Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing

Sören Henning, Klaus Jansen, Malin Rau, Lars Schmarje

$\mathbf{C}|\mathbf{A}| \mathbf{U}$
Kiel University
Faculty of Engineering
Department of Computer Science

Strip Packing

Given:

- Strip with width $W \in \mathbb{N}$ and infinite height
- Set of n items / with width $w_{i} \in \mathbb{N}_{\leq w}$ height $h_{i} \in \mathbb{N}$

Objective:

Find a feasible packing into the strip with minimal height

Strip Packing

Given:

- Strip with width $W \in \mathbb{N}$ and infinite height
- Set of n items / with width $w_{i} \in \mathbb{N}_{\leq w}$ height $h_{i} \in \mathbb{N}$

Objective:

Find a feasible packing into the strip with minimal height

Known Results

Polynomial Time

[1] Baker, Coffman, Rivest, 1980
[2] Coffman, Garey, Johnson, Tarjan, 1980
[3] Steinberg, 1997
[4] Schiermeyer, 1994
[5] Harren, van Stee, 2009
[6] Harren, Jansen, Prädel, van Stee, 2014

Pseudo-Polynomial Time

[7] A. Adamaszek, T. Kociumaka, M. Pilipczuk, M. Pilipczuk, 2016
[8] K. Jansen, R. Thöle, 2010
[9] G. Nadiradze, A. Wiese, 2016
[10] W. Gálvez, F. Grandoni, S. Ingala, A. Khan, 2016
[11] K. Jansen, M. Rau, 2016

Known Results

Pseudo-Polynomial Time

[7] A. Adamaszek, T. Kociumaka, M. Pilipczuk, M. Pilipczuk, 2016
[8] K. Jansen, R. Thöle, 2010
[9] G. Nadiradze, A. Wiese, 2016
[10] W. Gálvez, F. Grandoni, S. Ingala, A. Khan, 2016
[11] K. Jansen, M. Rau, 2016

Scheduling Parallel Tasks

Given:

- $m \in \mathbb{N}$ parallel machines
- Set of n jobs J with width processing time $p_{j} \in \mathbb{N}_{\leq w}$ machine requirement $q_{j} \in \mathbb{N}$

Objective:

Find a feasible schedule of the jobs with minimal makespan

$$
m=4 \begin{aligned}
& 9 \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Scheduling Parallel Tasks

Given:

- $m \in \mathbb{N}$ parallel machines
- Set of n jobs J with width processing time $p_{j} \in \mathbb{N}_{\leq w}$ machine requirement $q_{j} \in \mathbb{N}$

Objective:

Find a feasible schedule of the jobs with minimal makespan

$$
\begin{gathered}
m=4 \\
\hline \\
\\
\end{gathered}
$$

Scheduling Parallel Tasks

Given:

- $m \in \mathbb{N}$ parallel machines
- Set of n jobs J with width processing time $p_{j} \in \mathbb{N}_{\leq w}$ machine requirement $q_{j} \in \mathbb{N}$

Objective:

Find a feasible schedule of the jobs with minimal makespan

Scheduling Parallel Tasks

Given:

- $m \in \mathbb{N}$ parallel machines
- Set of n jobs J with width processing time $p_{j} \in \mathbb{N}_{\leq w}$ machine requirement $q_{j} \in \mathbb{N}$

Objective:

Find a feasible schedule of the jobs with minimal makespan

Scheduling Parallel Tasks

Given:

- $m \in \mathbb{N}$ parallel machines
- Set of n jobs J with width processing time $p_{j} \in \mathbb{N}_{\leq w}$ machine requirement $q_{j} \in \mathbb{N}$

Objective:

Find a feasible schedule of the jobs with minimal makespan

Scheduling Parallel Tasks

Given:

- $m \in \mathbb{N}$ parallel machines
- Set of n jobs J with width processing time $p_{j} \in \mathbb{N}_{\leq w}$ machine requirement $q_{j} \in \mathbb{N}$

Objective:

Find a feasible schedule of the jobs with minimal makespan

$$
m=4
$$

Scheduling Parallel Tasks

Given:

- $m \in \mathbb{N}$ parallel machines
- Set of n jobs J with width processing time $p_{j} \in \mathbb{N}_{\leq w}$ machine requirement $q_{j} \in \mathbb{N}$

Objective:

Find a feasible schedule of the jobs with minimal makespan

	Lower Bound	Algorithm
m arbitrary	$3 / 2[12]$	$3 / 2+\varepsilon[13]$
$m \in p o l y(n)$	strongly NP-hard [14]	PTAS [15]
constant $m \geq 5$	strongly NP-hard [14]	PTAS [16,17]
$m \in\{2,3\}$	NP-hard [12]	pseudo polynomial algorithm [14]

[12] folklore, Partition-Problem
[13] Jansen, 2012
[14] Du, Leung 1989
[15] Jansen, Thöle, 2010
[16] Amoura, Bampis, Kenyon, Manoussakis, 2002
[17] Jansen, Porkolab, 2002

Known Results

	Lower Bound	Algorithm
m arbitrary	$3 / 2$ [12]	$3 / 2+\varepsilon[13]$
$m \in$ poly (n)	strongly NP-hard [14]	PTAS [15]
constant $m \geq 5$	strongly NP-hard [14]	PTAS [16,17] $m \in\{2,3\}$
NP-hard [12]	pseudo polynomial algorithm [14]	

Open Question

Is the problem strongly NP-hard when $m=4$?

Known Results

	Lower Bound	Algorithm
m arbitrary	$3 / 2$ [12]	$3 / 2+\varepsilon[13]$
$m \in$ poly (n)	strongly NP-hard [14]	PTAS [15]
constant $m \geq 5$	strongly NP-hard [14]	PTAS [16,17] $m \in\{2,3\}$
NP-hard [12]	pseudo polynomial algorithm [14]	

Open Question

Is the problem strongly NP-hard when $m=4$?
Our Answer
Yes, it is.

Connection of the Problems:

Scheduling Parallel Tasks

Is there a schedule on 4 Machines with makespan W (in which all jobs are scheduled on contiguous machines)?

Strip Packing

Given a Strip with width W, can we find a feasible packing with height at most $4 ?$

3-Partition

Given
$3 z$ integral numbers $/$ with $\sum_{i \in I} i=z D$ and $\frac{1}{4} D<i<\frac{1}{2} D$ for each $i \in I$

Question

Can we partition the set l into sets I_{1}, \ldots, I_{z} such that
$\sum_{i \in l_{j}} i=D$ for each $j=1, \ldots z$?

Properties

strongly NP-complete \Rightarrow no pseudo polynomial algorithm, unless $P=N P$

Main Idea

Find a set of items forcing the 3-Partition instance to be a yes-instance, if there is a packing with height 4

Finding a Structure

Properties

- Items with height 4 are not helpful

Finding a Structure

Properties

- Items with height 4 are not helpful

Finding a Structure

Properties

- Items with height 4 are not helpful
- No items with height 2: reordering is always possible

Finding a Structure

Properties

- Items with height 4 are not helpful
- No items with height 2: reordering is always possible

Finding a Structure

Properties

- Items with height 4 are not helpful
- No items with height 2: reordering is always possible
- No items with height 3: reordering is always possible

Finding a Structure

Properties

- Items with height 4 are not helpful
- No items with height 2: reordering is always possible
- No items with height 3: reordering is always possible

Packing Structure

Problem

A wrong choice of width can open the possibility to a reordering of the items:

Objective

Find fitting widths for the items which preclude a reordering, that fuses areas for 3-partition items

Observation

Each x-coordinate of any item is defined by a combination of width of other items

Observation

Each x-coordinate of any item is defined by a combination of width of other items

Idea:

Give each set of items which can be cut by a vertical line an individual token, which is added to the width of these items

Observation

Each x-coordinate of any item is defined by a combination

 of width of other items

Idea:

Give each set of items which can be cut by a vertical line an individual token, which is added to the width of these items

Observation

Each x-coordinate of any item is defined by a combination of width of other items

Idea:

Give each set of items which can be cut by a vertical line an individual token, which is added to the width of these items

Observation

Each x-coordinate of any item is defined by a combination of width of other items

Idea:

Give each set of items which can be cut by a vertical line an individual token, which is added to the width of these items

Requirement
D has to be large, e.g., $D>4(z+1)$.

Consequences

- Total width: $(z+1)\left(D^{2}+D^{3}+D^{4}\right)+z\left(D^{5}+D^{6}+D^{7}\right)$

Consequences

- Total width: $(z+1)\left(D^{2}+D^{3}+D^{4}\right)+z\left(D^{5}+D^{6}+D^{7}\right)$
- Items A and B will always overlap height 1 to 3

Consequences

- Total width: $(z+1)\left(D^{2}+D^{3}+D^{4}\right)+z\left(D^{5}+D^{6}+D^{7}\right)$
- Items A and B will always overlap height 1 to 3
- Items α, β, λ can not overlap heights between 1 and 3 .

Consequences

- Total width: $(z+1)\left(D^{2}+D^{3}+D^{4}\right)+z\left(D^{5}+D^{6}+D^{7}\right)$
- Items A and B will always overlap height 1 to 3
- Items α, β, λ can not overlap heights between 1 and 3.
- There have to be z items of type a or b which overlap the height 3 to 4 and z other, which overlap 0 to 1 .

Consequences

- Total width: $(z+1)\left(D^{2}+D^{3}+D^{4}\right)+z\left(D^{5}+D^{6}+D^{7}\right)$
- Items A and B will always overlap height 1 to 3
- Items α, β, λ can not overlap heights between 1 and 3.
- There have to be z items of type a or b which overlap the height 3 to 4 and z other, which overlap 0 to 1.
- c, γ and δ have to overlap heights 1 to 3 .

Consequences

- Total width: $(z+1)\left(D^{2}+D^{3}+D^{4}\right)+z\left(D^{5}+D^{6}+D^{7}\right)$
- Items A and B will always overlap height 1 to 3
- Items α, β, λ can not overlap heights between 1 and 3.
- There have to be z items of type a or b which overlap the height 3 to 4 and z other, which overlap 0 to 1.
- c, γ and δ have to overlap heights 1 to 3 .

These conditions are not enough

Reordering is still possible:

rotatable

Rotate each second rotatable bock:

before procesing the next

Use a new token D^{8} to prevent swapping

B	β				β					β				B	λ_{2}	
		A	δ		C	A	δ			c		δ				
	C		a	$\gamma \mathbb{N}$			a				A	a			C	A
				α					α					O		

Idea: add D^{8} to α, β and λ, such that:

- $x_{1} D^{8}(\alpha)+x_{2} D^{8}(\beta)+x_{3} D^{8}\left(\lambda_{1}\right)+x_{4} D^{8}\left(\lambda_{2}\right)=$

$$
\left(z D^{8}(\alpha)+z D^{8}(\beta)+D^{8}\left(\lambda_{1}\right)+D^{8}\left(\lambda_{2}\right)\right) / 2
$$

- $x_{1}+x_{2}+x_{3}+x_{4}=z+1$
- $x_{1} \in\{0, z\}, x_{2} \in\{0, z\}, x_{3} \in\{0,1\}$, and $x_{4} \in\{0,1\}$
has exactly two solutions
$x_{1}=z, x_{2}=0, x_{3}=1$ and $x_{4}=0$ and
$x_{1}=0, x_{2}=z, x_{3}=0$ and $x_{4}=1$.

Use a new token D^{8} to prevent rotation

Idea: use varying values for c, δ and γ to create a different amount of D^{8} for α and β

- $D^{8}\left(c_{i}\right)=z+i, \forall i=0, \ldots z$
- $D^{8}\left(\delta_{i}\right)=3 z-i, \forall i=1, \ldots z$
- $D^{8}\left(\gamma_{i}\right)=3 z-i, \forall i=1, \ldots z$

Use a new token D^{8} to prevent rotation

Idea: use varying values for c, δ and γ to create a different amount of D^{8} for α and β

- $D^{8}\left(c_{i}\right)=z+i, \forall i=0, \ldots z$
- $D^{8}\left(\delta_{i}\right)=3 z-i, \forall i=1, \ldots z$
- $D^{8}\left(\gamma_{i}\right)=3 z-i, \forall i=1, \ldots z$

Consequence:

- $D^{8}(\alpha)=4 z ; D^{8}(\beta)=(4 z-1) ; D^{8}\left(\lambda_{1}\right)=z ; D^{8}\left(\lambda_{2}\right)=2 z ;$
- Total Width:

$$
(z+1)\left(D^{2}+D^{3}+D^{4}\right)+z\left(D^{5}+D^{6}+D^{7}\right)+\left(7 z^{2}+z\right) D^{8}
$$

Summary of the Techniques

- add a token for each vertical line to force certain items to be placed on these lines
- add an additional token D^{8} to force certain items to be placed on a horizontal line
- Requirement: $D>4\left(7 z^{2}+z\right)$
\rightarrow scale the partition instance

Results

Theorem
For each $\varepsilon>0$, there is no pseudo polynomial algorithm, which approximates strip packing with ratio $\left(\frac{5}{4}-\varepsilon\right) \mathrm{OPT}$, unless $P=N P$

Theorem

Parallel Task Scheduling is strongly NP-complete for the case of $m=4$

Open Questions

polynomial time

pseudo polynomial time

Open Questions

polynomial time

pseudo polynomial time

Open Questions

polynomial time

pseudo polynomial time

Thank you very much!

