Closure under reversal of languages over infinite alphabets

Daniel Genkin¹ Michael Kaminski² Liat Peterfreund²

¹Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut St., Philadelphia PA, 19104 USA

²Department of Computer Science, Technion – Israel Institute of Technology, Haifa 32000, Israel

Definition A deterministic one-way k-wPA over an infinite alphabet Σ , is a tuple $\mathfrak{A} = \langle S, s_0, F, T \rangle$ whose components are as follows.

- S is a finite set of states,
- $s_0 \in S$ is the initial state,
- $F \subseteq S$ is a set of accepting states,
- T is a finite set of transitions of the form $\alpha \to \beta$, where
 - α is of the form (i, σ, P, V, s) or (i, P, V, s), $i \in \{1, \dots, k\}$, $\sigma \in \Sigma, P, V \subseteq \{1, \dots, i-1\}$, and $s \in S$, and

such that $\alpha \to \beta$ and $\alpha \to \beta'$ imply $\beta = \beta'$.

For a word $\boldsymbol{w} \in \Sigma^*$, a configuration of \mathfrak{A} on \boldsymbol{w} is of the form $\gamma = [i, s, \theta]$, where $i \in \{1, \ldots, k\}, s \in S$, and $\theta : \{1, \ldots, i\} \to \{1, \ldots, |\boldsymbol{w}|\}$ indicates the pebble's positions on the input word \boldsymbol{w} .

That is, $\theta(j)$ is the position of puble j.

In what follows, we identify θ with the *i*-tuple $(\theta(1), \ldots, \theta(i))$. Thus, *i* can be recovered from θ , but it is convenient to include it into a configuration explicitly.

The initial configuration is $\gamma_0 = [1, s_0, (1)].$

That is, the run starts in the initial state s_0 with pebble 1 placed at the beginning of the input word.

An accepting configuration is of the form $[i, s, \theta]$, where $s \in F$.

Let $\boldsymbol{w} = w_1 \cdots w_n \in \Sigma^+$. A transition $(i, \sigma, P, V, s) \rightarrow \beta$ applies to a configuration $\gamma = [j, s', \theta]$ if (1) i = j and s' = s, (2) $V = \{h < i : w_{\theta(h)} = w_{\theta(i)}\},$ (3) $P = \{h < i : \theta(h) = \theta(i)\},$ and (4) $w_{\theta(i)} = \sigma$.

A transition $(i, P, V, s) \to \beta$ applies to a configuration $\gamma = [j, s', \theta]$, if the above conditions (1)–(3) are satisfied and no transition of the form $(i, \sigma, P, V, s) \to \beta$ applies to γ . The transition relation \vdash_{w} on the set of all configurations is defined as follows:

 $[i, s, \theta] \vdash [i', s', \theta']$ if and only if there is a transition $\alpha \to (p, \texttt{action})$ that applies to $[i, s, \theta]$ such that s' = p and the following holds.

- For all $j < i, \theta'(j) = \theta(j)$,
- if action is move, then i' = i and $\theta'(i) = \theta(i) + 1$,
- if action is place, then i' = i + 1 and $\theta'(i + 1) = \theta'(i) = \theta(i)$, and
- if action is lift, then i' = i 1 and θ' is the restriction of θ on $\{1, \ldots, i 1\}$.

The language $L(\mathfrak{A})$ of \mathfrak{A} consists of all words \boldsymbol{w} such that $\gamma_0 \vdash_{\boldsymbol{w}}^* \gamma$ for an accepting configuration γ .

To each configuration $\gamma = [i, s, \theta]$ of a deterministic one-way wPA corresponds the vector $\varphi^{\gamma} = (P_1, \ldots, P_i)$, where

$$P_j = \{h < j : \theta(h) = \theta(j)\}.$$

That is, P_j is the set of pebbles placed before pebble j which are at the same position as pebble j in configuration γ .

If $\gamma \vdash \gamma'$, then $\varphi^{\gamma'}$ can be computed from φ^{γ} , according to the automaton transitions.

Thus, we may assume that the left hand side of a transition is of the form (i, σ, V, s) or (i, V, s).

By adding some extra states and modifying the transitions appropriately, we can normalize the k-wPA behavior such that for each $i \in \{2, \ldots, k\}$ it acts as follows.

- A pebble is never lifted, but falls down when moving from the right end of the input. Thus, action lift is redundant.
- Only pebble 1 can enter a final state and only after it falls down from the right end of the input. In such a case, the accepting configuration consists of the corresponding accepting state only.
- Immediately after pebble i moves without falling down, pebble i+1 is placed.
- Immediately after pebble i falls down, pebble i 1 moves.

We denote the set of letters occurring in a word \boldsymbol{u} by $[\boldsymbol{u}]$. That is, if $\boldsymbol{u} = u_1 \cdots u_n$, then $[\boldsymbol{u}] = \{u_1, \ldots, u_n\}$.

Example The language

$$L_{\text{diff}} = \{ \sigma_1 \cdots \sigma_n : n \ge 1, \ \sigma_i \neq \$, \text{ for each } i = 1, \dots, n, \text{ and} \\ \sigma_i \neq \sigma_j, \text{ whenever } i \neq j \}.$$

is accepted by 2-wPA.

Example The language

$$L_{\text{diff}\text{sdiff}} = \{ \boldsymbol{u} \ \ \boldsymbol{v} : \boldsymbol{u}, \boldsymbol{v} \in L_{\text{diff}} \}$$

is accepted by 2-wPA.

Example The language

$$L_{\subseteq} = \{ \boldsymbol{u} \$ \boldsymbol{v} : \boldsymbol{u}, \boldsymbol{v} \in L_{\text{diff}} \text{ and } [\boldsymbol{u}] \subseteq [\boldsymbol{v}] \}$$

is accepted by 2-wPA.

Theorem The language

$$L_{\supseteq} = \{ \boldsymbol{u} \$ \boldsymbol{v} : \boldsymbol{u}, \boldsymbol{v} \in L_{\text{diff}} \text{ and } [\boldsymbol{v}] \subseteq [\boldsymbol{u}] \}$$

is not accepted by wPA.

Proposition There exists a positive integer ℓ_2 such that for all $\boldsymbol{w} \in \Sigma^+$, $\boldsymbol{w} = w_1 \cdots w_n$, the following holds. If

$$[2, s_{j_1}, (p_1, j_1)] \vdash [2, s_{j_1+1}, (p_1, j_1+1)] \vdash \cdots \vdash [2, s_{j_2}, (p_1, j_2)],$$

where $w_j \neq w_{p_1}$ for all $j_1 \leq j \leq j_2$, then the sequence of states $s_{j_1+\ell_2}, \ldots, s_{j_2}$, is periodic with period ℓ_2 .

Corollary Let
$$\mathbf{z}' = \mathbf{x}\mathbf{y}'$$
 and $\mathbf{z}'' = \mathbf{x}\mathbf{y}'', \mathbf{x} = x_1 \cdots x_n$, where
 $[\mathbf{x}] \cap ([\mathbf{y}'] \cup [\mathbf{y}'']) = \emptyset$,
 $|\mathbf{y}'|, |\mathbf{y}''| \ge \ell_2$,
and
 $|\mathbf{y}''| \equiv_{\ell_2} |\mathbf{y}'|$.

If

$$[2, s, (p, |\boldsymbol{x}|)] \vdash_{\boldsymbol{z}'} [2, t, (p, |\boldsymbol{x}\boldsymbol{y}'|)],$$

then

$$[2, s, (p, |\boldsymbol{x}|)] \vdash_{\boldsymbol{z}''} [2, t, (p, |\boldsymbol{x}\boldsymbol{y}''|)].$$

Corollary Let $w, w' \in L_{\text{diff}\$\text{diff}}, w = u'v\$x$ and w' = u'u''v\$x be such that $|u''| \equiv_{\ell_2} 0$ and $|v| \ge \ell_2$. If

$$[1, s_0, (1)] \vdash^*_{\boldsymbol{w}} [1, t, (|\boldsymbol{u}'|)],$$

then

$$[1, s_0, (1)] \vdash^*_{\boldsymbol{w}'} [1, t, (|\boldsymbol{u}'|)].$$

Definition Let ℓ be a positive integer and let $\boldsymbol{u}, \boldsymbol{v} \in L_{\text{diff}}, \boldsymbol{u} = u_1 \cdots u_m$ and $\boldsymbol{v} = v_1 \cdots v_n$, be such that $[\boldsymbol{u}] \subseteq [\boldsymbol{v}]$: $u_i = v_{j_i}, i = 1, \ldots, m$. We say that \boldsymbol{u} is ℓ -spread in \boldsymbol{v} , if for all $i = 1, \ldots, m, j_i > j_{i-1}$ and $j_i \equiv_{\ell} j_{i-1}$, where $j_0 = 0$.

Proposition Let $w = uv\$x \in L_{diff\$diff}$, where u is ℓ_2 -spread in x, and let $1 < p'_1 < p''_1 \le |\boldsymbol{u}|$. If

then

$$\begin{split} & [2, s, (p'_1, |\boldsymbol{uv}\$|)] \vdash^* [1, t, (p'_1)], \\ & [2, s, (p''_1, |\boldsymbol{uv}\$|)] \vdash^* [1, t, (p''_1)]. \end{split}$$

Corollary Let $w = uv\$x \in L_{\text{diff}\$diff}$ be such that u is ℓ_2 -spread in xand $|\boldsymbol{v}| \geq \ell_2$, and let $p'_1 < p''_1 \leq |\boldsymbol{u}|$ be equivalent modulo ℓ_2 . If

$$[2, s, (p'_1, p'_1)] \vdash^* [2, t, (p'_1 + 1, p'_1 + 1)],$$
$$[2, s, (p''_1, p''_1)] \vdash^* [2, t, (p''_1 + 1, p''_1 + 1)].$$

then

$$[s, (p_1'', p_1'')] \vdash^* [2, t, (p_1'' + 1, p_1'' + 1)]$$

Proposition For each $w = uv\$x \in L_{diff\$diff}$ such that u is ℓ_2 -spread in x and $|v| \ge \ell_2$, there exist positive integers m_w and ℓ_w for which the following holds. If

$$[2, s_{j_1}, (p_1, p_1)] \vdash^* [2, s_{j_2}, (p_1 + 1, p_1 + 1)] \vdash^* \cdots \vdash^* [2, s_{j_{|\boldsymbol{u}| - p_1}}, (|\boldsymbol{u}|, |\boldsymbol{u}|)],$$

then the sequence of states $s_{p_1+m_{\boldsymbol{w}}}, \ldots, s_{|\boldsymbol{u}|-p_1}$ is periodic with period $\ell_{\boldsymbol{w}}$.

Corollary There exist a positive integer ℓ_1 such that the following holds. Let $w = uv\$x \in L_{diff\$diff}$, where u is ℓ_2 -spread in x and $|v| \ge \ell_2$. If

$$[2, s_{j_1}, (p_1, p_1)] \vdash^* [2, s_{j_2}, (p_1 + 1, p_1 + 1)] \vdash^* \cdots \vdash^* [2, s_{j_{|\boldsymbol{u}| - p_1}}, (|\boldsymbol{u}|, |\boldsymbol{u}|)],$$

then the sequence of states $s_{p_1+\ell_1}, \ldots, s_{|\boldsymbol{u}|-p_1}$ is periodic with period ℓ_1 .

Proof of the theorem Assume to the contrary that $L(\mathfrak{A}) = L_{\supseteq}$. Let

$$w' = u'u''v\$x \in L_{\supseteq} \cap L_{\subseteq},$$

where u' is ℓ_2 -spread in x, $|v| \ge \ell_2$, and $|u'| = |u''| = \ell_1$; and let

$$w=u'v\$x$$
 .

Since $\ell_1 \equiv_{\ell_2} 0$, $[1, s_0, (1)] \vdash^*_{\boldsymbol{w}} [1, t, (|\boldsymbol{u'}|)]$

implies

$$[1, s_0, (1)] \vdash^*_{\boldsymbol{w}'} [1, t, (|\boldsymbol{u}'|)]$$

and, since $|u'| = |u''| = \ell_1$,

$$[1, s_0, (1)] \vdash_{\boldsymbol{w}'}^* [1, t, (|\boldsymbol{u}'\boldsymbol{u}''|)].$$

In addition, the runs of \mathfrak{A} from state t on the (same) suffix v\$x of w and w' are the same. In particular, they terminate in the same state. However, w' is accepted by \mathfrak{A} , whereas w is not.

Removing the distinguished separator symbol \$

Let

$$L'_{\subseteq} = \{ \sigma \boldsymbol{u} \sigma \boldsymbol{v} : \sigma \boldsymbol{u}, \sigma \boldsymbol{v} \in L_{\text{diff}} \text{ and } [\boldsymbol{u}] \subseteq [\boldsymbol{v}] \}$$

and

$$L'_{\supseteq} = \{ \sigma \boldsymbol{u} \sigma \boldsymbol{v} : \sigma \boldsymbol{u}, \sigma \boldsymbol{v} \in L_{\text{diff}} \text{ and } [\boldsymbol{v}] \subseteq [\boldsymbol{u}] \}.$$

Then L'_{\supseteq} is the reversal of L'_{\subseteq} .