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Definition A deterministic one-way k-wPA over an infinite alphabet Σ,
is a tuple A = 〈S, s0, F, T 〉 whose components are as follows.

• S is a finite set of states,

• s0 ∈ S is the initial state,

• F ⊆ S is a set of accepting states,

• T is a finite set of transitions of the form α→ β, where

– α is of the form (i, σ, P, V, s) or (i, P, V, s), i ∈ {1, . . . , k},
σ ∈ Σ, P, V ⊆ {1, . . . , i− 1}, and s ∈ S, and

– β is of the form (p, action), where p ∈ S and action ∈
{move, place, lift},

such that α→ β and α→ β′ imply β = β′.
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For a word w ∈ Σ∗, a configuration of A on w is of the form γ = [i, s, θ],
where i ∈ {1, . . . , k}, s ∈ S, and θ : {1, . . . , i} → {1, . . . , |w|} indicates
the pebble’s positions on the input word w.

That is, θ(j) is the position of pebble j.

In what follows, we identify θ with the i-tuple (θ(1), . . . , θ(i)). Thus, i
can be recovered from θ, but it is convenient to include it into a config-
uration explicitly.

The initial configuration is γ0 = [1, s0, (1)].

That is, the run starts in the initial state s0 with pebble 1 placed at the
beginning of the input word.

An accepting configuration is of the form [i, s, θ], where s ∈ F .
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Let w = w1 · · ·wn ∈ Σ+. A transition (i, σ, P, V, s) → β applies to a
configuration γ = [j, s′, θ] if

(1) i = j and s′ = s,

(2) V = {h < i : wθ(h) = wθ(i)},

(3) P = {h < i : θ(h) = θ(i)}, and

(4) wθ(i) = σ.

A transition (i, P, V, s) → β applies to a configuration γ = [j, s′, θ], if
the above conditions (1)–(3) are satisfied and no transition of the form
(i, σ, P, V, s)→ β applies to γ.
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The transition relation `w on the set of all configurations is defined as
follows:

[i, s, θ] ` [i′, s′, θ′] if and only if there is a transition α → (p, action)
that applies to [i, s, θ] such that s′ = p and the following holds.

• For all j < i, θ′(j) = θ(j),

• if action is move, then i′ = i and θ′(i) = θ(i) + 1,

• if action is place, then i′ = i+ 1 and θ′(i+ 1) = θ′(i) = θ(i), and

• if action is lift, then i′ = i − 1 and θ′ is the restriction of θ on
{1, . . . , i− 1}.

The language L(A) of A consists of all words w such that γ0 `∗w γ for
an accepting configuration γ.
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To each configuration γ = [i, s, θ] of a deterministic one-way wPA corre-
sponds the vector ϕγ = (P1, . . . , Pi), where

Pj = {h < j : θ(h) = θ(j)} .

That is, Pj is the set of pebbles placed before pebble j which are at the
same position as pebble j in configuration γ.

If γ ` γ′, then ϕγ
′

can be computed from ϕγ , according to the automaton
transitions.

Thus, we may assume that the left hand side of a transition is of the
form (i, σ, V, s) or (i, V, s).

5



By adding some extra states and modifying the transitions appro-
priately, we can normalize the k-wPA behavior such that for each i ∈
{2, . . . , k} it acts as follows.

• A pebble is never lifted, but falls down when moving from the right
end of the input. Thus, action lift is redundant.

• Only pebble 1 can enter a final state and only after it falls down
from the right end of the input. In such a case, the accepting
configuration consists of the corresponding accepting state only.

• Immediately after pebble i moves without falling down, pebble i+1
is placed.

• Immediately after pebble i falls down, pebble i− 1 moves.

We denote the set of letters occurring in a word u by [u]. That is, if
u = u1 · · ·un, then [u] = {u1, . . . , un}.
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Example The language

Ldiff = {σ1 · · ·σn : n ≥ 1, σi 6= $, for each i = 1, . . . , n, and
σi 6= σj , whenever i 6= j}.

is accepted by 2-wPA.

Example The language

Ldiff$diff = {u$v : u,v ∈ Ldiff}

is accepted by 2-wPA.

u $ v
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Example The language

L⊆ = {u$v : u,v ∈ Ldiff and [u] ⊆ [v]}

is accepted by 2-wPA.

Theorem The language

L⊇ = {u$v : u,v ∈ Ldiff and [v] ⊆ [u]}

is not accepted by wPA.

Proposition There exists a positive integer `2 such that for all w ∈ Σ+,
w = w1 · · ·wn, the following holds. If

[2, sj1 , (p1, j1)] ` [2, sj1+1, (p1, j1 + 1)] ` · · · ` [2, sj2 , (p1, j2)] ,

where wj 6= wp1 for all j1 ≤ j ≤ j2, then the sequence of states
sj1+`2 , . . . , sj2 , is periodic with period `2.
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Corollary Let z′ = xy′ and z′′ = xy′′, x = x1 · · ·xn, where

[x] ∩ ([y′] ∪ [y′′]) = ∅ ,

|y′|, |y′′| ≥ `2 ,
and

|y′′| ≡`2 |y′| .
If

[2, s, (p, |x|)] `z′ [2, t, (p, |xy′|)] ,
then

[2, s, (p, |x|)] `z′′ [2, t, (p, |xy′′|)] .

Corollary Let w,w′ ∈ Ldiff$diff, w = u′v$x and w′ = u′u′′v$x be such
that |u′′| ≡`2 0 and |v| ≥ `2. If

[1, s0, (1)] `∗w [1, t, (|u′|)] ,

then
[1, s0, (1)] `∗w′ [1, t, (|u′|)] .
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Definition Let ` be a positive integer and let u,v ∈ Ldiff, u = u1 · · ·um
and v = v1 · · · vn, be such that [u] ⊆ [v]: ui = vji , i = 1, . . . ,m. We say
that u is `-spread in v, if for all i = 1, . . . ,m, ji > ji−1 and ji ≡` ji−1,
where j0 = 0.

Proposition Let w = uv$x ∈ Ldiff$diff, where u is `2-spread in x, and
let 1 < p′1 < p′′1 ≤ |u|. If

[2, s, (p′1, |uv$|)] `∗ [1, t, (p′1)] ,
then [2, s, (p′′1 , |uv$|)] `∗ [1, t, (p′′1)] .

u•
p′1

•
p′′1

v $
• pebble 2

x

Corollary Let w = uv$x ∈ Ldiff$diff be such that u is `2-spread in x
and |v| ≥ `2, and let p′1 < p′′1 ≤ |u| be equivalent modulo `2. If

[2, s, (p′1, p
′
1)] `∗ [2, t, (p′1 + 1, p′1 + 1)] ,

then [2, s, (p′′1 , p
′′
1)] `∗ [2, t, (p′′1 + 1, p′′1 + 1)] .
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Proposition For each w = uv$x ∈ Ldiff$diff such that u is `2-spread in
x and |v| ≥ `2, there exist positive integers mw and `w for which the
following holds. If

[2, sj1 , (p1, p1)] `∗ [2, sj2 , (p1 + 1, p1 + 1)] `∗ · · · `∗ [2, sj|u|−p1
, (|u|, |u|)] ,

then the sequence of states sp1+mw , . . . , s|u|−p1 is periodic with period
`w.

Corollary There exist a positive integer `1 such that the following holds.
Let w = uv$x ∈ Ldiff$diff, where u is `2-spread in x and |v| ≥ `2. If

[2, sj1 , (p1, p1)] `∗ [2, sj2 , (p1 + 1, p1 + 1)] `∗ · · · `∗ [2, sj|u|−p1
, (|u|, |u|)] ,

then the sequence of states sp1+`1 , . . . , s|u|−p1 is periodic with period `1.
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Proof of the theorem Assume to the contrary that L(A) = L⊇. Let

w′ = u′u′′v$x ∈ L⊇ ∩ L⊆ ,

where u′ is `2-spread in x, |v| ≥ `2, and |u′| = |u′′| = `1; and let

w = u′v$x .

Since `1 ≡`2 0,
[1, s0, (1)] `∗w [1, t, (|u′|)]

implies
[1, s0, (1)] `∗w′ [1, t, (|u′|)]

and, since |u′| = |u′′| = `1,

[1, s0, (1)] `∗w′ [1, t, (|u′u′′|)] .

In addition, the runs of A from state t on the (same) suffix v$x of w
and w′ are the same. In particular, they terminate in the same state.
However, w′ is accepted by A, whereas w is not. 2
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Removing the distinguished separator symbol $

Let
L′⊆ = {σuσv : σu, σv ∈ Ldiff and [u] ⊆ [v]}

and
L′⊇ = {σuσv : σu, σv ∈ Ldiff and [v] ⊆ [u]} .

Then L′⊇ is the reversal of L′⊆.
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