Closure under reversal of languages over infinite alphabets

Daniel Genkin ${ }^{1}$ Michael Kaminski ${ }^{2}$ Liat Peterfreund ${ }^{2}$

[^0]Definition A deterministic one-way k-wPA over an infinite alphabet Σ, is a tuple $\mathfrak{A}=\left\langle S, s_{0}, F, T\right\rangle$ whose components are as follows.

- S is a finite set of states,
- $s_{0} \in S$ is the initial state,
- $F \subseteq S$ is a set of accepting states,
- T is a finite set of transitions of the form $\alpha \rightarrow \beta$, where
$-\alpha$ is of the form (i, σ, P, V, s) or $(i, P, V, s), i \in\{1, \ldots, k\}$, $\sigma \in \Sigma, P, V \subseteq\{1, \ldots, i-1\}$, and $s \in S$, and
$-\beta$ is of the form (p, action), where $p \in S$ and action \in \{move, place, lift\},
such that $\alpha \rightarrow \beta$ and $\alpha \rightarrow \beta^{\prime}$ imply $\beta=\beta^{\prime}$.

For a word $\boldsymbol{w} \in \Sigma^{*}$, a configuration of \mathfrak{A} on \boldsymbol{w} is of the form $\gamma=[i, s, \theta]$, where $i \in\{1, \ldots, k\}, s \in S$, and $\theta:\{1, \ldots, i\} \rightarrow\{1, \ldots,|\boldsymbol{w}|\}$ indicates the pebble's positions on the input word \boldsymbol{w}.
That is, $\theta(j)$ is the position of pebble j.
In what follows, we identify θ with the i-tuple $(\theta(1), \ldots, \theta(i))$. Thus, i can be recovered from θ, but it is convenient to include it into a configuration explicitly.

The initial configuration is $\gamma_{0}=\left[1, s_{0},(1)\right]$.
That is, the run starts in the initial state s_{0} with pebble 1 placed at the beginning of the input word.
An accepting configuration is of the form $[i, s, \theta]$, where $s \in F$.

Let $\boldsymbol{w}=w_{1} \cdots w_{n} \in \Sigma^{+}$. A transition $(i, \sigma, P, V, s) \rightarrow \beta$ applies to a configuration $\gamma=\left[j, s^{\prime}, \theta\right]$ if
(1) $i=j$ and $s^{\prime}=s$,
(2) $V=\left\{h<i: w_{\theta(h)}=w_{\theta(i)}\right\}$,
(3) $P=\{h<i: \theta(h)=\theta(i)\}$, and
(4) $w_{\theta(i)}=\sigma$.

A transition $(i, P, V, s) \rightarrow \beta$ applies to a configuration $\gamma=\left[j, s^{\prime}, \theta\right]$, if the above conditions (1)-(3) are satisfied and no transition of the form $(i, \sigma, P, V, s) \rightarrow \beta$ applies to γ.

The transition relation $\vdash_{\boldsymbol{w}}$ on the set of all configurations is defined as follows:
$[i, s, \theta] \vdash\left[i^{\prime}, s^{\prime}, \theta^{\prime}\right]$ if and only if there is a transition $\alpha \rightarrow(p$, action $)$ that applies to $[i, s, \theta]$ such that $s^{\prime}=p$ and the following holds.

- For all $j<i, \theta^{\prime}(j)=\theta(j)$,
- if action is move, then $i^{\prime}=i$ and $\theta^{\prime}(i)=\theta(i)+1$,
- if action is place, then $i^{\prime}=i+1$ and $\theta^{\prime}(i+1)=\theta^{\prime}(i)=\theta(i)$, and
- if action is lift, then $i^{\prime}=i-1$ and θ^{\prime} is the restriction of θ on $\{1, \ldots, i-1\}$.

The language $L(\mathfrak{A})$ of \mathfrak{A} consists of all words \boldsymbol{w} such that $\gamma_{0} \vdash_{\boldsymbol{w}}^{*} \gamma$ for an accepting configuration γ.

To each configuration $\gamma=[i, s, \theta]$ of a deterministic one-way wPA corresponds the vector $\varphi^{\gamma}=\left(P_{1}, \ldots, P_{i}\right)$, where

$$
P_{j}=\{h<j: \theta(h)=\theta(j)\} .
$$

That is, P_{j} is the set of pebbles placed before pebble j which are at the same position as pebble j in configuration γ.
If $\gamma \vdash \gamma^{\prime}$, then $\varphi^{\gamma^{\prime}}$ can be computed from φ^{γ}, according to the automaton transitions.

Thus, we may assume that the left hand side of a transition is of the form (i, σ, V, s) or (i, V, s).

By adding some extra states and modifying the transitions appropriately, we can normalize the k-wPA behavior such that for each $i \in$ $\{2, \ldots, k\}$ it acts as follows.

- A pebble is never lifted, but falls down when moving from the right end of the input. Thus, action lift is redundant.
- Only pebble 1 can enter a final state and only after it falls down from the right end of the input. In such a case, the accepting configuration consists of the corresponding accepting state only.
- Immediately after pebble i moves without falling down, pebble $i+1$ is placed.
- Immediately after pebble i falls down, pebble $i-1$ moves.

We denote the set of letters occurring in a word \boldsymbol{u} by $[\boldsymbol{u}]$. That is, if $\boldsymbol{u}=u_{1} \cdots u_{n}$, then $[u]=\left\{u_{1}, \ldots, u_{n}\right\}$.

Example The language

$$
\begin{aligned}
& L_{\mathrm{diff}}=\left\{\sigma_{1} \cdots \sigma_{n}: n \geq 1, \sigma_{i} \neq \$, \text { for each } i=1, \ldots, n,\right. \text { and } \\
& \left.\qquad \sigma_{i} \neq \sigma_{j}, \text { whenever } i \neq j\right\} .
\end{aligned}
$$

is accepted by 2 -wPA.

Example The language

$$
L_{\mathrm{diff} \$_{\mathrm{diff}}}=\left\{\boldsymbol{u} \$ \boldsymbol{v}: \boldsymbol{u}, \boldsymbol{v} \in L_{\mathrm{diff}}\right\}
$$

is accepted by $2-w P A$.

Example The language

$$
L_{\subseteq}=\left\{\boldsymbol{u} \$ \boldsymbol{v}: \boldsymbol{u}, \boldsymbol{v} \in L_{\text {diff }} \text { and }[\boldsymbol{u}] \subseteq[\boldsymbol{v}]\right\}
$$

is accepted by $2-w P A$.

Theorem The language

$$
L_{\supseteq}=\left\{\boldsymbol{u} \$ \boldsymbol{v}: \boldsymbol{u}, \boldsymbol{v} \in L_{\text {diff }} \text { and }[\boldsymbol{v}] \subseteq[\boldsymbol{u}]\right\}
$$

is not accepted by wPA.

Proposition There exists a positive integer ℓ_{2} such that for all $\boldsymbol{w} \in \Sigma^{+}$, $w=w_{1} \cdots w_{n}$, the following holds. If

$$
\left[2, s_{j_{1}},\left(p_{1}, j_{1}\right)\right] \vdash\left[2, s_{j_{1}+1},\left(p_{1}, j_{1}+1\right)\right] \vdash \cdots \vdash\left[2, s_{j_{2}},\left(p_{1}, j_{2}\right)\right]
$$

where $w_{j} \neq w_{p_{1}}$ for all $j_{1} \leq j \leq j_{2}$, then the sequence of states $s_{j_{1}+\ell_{2}}, \ldots, s_{j_{2}}$, is periodic with period ℓ_{2}.

Corollary Let $\boldsymbol{z}^{\prime}=\boldsymbol{x} \boldsymbol{y}^{\prime}$ and $\boldsymbol{z}^{\prime \prime}=\boldsymbol{x} \boldsymbol{y}^{\prime \prime}, \boldsymbol{x}=x_{1} \cdots x_{n}$, where

$$
\begin{gathered}
{[\boldsymbol{x}] \cap\left(\left[\boldsymbol{y}^{\prime}\right] \cup\left[\boldsymbol{y}^{\prime \prime}\right]\right)=\emptyset} \\
\left|\boldsymbol{y}^{\prime}\right|,\left|\boldsymbol{y}^{\prime \prime}\right| \geq \ell_{2}
\end{gathered}
$$

and

$$
\left|\boldsymbol{y}^{\prime \prime}\right| \equiv \ell_{2}\left|\boldsymbol{y}^{\prime}\right|
$$

If

$$
[2, s,(p,|\boldsymbol{x}|)] \vdash_{\boldsymbol{z}^{\prime}}\left[2, t,\left(p,\left|\boldsymbol{x} \boldsymbol{y}^{\prime}\right|\right)\right],
$$

then

$$
[2, s,(p,|\boldsymbol{x}|)] \vdash_{\boldsymbol{z}^{\prime \prime}}\left[2, t,\left(p,\left|\boldsymbol{x} \boldsymbol{y}^{\prime \prime}\right|\right)\right] .
$$

Corollary Let $\boldsymbol{w}, \boldsymbol{w}^{\prime} \in L_{\text {diff\$diff }}, \boldsymbol{w}=\boldsymbol{u}^{\prime} \boldsymbol{v} \$ \boldsymbol{x}$ and $\boldsymbol{w}^{\prime}=\boldsymbol{u}^{\prime} \boldsymbol{u}^{\prime \prime} \boldsymbol{v} \$ \boldsymbol{x}$ be such that $\left|\boldsymbol{u}^{\prime \prime}\right| \equiv \ell_{2} 0$ and $|\boldsymbol{v}| \geq \ell_{2}$. If

$$
\left[1, s_{0},(1)\right] \vdash_{\boldsymbol{w}}^{*}\left[1, t,\left(\left|\boldsymbol{u}^{\prime}\right|\right)\right]
$$

then

$$
\left[1, s_{0},(1)\right] \vdash_{\boldsymbol{w}^{\prime}}^{*}\left[1, t,\left(\left|\boldsymbol{u}^{\prime}\right|\right)\right] .
$$

Definition Let ℓ be a positive integer and let $\boldsymbol{u}, \boldsymbol{v} \in L_{\text {diff }}, \boldsymbol{u}=u_{1} \cdots u_{m}$ and $\boldsymbol{v}=v_{1} \cdots v_{n}$, be such that $[\boldsymbol{u}] \subseteq[\boldsymbol{v}]: u_{i}=v_{j_{i}}, i=1, \ldots, m$. We say that \boldsymbol{u} is ℓ-spread in \boldsymbol{v}, if for all $i=1, \ldots, m, j_{i}>j_{i-1}$ and $j_{i} \equiv \ell j_{i-1}$, where $j_{0}=0$.

Proposition Let $\boldsymbol{w}=\boldsymbol{u v} \$ \boldsymbol{x} \in L_{\text {diff } \$ \text { diff }}$, where \boldsymbol{u} is ℓ_{2}-spread in \boldsymbol{x}, and let $1<p_{1}^{\prime}<p_{1}^{\prime \prime} \leq|\boldsymbol{u}|$. If
then

$$
\begin{aligned}
& {\left[2, s,\left(p_{1}^{\prime},|\boldsymbol{u} \boldsymbol{v} \$|\right)\right] \vdash^{*}\left[1, t,\left(p_{1}^{\prime}\right)\right]} \\
& {\left[2, s,\left(p_{1}^{\prime \prime},|\boldsymbol{u} \boldsymbol{v} \$|\right)\right] \vdash^{*}\left[1, t,\left(p_{1}^{\prime \prime}\right)\right] .}
\end{aligned}
$$

Corollary Let $\boldsymbol{w}=\boldsymbol{u} \boldsymbol{v} \$ \boldsymbol{x} \in L_{\text {diff }}$ diff be such that \boldsymbol{u} is ℓ_{2}-spread in \boldsymbol{x} and $|\boldsymbol{v}| \geq \ell_{2}$, and let $p_{1}^{\prime}<p_{1}^{\prime \prime} \leq|\boldsymbol{u}|$ be equivalent modulo ℓ_{2}. If

$$
\left[2, s,\left(p_{1}^{\prime}, p_{1}^{\prime}\right)\right] \vdash^{*}\left[2, t,\left(p_{1}^{\prime}+1, p_{1}^{\prime}+1\right)\right],
$$

then

$$
\left[2, s,\left(p_{1}^{\prime \prime}, p_{1}^{\prime \prime}\right)\right] \vdash^{*}\left[2, t,\left(p_{1}^{\prime \prime}+1, p_{1}^{\prime \prime}+1\right)\right] .
$$

Proposition For each $\boldsymbol{w}=\boldsymbol{u} \boldsymbol{v} \$ \boldsymbol{x} \in L_{\text {diff }}{ }_{\text {diff }}$ such that \boldsymbol{u} is ℓ_{2}-spread in \boldsymbol{x} and $|\boldsymbol{v}| \geq \ell_{2}$, there exist positive integers $m_{\boldsymbol{w}}$ and $\ell_{\boldsymbol{w}}$ for which the following holds. If
$\left[2, s_{j_{1}},\left(p_{1}, p_{1}\right)\right] \vdash^{*}\left[2, s_{j_{2}},\left(p_{1}+1, p_{1}+1\right)\right] \vdash^{*} \cdots \vdash^{*}\left[2, s_{j_{|\boldsymbol{u}|-p_{1}}},(|\boldsymbol{u}|,|\boldsymbol{u}|)\right]$, then the sequence of states $s_{p_{1}+m_{\boldsymbol{w}}}, \ldots, s_{|\boldsymbol{u}|-p_{1}}$ is periodic with period $\ell_{\boldsymbol{w}}$.

Corollary There exist a positive integer ℓ_{1} such that the following holds. Let $\boldsymbol{w}=\boldsymbol{u} \boldsymbol{v} \$ \boldsymbol{x} \in L_{\text {diff } \$ \text { diff }}$, where \boldsymbol{u} is ℓ_{2}-spread in \boldsymbol{x} and $|\boldsymbol{v}| \geq \ell_{2}$. If $\left[2, s_{j_{1}},\left(p_{1}, p_{1}\right)\right] \vdash^{*}\left[2, s_{j_{2}},\left(p_{1}+1, p_{1}+1\right)\right] \vdash^{*} \cdots \vdash^{*}\left[2, s_{j_{|\boldsymbol{u}|-p_{1}}},(|\boldsymbol{u}|,|\boldsymbol{u}|)\right]$, then the sequence of states $s_{p_{1}+\ell_{1}}, \ldots, s_{|\boldsymbol{u}|-p_{1}}$ is periodic with period ℓ_{1}.

Proof of the theorem Assume to the contrary that $L(\mathfrak{A})=L_{\supseteq}$. Let

$$
\boldsymbol{w}^{\prime}=\boldsymbol{u}^{\prime} \boldsymbol{u}^{\prime \prime} \boldsymbol{v} \$ \boldsymbol{x} \in L_{\supseteq} \cap L_{\subseteq}
$$

where \boldsymbol{u}^{\prime} is ℓ_{2}-spread in $\boldsymbol{x},|\boldsymbol{v}| \geq \ell_{2}$, and $\left|\boldsymbol{u}^{\prime}\right|=\left|\boldsymbol{u}^{\prime \prime}\right|=\ell_{1}$; and let

$$
\boldsymbol{w}=\boldsymbol{u}^{\prime} \boldsymbol{v} \$ \boldsymbol{x}
$$

Since $\ell_{1} \equiv \ell_{2} 0$,

$$
\left[1, s_{0},(1)\right] \vdash_{\boldsymbol{w}}^{*}\left[1, t,\left(\left|\boldsymbol{u}^{\prime}\right|\right)\right]
$$

implies

$$
\left[1, s_{0},(1)\right] \vdash_{\boldsymbol{w}^{\prime}}^{*}\left[1, t,\left(\left|\boldsymbol{u}^{\prime}\right|\right)\right]
$$

and, since $\left|\boldsymbol{u}^{\prime}\right|=\left|\boldsymbol{u}^{\prime \prime}\right|=\ell_{1}$,

$$
\left[1, s_{0},(1)\right] \vdash_{\boldsymbol{w}^{\prime}}^{*}\left[1, t,\left(\left|\boldsymbol{u}^{\prime} \boldsymbol{u}^{\prime \prime}\right|\right)\right]
$$

In addition, the runs of \mathfrak{A} from state t on the (same) suffix $\boldsymbol{v} \$ \boldsymbol{x}$ of \boldsymbol{w} and \boldsymbol{w}^{\prime} are the same. In particular, they terminate in the same state. However, \boldsymbol{w}^{\prime} is accepted by \mathfrak{A}, whereas \boldsymbol{w} is not.

Removing the distinguished separator symbol \$

Let

$$
L_{\subseteq}^{\prime}=\left\{\sigma \boldsymbol{u} \sigma \boldsymbol{v}: \sigma \boldsymbol{u}, \sigma \boldsymbol{v} \in L_{\text {diff }} \text { and }[\boldsymbol{u}] \subseteq[\boldsymbol{v}]\right\}
$$

and

$$
L_{\supseteq}^{\prime}=\left\{\sigma \boldsymbol{u} \sigma \boldsymbol{v}: \sigma \boldsymbol{u}, \sigma \boldsymbol{v} \in L_{\text {diff }} \text { and }[\boldsymbol{v}] \subseteq[\boldsymbol{u}]\right\} .
$$

Then L_{\supseteq}^{\prime} is the reversal of L_{\subseteq}^{\prime}.

[^0]: ${ }^{1}$ Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut St., Philadelphia PA, 19104 USA
 ${ }^{2}$ Department of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel

