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Introduction

Clever Shopper

Input:
a set of books B,
a set of shops S ,
edges E ⊆ B × S ,
with weights w : E → N+,
a discount function D,
a budget K ∈ N+

Output:
E ′ ⊆ E such that:
• each b ∈ B has 1 incident
edge
• minimum total cost
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Get -3kRUB
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Introduction

I Variant of Internet Shopping problem
[Blazewicz et al., 2010]

I Discounts ↔ free shipping depending on specific sets of
purchased items

I Strongly NP-hard, even with free items and unit shipping costs

I We seek a complete picture of the tractability of Clever
Shopper, with respect to:

I Number of books (n)
I Number of shops (m)
I Price range

Constant? Polynomially bounded? Unconstrained?
I Degree

Few books per shops ? Few shops selling each book?

I Any approximation algorithm?
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Results
Sparse instances:

NP-hard with book-degree 2, shop-degree 3 and unit prices 3-Sat

Polynomial if shop degree ≤ 2 Matching

Few shops (parameter m):

NP-hard with 2 shops and unbounded prices Partition

XP for m with polynomial prices dynamic programming

W[1]-hard for m with polynomial prices Bin-Packing

FPT for m with unit prices f -star subgraphs

W[1]-hard for “selected shops” with unit prices Perfect Code

Approximation:

No approximation is possible NP-hard with K = 0

APX-hard to maximise the total discount... Max 3-Sat

... but k-approximable for shop-degree k greedy

Few books (parameter n):

FPT dynamic programming

No polynomial kernel or-composition of x3c
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NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal

(x1 ∨ x2 ∨ . . .) (x2 ∨ . . .) (x2 ∨ x3 ∨ . . .) (x2 ∨ x3 ∨ x4)

x1 x2 x2 x3 x4

m clauses, n variables
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NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from Max 3-SAT, with 2 occurrences per literal

C1 C2 C3 C4

x1 x2 x2 x3 x4

Buy ≥ 1
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Polynomial for shop-degree ≤ 2

Algorithm

I Subtract minimum price for each book from its incident edges

I Connect books sold by same shop with remaining cost

I Subtract discount wherever threshold is reached

I Find max weight matching (on graph with opposite weights)

I Matched edges yield a solution

12 10 9 11 7 4 5 8 8 7

Buy ≥ 10

get -3

greedy solution = (12− 3) + 9 + 4 + 8 + 7 = 37

optimal solution = (12− 3) + (11− 3) + (5 + 8− 3) + 7 = 34
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Results
Sparse instances:

NP-hard with book-degree 2, shop-degree 3 and unit prices 3-Sat

Polynomial if shop degree ≤ 2 Matching

Few shops (parameter m):
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NP-hard with 2 shops, unbounded prices

Reduction from Partition weakly NP-hard

Input: X = {x1, . . . , xn} with
∑

xi∈X xi = 2A.

Question: ∃?X ′ ⊆ X such that
∑

xi∈X ′ xi = A

I 2 shops, n books

I book i has cost xi (in both shops)

I discounts: buy A get −1

I budget: 2A− 2

b1 b2 b3 b4 b5 b6 b7

s1 s2
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For ≥20

Get -1

6 4 2 8 3 89
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W[1]-hard for m shops, polynomial prices

Reduction from Bin-Packing
Input: X = {x1, . . . , xn} with

∑
xi∈X xi = mB.

Question: ∃?(X1, . . . ,Xm) partition of X with
∑

xi∈Xj
xi = B.

strongly W[1]-hard

I m shops, n books

I book i has cost xi (in all shops)

I discounts: buy B get −1

I budget: m(B − 1)

b1 b2 b3 b4 b5 b6 b7

s1 s2 s3
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Results
Sparse instances:

NP-hard with book-degree 2, shop-degree 3 and unit prices 3-Sat

Polynomial if shop degree ≤ 2 Matching

Few shops (parameter m):

NP-hard with 2 shops and unbounded prices Partition

XP for m with polynomial prices dynamic programming

W[1]-hard for m with polynomial prices Bin-Packing

FPT for m with unit prices f -star subgraphs

W[1]-hard for “selected shops” with unit prices Perfect Code

Approximation:

No approximation is possible NP-hard with K = 0

APX-hard to maximise the total discount... Max 3-Sat

... but k-approximable for shop-degree k greedy

Few books (parameter n):

FPT dynamic programming

No polynomial kernel or-composition of x3c



The problem with approximations

When minimising the total cost: no approximation is possible.

I Take the (commercially questionable) discount function:

Buy ≥ A
Get −A

I Partition, Bin-Packing or Perfect Code reductions
yield:

Clever Shopper is NP-hard, even with K = 0

Other optimisation strategy: maximise the total discount

I Meaningful only if each book has a uniform price

I Max 3-SAT reduction yields APX-hardness.
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FPT for number of books n
Dynamic Programming Table:

∀B ′ ⊆ B, j ≤ m, p≤j(B
′) := Lowest possible price when buying

books of B ′ from shops {s1, . . . , sj}.

Recurrence:

p≤j(B
′) := min

B′′⊆B′

{
p≤j−1(B ′ \ B ′′) + cost for books B ′′ in sj

}
b1

b2

b3

b4

s1

s2

s3

s4

s5

b2

b3

b4

s1

s2

s3

s4

For each j : enumerate every
B ′′ ⊆ B ′ ⊆ B

−→ O(m3n)
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Open questions

I Constant-factor approximation (maximising total discount)?

I Kernel for parameter m with unit prices?

I FPT for number of shops + max. price?

I What if all books are available everywhere at constant price?

Thank you!


