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Query Complexity

Query Complexity

We want to compute some Boolean function
f : {0, 1}n → {0, 1}.

The input is x = (x1, . . . , xn).

With a single query we can ask the value of any xi .

The cost of the computation is the number of queries made.
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Query Complexity

Determistic query complexity D(f ) (minimum worst-case
number of queries).

Randomized query complexity R(f ) (correct with probability
≥ 2/3).

Exact randomized query complexity R0(f ) (minimum
worst-case expected number of queries).

R(f ) ≤ R0(f ) ≤ D(f ).
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Query Complexity

Example: Recursive Majority

3-Maj(x1, x2, x3) = 1 ⇐⇒ x1 + x2 + x3 ≥ 2.

D(3-Majh) = 3h.

R0(3-Majh) ≤ (8/3)h.

Maj

Maj Maj Maj
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Query Complexity

Query Complexity

In this work, we study which measures M(f ) can characterize
R0(f ) or R(f ) quadratically: M(f ) ≤ R(f ) ≤ M(f )2?

We show two results:

1 The expectational certificate complexity bounds R0(f )
quadratically:

EC(f ) ≤ R0(f ) ≤ O(EC(f )2).

2 The partition bound bounds R(f ) quadratically for product
distributions µ:

Dµ
1/3(f ) ≤ O(prt1/3(f )2).
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Certificate Complexity

A certificate for an input x is a set of positions of x that have
to be revealed to know the value of f (x) with certainty.

The length of a certificate is the number of positions revealed.

A minimal certificate of x is a certificate of smallest length
C(f , x).

The certificate complexity of f is C(f ) = maxx C(f , x).

It is known that C(f ) ≤ R0(f ) ≤ C(f )2.
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Expectational Certificate Complexity

Example: AND-OR

C(And-Orn) =
√
n.

And

Or Or Or

x1 x2 x3 x4 x5 x6 x7 x8 x9

0 0 0

1 1 1
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Expectational Certificate Complexity

Fractional Certificate Complexity

Fractional certificate complexity FC(f ) is given by the optimal
value of the following LP: [Tal / Gilmer, Saks, Srinivasan]

minimize max
x

∑
i∈[n]

wx(i)

subject to ∀x , y s.t. f (x) 6= f (y) :
∑

i :xi 6=yi

wx(i) ≥ 1

∀x , i : 0 ≤ wx(i) ≤ 1.

FC(f ) ≤ C(f ).

It is known that FC(f ) ≤ R(f ) ≤ R0(f ) ≤ FC(f )3.
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Expectational Certificate Complexity

Example: Majority

3-Maj(x1, x2, x3) = 1 ⇐⇒ x1 + x2 + x3 ≥ 2.

C(f , 000) = 2.

FC(f , 000) = 3/2.
Weights w1 = w2 = w3 = 1/2.

000
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Fractional Certificate Complexity

Hypothesis: R0(f ) ≤ FC(f )2.

If that is true, then R0(f ) ≤ Q(f )4. (Quantum query
complexity.) Currently the best upper bound is
R0(f ) ≤ Q(f )6.

A quadratic separation is known, R(And-Orn) = Ω(n),
FC(And-Orn) =

√
n.
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Expectational Certificate Complexity

Expectational certificate complexity EC(f ) is given by the
optimal value of the following program:

minimize max
x

∑
i∈[n]

wx(i)

subject to ∀y s.t. f (x) 6= f (y) :
∑

i :xi 6=yi

wx(i)wy (i) ≥ 1,

∀x , i : 0 ≤ wx(i) ≤ 1.

Not a linear program anymore!
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Expectational Certificate Complexity

R(f ) = O(EC(f )2) algorithm:

Repeat O(EC(f )) times:

Pick any consistent (with previous queries) input z s.t.
f (z) = 1;
If there is no such z , return 0.
Independently query each xi with probability wz(i);

Return 1.

Each round takes
∑n

i=1 wz(i) ≤ EC(f ) queries on expectation;
hence query complexity is O(EC(f )2).

Expected amount of weight removed from wx each round is∑
i :xi 6=zi

wx(i)wz(i) ≥ 1; hence, O(EC(f )) many rounds is enough.
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Expectational Certificate Complexity

Properties:

FC(f ) ≤ EC(f ) ≤ C(f ).

EC(f ) ≤ C(f )2, tight!

EC(f ) ≤ R0(f ) ≤ O(EC(f )2).

EC(f ) ≤ O(FC(f )3/2).

EC(f )2/3 ≤ R(f ) ≤ O(EC(f )2).
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Partition Bound

The ε-partition bound of f (denoted by prtε(f )), is given by
the log2 of the optimal value of the following LP: [Jain, Klauck]

minimize
∑
z,A

wz,A · 2|A| subject to ∀x :
∑
A3x

wf (x),A ≥ 1− ε,

∀x :
∑
z,A3x

wz,A = 1,

∀z ,A : wz,A ≥ 0.

Lower bound, 1
2 prtε(f ) ≤ Rε(f ).
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Partition Bound

Example: prt(And-Orn) = Ω(n).

Known that R(f ) = O(prt(f ))3.

Best separation is quadratic, R(f ) = Ω(prt(f )2). [Ambainis,

Kokainis, Kothari]

Is prt(f ) quadratically tight for R(f )?
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Distributional Query Complexity

Let µ be a probability distribution over inputs {0, 1}n.

Distributional query complexity Dµ
ε (f ) is the minimum

worst-case cost of a deterministic algorithm A such that

Pr
x∼µ

[A(x) = f (x)] ≥ 1− ε.

Yao’s theorem:
Rε(f ) = max

µ
Dµ
ε (f ).
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Partition Bound

Block Sensitivity

An input x is sensitive on a subset of positions B ⊆ [n], if
f (x) 6= f (xB).

The block sensitivity of x , denoted by bs(f , x), is the
maximum number of disjoint sensitive blocks.

The block sensitivity of f is maxx bs(f , x).
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Corruption Bound

Let µ be a probability distribution over the inputs.

Let A be an ε-error b-certificate under µ, if

Pr
x∼µ

[f (x) 6= b | x ∈ A] ≤ ε.

Query corruption bound:

corrb,µε (f ) = min{|A| | A is an ε-error b-certificate under µ}.

Query corruption bound:

corrε(f ) = max
µ

max
b

corrb,µε (f ).
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Corruption Bound

Minimum query corruption bound over product distributions:

corr×min,ε(f ) = max
µ

min
b

corrb,µε (f ),

where µ is a product distribution.

µ is a bit-wise product distribution if for all x ,

µ(x) =
n∏

i=1

µi (xi ).
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Corruption Bound

We adapt the proof of D(f ) ≤ C(f ) bs(f ) to prove that

Dµ
4ε(f ) = O(corr×min,ε(f ) · bs(f ))

for product distributions.

Since corr×min,ε(f ) ≤ corrε(f ) and bs(f ) ≤ corrε(f ), we get

Dµ
4ε(f ) = O(corrε(f )2).
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Partition Bound

Since bs(f ) = O( 1
ε prtε(f )) and corr×min,2ε(f ) ≤ prtε(f ), we get

Dµ
8ε(f ) = O

(
1

ε
prtε(f )2

)
.

A polylogarithmic improvement over previous best upper
bound; constant error instead of inverse polynomial error.
[Harsha, Jain, Radhakrishnan]
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Lower Bounds

R0

C
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corr×min

Figure: Lower bounds on R0(f ) and R(f ).
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