 2$

Algorithm

- Subtract minimum price for each book from its incident edges
- Connect books sold by same shop with remaining cost



## $\bullet$ Polynomial for shop-degree $\leq 2$

Algorithm

- Subtract minimum price for each book from its incident edges
- Connect books sold by same shop with remaining cost
- Subtract discount wherever threshold is reached

greedy solution $=(12-3)+9+4+8+7=37$


## $\bullet$ Polynomial for shop-degree $\leq 2$

Algorithm

- Subtract minimum price for each book from its incident edges
- Connect books sold by same shop with remaining cost
- Subtract discount wherever threshold is reached
- Find max weight matching (on graph with opposite weights)

greedy solution $=(12-3)+9+4+8+7=37$


## $\bullet$ Polynomial for shop-degree $\leq 2$

Algorithm

- Subtract minimum price for each book from its incident edges
- Connect books sold by same shop with remaining cost
- Subtract discount wherever threshold is reached
- Find max weight matching (on graph with opposite weights)
- Matched edges yield a solution

greedy solution $=(12-3)+9+4+8+7=37$


## $\stackrel{\ominus}{\bullet}$ Polynomial for shop-degree $\leq 2$

## Algorithm

- Subtract minimum price for each book from its incident edges
- Connect books sold by same shop with remaining cost
- Subtract discount wherever threshold is reached
- Find max weight matching (on graph with opposite weights)
- Matched edges yield a solution

greedy solution $=(12-3)+9+4+8+7=37$ optimal solution $=(12-3)+(11-3)+(5+8-3)+7=34$


## Results

Sparse instances:


NP-hard with book-degree 2, shop-degree 3 and unit prices
3-SAT Matching
Few shops (parameter $m$ ):
R ㅇ. NP-hard with 2 shops and unbounded prices Partition - XP for $m$ with polynomial prices - W[1]-hard for $m$ with polynomial prices dynamic programming - FPT for $m$ with unit prices Bin-Packing $f$-star subgraphs 으 W[1]-hard for "selected shops" with unit prices Perfect Code Approximation:

Few books (parameter n):

## - NP-hard with 2 shops, unbounded prices

Reduction from Partition
Input: $\quad X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $\sum_{x_{i} \in X} x_{i}=2 A$.
Question: $\exists ? X^{\prime} \subseteq X$ such that $\sum_{x_{i} \in X^{\prime}} x_{i}=A$

- 2 shops, $n$ books
- book $i$ has cost $x_{i}$ (in both shops)
- discounts: buy $A$ get -1
- budget: $2 A-2$



## - NP-hard with 2 shops, unbounded prices

Reduction from Partition
Input: $\quad X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $\sum_{x_{i} \in X} x_{i}=2 A$.
Question: $\exists ? X^{\prime} \subseteq X$ such that $\sum_{x_{i} \in X^{\prime}} x_{i}=A$

- 2 shops, $n$ books
- book $i$ has cost $x_{i}$ (in both shops)
- discounts: buy $A$ get -1
- budget: $2 A-2$



## - NP-hard with 2 shops, unbounded prices

Reduction from Partition
Input: $\quad X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $\sum_{x_{i} \in X} x_{i}=2 A$.
Question: $\exists ? X^{\prime} \subseteq X$ such that $\sum_{x_{i} \in X^{\prime}} x_{i}=A$

- 2 shops, $n$ books
- book $i$ has cost $x_{i}$ (in both shops)
- discounts: buy $A$ get -1
- budget: $2 A-2$



## 2 W[1]-hard for $m$ shops, polynomial prices

Reduction from Bin-Packing
Input: $\quad X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $\sum_{x_{i} \in X} x_{i}=m B$.
Question: $\exists$ ? $\left(X_{1}, \ldots, X_{m}\right)$ partition of $X$ with $\sum_{x_{i} \in X_{j}} x_{i}=B$.

- $m$ shops, $n$ books
- book $i$ has cost $x_{i}$ (in all shops)
- discounts: buy $B$ get -1
- budget: $m(B-1)$


2 W[1]-hard for $m$ shops, polynomial prices
Reduction from Bin-Packing
Input: $\quad X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $\sum_{x_{i} \in X} x_{i}=m B$.
Question: $\exists$ ? $\left(X_{1}, \ldots, X_{m}\right)$ partition of $X$ with $\sum_{x_{i} \in X_{j}} x_{i}=B$.

- $m$ shops, $n$ books
- book $i$ has cost $x_{i}$ (in all shops)
- discounts: buy $B$ get -1
- budget: $m(B-1)$


2 W[1]-hard for $m$ shops, polynomial prices
Reduction from Bin-Packing
Input: $\quad X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $\sum_{x_{i} \in X} x_{i}=m B$.
Question: $\exists$ ? $\left(X_{1}, \ldots, X_{m}\right)$ partition of $X$ with $\sum_{x_{i} \in X_{j}} x_{i}=B$.

- $m$ shops, $n$ books
- book $i$ has cost $x_{i}$ (in all shops)
- discounts: buy $B$ get -1
- budget: $m(B-1)$



## Results

Sparse instances:


응 NP-hard with book-degree 2, shop-degree 3 and unit prices
3-SAT - Polynomial if shop degree $\leq 2$

Few shops (parameter $m$ ):
最 Partition - XP for $m$ with polynomial prices dynamic programming是 W[1]-hard for $m$ with polynomial prices Bin-Packing - FPT for $m$ with unit prices - W[1]-hard for "selected shops" with unit prices Perfect Code Approximation:

으 APX-hard to maximise the total discount...
Max 3-Sat
ㅇ ... but $k$-approximable for shop-degree $k$ greedy
Few books (parameter n):

## ㄹ The problem with approximations

When minimising the total cost: no approximation is possible.

## ㄹ The problem with approximations

When minimising the total cost: no approximation is possible.

- Take the (commercially questionable) discount function:

$$
\begin{aligned}
& \text { Buy } \geq A \\
& \text { Get }-A
\end{aligned}
$$

- Partition, Bin-Packing or Perfect Code reductions yield:

Clever Shopper is NP-hard, even with $K=0$

## ㄹ The problem with approximations

When minimising the total cost: no approximation is possible.

- Take the (commercially questionable) discount function:

$$
\begin{gathered}
\text { Buy } \geq A \\
\text { Get }-A
\end{gathered}
$$

- Partition, Bin-Packing or Perfect Code reductions yield:

$$
\text { Clever Shopper is NP-hard, even with } K=0
$$

Other optimisation strategy: maximise the total discount

- Meaningful only if each book has a uniform price
- Max 3-SAT reduction yields APX-hardness.


## Results

Sparse instances:

# NP-hard with book-degree 2, shop-degree 3 and unit prices 

3-SAT - Polynomial if shop degree $\leq 2$

Few shops (parameter $m$ ):
응 NP-hard with 2 shops and unbounded prices

Approximation:

응 No approximation is possible
으 APX-hard to maximise the total discount...
Max 3-Sat
Ө ... but $k$-approximable for shop-degree $k$
Few books (parameter n):
dynamic programming
OR-composition of X 3 C

## $\bullet$ FPT for number of books $n$

Dynamic Programming Table:

$$
\begin{aligned}
\forall B^{\prime} \subseteq B, j \leq m, p_{\leq j}\left(B^{\prime}\right):= & \text { Lowest possible price when buying } \\
& \text { books of } B^{\prime} \text { from shops }\left\{s_{1}, \ldots, s_{j}\right\} .
\end{aligned}
$$

Recurrence:

$$
p_{\leq j}\left(B^{\prime}\right):=\min _{B^{\prime \prime} \subseteq B^{\prime}}\left\{p_{\leq j-1}\left(B^{\prime} \backslash B^{\prime \prime}\right)+\text { cost for books } B^{\prime \prime} \text { in } s_{j}\right\}
$$



## $\bullet$ FPT for number of books $n$

Dynamic Programming Table:

$$
\begin{aligned}
\forall B^{\prime} \subseteq B, j \leq m, p_{\leq j}\left(B^{\prime}\right):= & \text { Lowest possible price when buying } \\
& \text { books of } B^{\prime} \text { from shops }\left\{s_{1}, \ldots, s_{j}\right\} .
\end{aligned}
$$

Recurrence:

$$
p_{\leq j}\left(B^{\prime}\right):=\min _{B^{\prime \prime} \subseteq B^{\prime}}\left\{p_{\leq j-1}\left(B^{\prime} \backslash B^{\prime \prime}\right)+\text { cost for books } B^{\prime \prime} \text { in } s_{j}\right\}
$$



## $\bullet$ FPT for number of books $n$

Dynamic Programming Table:

$$
\begin{aligned}
\forall B^{\prime} \subseteq B, j \leq m, p_{\leq j}\left(B^{\prime}\right):= & \text { Lowest possible price when buying } \\
& \text { books of } B^{\prime} \text { from shops }\left\{s_{1}, \ldots, s_{j}\right\} .
\end{aligned}
$$

Recurrence:

$$
p_{\leq j}\left(B^{\prime}\right):=\min _{B^{\prime \prime} \subseteq B^{\prime}}\left\{p_{\leq j-1}\left(B^{\prime} \backslash B^{\prime \prime}\right)+\text { cost for books } B^{\prime \prime} \text { in } s_{j}\right\}
$$



## $\bullet$ FPT for number of books $n$

Dynamic Programming Table:

$$
\begin{aligned}
\forall B^{\prime} \subseteq B, j \leq m, p_{\leq j}\left(B^{\prime}\right):= & \text { Lowest possible price when buying } \\
& \text { books of } B^{\prime} \text { from shops }\left\{s_{1}, \ldots, s_{j}\right\} .
\end{aligned}
$$

Recurrence:

$$
p_{\leq j}\left(B^{\prime}\right):=\min _{B^{\prime \prime} \subseteq B^{\prime}}\left\{p_{\leq j-1}\left(B^{\prime} \backslash B^{\prime \prime}\right)+\text { cost for books } B^{\prime \prime} \text { in } s_{j}\right\}
$$



## $\bullet$ FPT for number of books $n$

Dynamic Programming Table:

$$
\begin{aligned}
\forall B^{\prime} \subseteq B, j \leq m, p_{\leq j}\left(B^{\prime}\right):= & \text { Lowest possible price when buying } \\
& \text { books of } B^{\prime} \text { from shops }\left\{s_{1}, \ldots, s_{j}\right\} .
\end{aligned}
$$

Recurrence:

$$
p_{\leq j}\left(B^{\prime}\right):=\min _{B^{\prime \prime} \subseteq B^{\prime}}\left\{p_{\leq j-1}\left(B^{\prime} \backslash B^{\prime \prime}\right)+\text { cost for books } B^{\prime \prime} \text { in } s_{j}\right\}
$$



## $\bullet$ FPT for number of books $n$

Dynamic Programming Table:

$$
\begin{aligned}
\forall B^{\prime} \subseteq B, j \leq m, p_{\leq j}\left(B^{\prime}\right):= & \text { Lowest possible price when buying } \\
& \text { books of } B^{\prime} \text { from shops }\left\{s_{1}, \ldots, s_{j}\right\} .
\end{aligned}
$$

Recurrence:

$$
p_{\leq j}\left(B^{\prime}\right):=\min _{B^{\prime \prime} \subseteq B^{\prime}}\left\{p_{\leq j-1}\left(B^{\prime} \backslash B^{\prime \prime}\right)+\text { cost for books } B^{\prime \prime} \text { in } s_{j}\right\}
$$



For each $j$ : enumerate every $B^{\prime \prime} \subseteq B^{\prime} \subseteq B$

## $\boldsymbol{\theta} \boldsymbol{\theta} ?$

- Constant-factor approximation (maximising total discount)?
- Kernel for parameter $m$ with unit prices?
- FPT for number of shops + max. price?
- What if all books are available everywhere at constant price?

으 Thank you!

