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Definition

@ A cut of G is a function
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Cut of a graph G

Definition

@ A cut of G is a function

f:V(G)—{0,1}

@ Size of the cut f,

11l = {uv € E(G) | £(u) # F(v)}]
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Definition

e Max-Cut
Input: A graph G and a non-negative integer k.

Question: Does G have a cut of size at least k?
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Max-CuT

Definition

e Max-Cut
Input: A graph G and a non-negative integer k.

Question: Does G have a cut of size at least k?

@ MAX-CuTt is NP-hard.
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e MAX-CUT ABOVE SPANNING TREE (MAX-CuT-AST)

Input: A connected n-vertex graph G and a non-negative
integer k.

Parameter: k

Question: Does G have a cut of size at least n — 1 + k?
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Problem Statement and Results

e MAX-CUT ABOVE SPANNING TREE (MAX-CuT-AST)

Input: A connected n-vertex graph G and a non-negative
integer k.

Parameter: k

Question: Does G have a cut of size at least n — 1 + k?
o Results:
o 8kn®M) algorithm and O(k®) kernel.
o No 2°(K) algorithm unless the Exponential Time Hypothesis
fails.
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MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

e Graph G, |V(G)| = n, |[E(G)| = m.
@ G has a cut of size at least
© m/2 [Erdds, 1965].



MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

e Graph G, |V(G)| = n, |[E(G)| = m.
@ G has a cut of size at least
© m/2 [Erdds, 1965].

Q@ m/2+ (n—1)/4if G is connected [Edwards, 1975] .
Edwards-Erdés bound.
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Lower Bounds for Cut Size

e Graph G, |V(G)| = n, |[E(G)| = m.
@ G has a cut of size at least
© m/2 [Erdds, 1965].

Q@ m/2+ (n—1)/4if G is connected [Edwards, 1975] .
Edwards-Erdés bound.

© n—1if G is connected.
Spanning tree bound.
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e Connected graph G, |V(G)| = n.

@ Cut of size at least n — 1.
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Spanning Tree Bound

e Connected graph G, |V(G)| = n.

@ Cut of size at least n — 1.
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Spanning Tree Bound

e Connected graph G, |V(G)| = n.

@ Cut of size at least n — 1.

Spanning Tree
n—1 edges
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Spanning Tree Bound

e Connected graph G, |V(G)| =n

@ Cut of size at least n — 1

Spanning tree
n— 1 edges
2-colorable
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Spanning Tree Bound

e Connected graph G, |V(G)| = n.

@ Cut of size at least n — 1.

n=5 Spanning tree Cut of size n—1
n—1 edges
2-colorable



MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Edwards-Erdés Bound vs. Spanning Tree Bound

o Connected graph G, |V(G)| = n, |[E(G)| = m.
e Edwards-Erdés Bound: m/2 + (n—1)/4.

e Spanning Tree Bound: n— 1.
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Introduction

Lower Bounds for Cut Size

Edwards-Erdés Bound vs. Spanning Tree Bound

o Connected graph G, |V(G)| = n, |[E(G)| = m.
e Edwards-Erdés Bound: m/2 + (n—1)/4.
e Spanning Tree Bound: n— 1.

@ Spanning Tree bound gives a better guarantee for cut size on
sparse graphs.

e n—1>m/2+ (n—1)/4 <= (average degree of G) < 3.
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@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)[ = m.
Parameter: k
Question: Does G have a cut of size at least k7
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Parameter: k
Question: Does G have a cut of size at least k7
o Trivially FPT
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Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)[ = m.
Parameter: k
Question: Does G have a cut of size at least k7

o Trivially FPT
o k<m/2 = yes.
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@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)| = m.
Parameter: k
Question: Does G have a cut of size at least k7
o Trivially FPT

o k<m/2 = yes.
o m < 2k. Brute force.
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@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)| = m.
Parameter: k
Question: Does G have a cut of size at least k7
o Trivially FPT

o k<m/2 = yes.
o m < 2k. Brute force.

@ Parameterize above the cut size [Mahajan and Raman, 1997]
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Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)| = m.
Parameter: k
Question: Does G have a cut of size at least k7
o Trivially FPT

o k<m/2 = yes.
o m < 2k. Brute force.

@ Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?
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Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)[ = m.
Parameter: k

Question: Does G have a cut of size at least k?
o Trivially FPT
o k<m/2 = yes.
o m < 2k. Brute force.

@ Parameterize above the cut size [Mahajan and Raman, 1997]
Question: Does G have a cut of size at least m/2 + k?
e FPT.

o Above Guarantee parameterization.



MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

MaX-Cut: Above Guarantee Parameterizations

e MaAX-CuT ABOVE EDWARDS-ERDOS (MAX-CuT-AEE)

Input: A connected graph G and a positive integer k,
V(G)| = n, |[E(G)| = m.
Parameter: k

Question: Does G have a cut of size at least
m/2+(n—1)/4+ k?



MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

MaX-Cut: Above Guarantee Parameterizations

e MaAX-CuT ABOVE EDWARDS-ERDOS (MAX-CuT-AEE)

Input: A connected graph G and a positive integer k,
V(G)| = n, |[E(G)| = m.
Parameter: k

Question: Does G have a cut of size at least
m/2+(n—1)/4+ k?
@ Results:
o 8n®W) algorithm and O(k®) kernel [Crowston et al., 2012]

o Extended to signed graphs with an O(k) kernel [Etscheid and
Mnich, 2016]
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MAX-CUT ABOVE SPANNING TREE
(Max-Cur-AST)

Our Problem

e MAX-CUT ABOVE SPANNING TREE (MAX-CuT-AST)

Input: A connected graph G and a positive integer k,
V(G)[=n.
Parameter: k

Question: Does G have a cut of size at least n — 1 + k?
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MAX-CUT ABOVE SPANNING TREE
(Max-Cur-AST)

Our Problem

e MAX-CUT ABOVE SPANNING TREE (MAX-CuT-AST)

Input: A connected graph G and a positive integer k,
[V(G)| = n.

Parameter: k

Question: Does G have a cut of size at least n — 1 + k7

@ Results:

o 8kn®M) algorithm and O(k®) kernel.
o No 2°(K algorithm.
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@ In polynomial time

either conclude that (G, k) is a yes-instance
or find a small set S such that G — S has a nice structure.

@ Guess the optimal partition of S.
@ Optimally extend each guess to a partition of G — S.
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@ In polynomial time
either conclude that (G, k) is a yes-instance
or find a small set S such that G — S has a nice structure.
@ Guess the optimal partition of S.
@ Optimally extend each guess to a partition of G — S.
Define an auxiliary problem on G — S.
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Algorithm

Strategy

@ In polynomial time

either conclude that (G, k) is a yes-instance

or find a small set S such that G — S has a nice structure.
@ Guess the optimal partition of S.
@ Optimally extend each guess to a partition of G — S.

Define an auxiliary problem on G — S.
Solve it in polynomial time by exploiting G — S’s nice structure.
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@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
o Converse need not hold.
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@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:
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@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:
o Apply if [some condition] holds.
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@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

o Apply if [some condition] holds.
o Delete a set of vertices X.
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Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

o Apply if [some condition] holds.
o Delete a set of vertices X.
o Mark a set of vertices A.
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FPT Algorithm

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X.
Mark a set of vertices A.
Decrement k appropriately.
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Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

Apply if [some condition] holds.
o Delete a set of vertices X.

e Mark a set of vertices A.

e Decrement k appropriately.

@ Guarantees:
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Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

Apply if [some condition] holds.
o Delete a set of vertices X.
e Mark a set of vertices A.
e Decrement k appropriately.
o Guarantees:
e G’ is connected.
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Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

Apply if [some condition] holds.
o Delete a set of vertices X.

e Mark a set of vertices A.

e Decrement k appropriately.

@ Guarantees:

e G’ is connected.
o |Al <3
o A# () = k drops by at least 1.



MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Outline of Algorithm
Contd.

@ Rules apply as long as G’ # Kj.
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Contd.

@ Rules apply as long as G’ # Kj.
o If k" <0, then (G, k) is a yes-instance.
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Outline of Algorithm
Contd.

@ Rules apply as long as G’ # Kj.
o If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.
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FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G’ # K.
If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

@ G — S is a clique-cycle-forest.
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FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G’ # K.
If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

@ G — S is a clique-cycle-forest. Every block (2-connected
component) of G — S is a clique or a cycle.
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FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G’ # K.
If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

@ G — S is a clique-cycle-forest. Every block (2-connected
component) of G — S is a clique or a cycle.

Guess the partition of S. Optimally extend it to G — S.
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FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G’ # K.
If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

@ G — S is a clique-cycle-forest. Every block (2-connected
component) of G — S is a clique or a cycle.

Guess the partition of S. Optimally extend it to G — S.
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Clique-cycle-forest

Definition

A clique is a clique-cycle-forest.
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FPT Algorithm

Clique-cycle-forest

Definition

A cycle is a clique-cycle-forest.
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FPT Algorithm

Clique-cycle-forest

Definition

Disjoint union of two clique-cycle-forests is a clique-cycle-forest.
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FPT Algorithm

Clique-cycle-forest

Definition

Graph obtained by identifying one vertex each from two different
components of a clique-cycle-forest is again a clique-cycle-forest.
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Clique-cycle-forest

Definition

Graph obtained by identifying one vertex each from two different
components of a clique-cycle-forest is again a clique-cycle-forest.
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FPT Algorithm

Clique-cycle-forest

Example

ASL LT
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Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.
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Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

@ Delete: All vertices in X.
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@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

@ Delete: All vertices in X.
@ Mark: Nothing.
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FPT Algorithm

Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

o Delete: All vertices in X.
@ Mark: Nothing.
o Parameter: Reduce k' by [x?/4 — x/2|, where x = |X|.
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FPT Algorithm

Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

o Delete: All vertices in X.
@ Mark: Nothing.
o Parameter: Reduce k' by [x?/4 — x/2|, where x = |X|.
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FPT Algorithm

Reduction Rules—Rule 1 contd.

o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
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o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.

e New instance: (G”, k").
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FPT Algorithm

Reduction Rules—Rule 1 contd.

o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
e New instance: (G”, k").
o |V(G")|=n—xand k" = K — (x2/4 — x/2)



MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 1 contd.

Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
New instance: (G”, k").
[V(G")| =n' —x and K" = k' — (x?/4 — x/2)

Consider f, a cut of G' — v.
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FPT Algorithm

Reduction Rules—Rule 1 contd.

Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
New instance: (G”, k").
[V(G")| =n' —x and K" = k' — (x?/4 — x/2)

Consider f, a cut of G' — v.

Define g, a cut of G”:

e g = f + X partitioned evenly.
o |lgll =IIfll+x*/4 + x/2.
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FPT Algorithm

Reduction Rules—Rule 1 contd.

o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
New instance: (G”, k").
[V(G")| =n' —x and K" = k' — (x?/4 — x/2)

Consider f, a cut of G' — v.

Define g, a cut of G':
e g = f + X partitioned evenly.
o llgll =Ifll +x*/4+ x/2.
Suppose ||f]| > (n —x —1) + k”. Then,

llgll > (n—x = 1)+ (K = (x*/4 = x/2)) + x* /4 + x/2
=n—1+kK.
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FPT Algorithm

Reduction Rules—Rule 1 contd.

o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
New instance: (G”, k").
[V(G")| =n' —x and K" = k' — (x?/4 — x/2)

Consider f, a cut of G' — v.

Define g, a cut of G':
e g = f + X partitioned evenly.
o llgll =Ifll +x*/4+ x/2.
Suppose ||f]| > (n —x —1) + k”. Then,

llgll > (n—x = 1)+ (K = (x*/4 = x/2)) + x* /4 + x/2
=n—1+kK.
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Reduction Rules

@ Rule 2: Apply if 3 v € V(G’) and X C V(G’) such that

o G’[X] is a connected component of G’ — {v},
o G'[XU{v}]is a cycle.
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FPT Algorithm

Reduction Rules

@ Rule 2: Apply if 3 v € V(G’) and X C V(G’) such that

o G’[X] is a connected component of G’ — {v},
o G'[XU{v}]is a cycle.
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FPT Algorithm

Reduction Rules

@ Rule 2: Apply if 3 v € V(G’) and X C V(G’) such that

o G’[X] is a connected component of G’ — {v},
o G'[XU{v}]is a cycle.

@ Delete: All vertices in X.
@ Mark: Nothing.

e Parameter: Reduce k’ by 1 if x is odd, and no change in k' if
x is even (x = |X]).
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FPT Algorithm

Reduction Rules

@ Rule 3:
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FPT Algorithm

Reduction Rules

@ Rule 3: Apply if 3 v € V(G') and X C V(G’) such that

e G’'[X] is a connected component of G’ — {v},
o G'[X]is a clique.
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@ Rule 3: Apply if 3 v € V(G') and X C V(G’) such that
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o G'[X]is a clique.
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Reduction Rules

@ Rule 3: Apply if 3 v € V(G') and X C V(G’) such that
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Reduction Rules

@ Rule 3: Apply if 3 v € V(G’) and X C V(G’) such that

e G’'[X] is a connected component of G’ — {v},
o G'[X]is a clique.

@ Delete: All vertices in X.
o Mark: v.

e Parameter: Reduce kK’ by
[x?/4] + min {dexuguy(v), [x/2]} = x.
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Reduction Rules—Rule 3 contd.

o dgixuqvy(v) > 1 and x > 2. Otherwise, Rule 1 applies.

[x?/4] + min {dgpxup(v), [x/2]} —x > [x*/4] +2 - x

[x
> [3%/4] +2-3
1.

@ Parameter drops.
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Reduction Rules

@ Good P3: Induced P3 abc such that
o G'—{a, b, c} is connected,
o d(a)>2ord(b)>2ord(c)>2.

@ Rule 4: Apply if 3 a good P5 abc.

o Delete: Vertices a, b, c.

e Mark: a, b, c.

o Parameter: Reduce k' by [(d(a) — 2)/2], where o = highest
degree vertex in {a, b, c}.
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Reduction Rules

@ Rule 5: Apply if 32,6 € V(G') and Y C V(G') such that
e ac ¢ E(G'),
o G’ —{a, c} has exactly two connected components, X and Y,
o |X|>2,
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Reduction Rules

@ Rule 5: Apply if 32,6 € V(G') and Y C V(G') such that
e ac ¢ E(G'),
o G’ —{a, c} has exactly two connected components, X and Y,
o |X|>2,
o G'[XU{a}] G'[XU{c}] are cliques.

e Delete: All vertices in X U{a, b}.
e Mark: a, b.
e Parameter: Reduce kK’ by

[x/2] - |x/2] + [depyugay(a)/2] + [deryugsy(b)/2] — 2.
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Rules 1-5 are one-way safe. \
If G has at least one edge then one of Rules 1-5 will apply. \

If K <0, then (G, k") is a yes-instance, and hence (G, k) is a

yes-instance. Otherwise,
vertices.

S| < 3k, where S is the set of marked
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Ind. hyp.: G; — S is a clique-cycle-forest.
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Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 2: X U {v} is a cycle. X — v is a path.
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Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 2: X U {v} is a cycle.
Case 2: v ¢ S.
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Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.

Rule 3: X is a clique. v is marked.
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Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 4: X is a P3. X is marked.
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Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 4: X is a P3. X is marked.
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Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 5: X\ {a, b} is a clique. a, b are marked.
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e Input:
e A graph G, an integer t € N, and
e weight functions wy : V(G) — N U {0} and
wy : V(G) - NU{0}.
e Objective: Test if 3 7 : V(G) — {0,1} such that

nyEE(G) ‘f(X) - f(y)H_Zf(x):O WO(X)+Zf(x):1 Wl(X) > t?

Lemma (Crowston et al.)

MAX-CuT-WITH-WEIGHTED-VERTICES is polynomial time
solvable on clique-forests.

MAx-CuT-WITH-WEIGHTED- VERTICES is polynomial time
solvable on clique-cycle-forests.
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Fix f : S — {0,1}. Construct an instance of MCWWV.
@ (= no. of edges of G[S] that are satisfied by f.
e For x e V(G)—S,

o wp(x) s€ S |sxe€ E(G), and f(s)

=1 1},
o wmi(x)=[{s €S |sxecE(G), and f(s)

0},
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FPT Algorithm for MAX-CuT-AST contd.

@ Sett=n—-1+k—~1.
o Let f': V(G —S) — {0,1} = optimum solution for MCWWV
on (G — S, wo, wy, t)
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instance (G, k).
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FPT Algorithm

Lower Bound

No 2°(%) algorithm

e MAX-CUT has no 2°(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

Reduce MAX-CUT instance (G, t) to MAX-CuT-AST
instance (G, k).

Set k=t—(n—1).
k<t

2°(K) algorithm for MAX-CuT-AST will imply 2°(t) algorithm
for Max-Cur.
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Polynomial Kernel

Strategy
@ G has an even cycle implies G has a cut of size n—1+1=n.
@ One even cycle means one additional edge in the cut.
e If G has k vertex disjoint even cycles, then (G, k) is a
yes-instance.
@ Cycles need not be vertex disjoint.
o Identify families of cycles such that all edges of all the cycles

in the family fall into a cut.
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Polynomial Kernel
Strategy contd.

G — S is a clique-cycle-forest, a forest of blocks.
Bound the number of components of G — S.
Bound the number of blocks in each component.
Bound the size of each block.

O(k®) kernel.
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Results and Conclusion

e FPT algorithm and O(k®) kernel.

Simple reduction to MAX-CuT-AEE possible?
O(k) kernel?
Extend the results to signed graphs?
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Thank You.
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