MAaX-CuT ABOVE SPANNING TREE is FPT

MAX-CUT ABOVE SPANNING TREE is FPT }

Jayakrishnan Madathil' Saket Saurabh'? Meirav Zehavi3
Lnstitute of Mathematical Sciences, HBNI
Chennai, India

2Department of Informatics
University of Bergen, Norway

3Department of Computer Science
Ben-Gurion University, Israel

CSR, 2018

MAaX-CuT ABOVE SPANNING TREE is FPT

s
Outline

@ Introduction
@ Problem Statement and Results
@ Lower Bounds for Cut Size
@ Parameterizing MAX-CUT

© FPT Algorithm

© Polynomial Kernel

MAaX-CuT ABOVE SPANNING TREE is FPT

Cut of a graph G

Definition

@ A cut of G is a function

f:V(G)—{0,1}

MAaX-CuT ABOVE SPANNING TREE is FPT

Cut of a graph G

Definition

@ A cut of G is a function

f:V(G)—{0,1}

@ Size of the cut f,

11l = {uv € E(G) | £(u) # F(v)}]

MAaX-CuT ABOVE SPANNING TREE is FPT

Max-CuT

Definition

e Max-Cut
Input: A graph G and a non-negative integer k.

Question: Does G have a cut of size at least k?

MAaX-CuT ABOVE SPANNING TREE is FPT

Max-CuT

Definition

e Max-Cut
Input: A graph G and a non-negative integer k.

Question: Does G have a cut of size at least k?

@ MAX-CuTt is NP-hard.

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Problem Statement and Results

Outline

@ Introduction
@ Problem Statement and Results

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Problem Statement and Results

Problem Statement and Results

e MAX-CUT ABOVE SPANNING TREE (MAX-CuT-AST)

Input: A connected n-vertex graph G and a non-negative
integer k.

Parameter: k

Question: Does G have a cut of size at least n — 1 + k?

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Problem Statement and Results

Problem Statement and Results

e MAX-CUT ABOVE SPANNING TREE (MAX-CuT-AST)

Input: A connected n-vertex graph G and a non-negative
integer k.

Parameter: k

Question: Does G have a cut of size at least n — 1 + k?
o Results:
o 8kn®M) algorithm and O(k®) kernel.
o No 2°(K) algorithm unless the Exponential Time Hypothesis
fails.

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Outline

@ Introduction

@ Lower Bounds for Cut Size

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

e Graph G, |V(G)| = n, |[E(G)| = m.

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

e Graph G, |V(G)| = n, |[E(G)| = m.
@ G has a cut of size at least
© m/2 [Erdds, 1965].

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

e Graph G, |V(G)| = n, |[E(G)| = m.
@ G has a cut of size at least
© m/2 [Erdds, 1965].

Q@ m/2+ (n—1)/4if G is connected [Edwards, 1975] .
Edwards-Erdés bound.

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

e Graph G, |V(G)| = n, |[E(G)| = m.
@ G has a cut of size at least
© m/2 [Erdds, 1965].

Q@ m/2+ (n—1)/4if G is connected [Edwards, 1975] .
Edwards-Erdés bound.

© n—1if G is connected.
Spanning tree bound.

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

e Connected graph G, |V(G)| = n.

@ Cut of size at least n — 1.

MAaX-CuT ABOVE SPANNING TREE is FPT
Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

e Connected graph G, |V(G)| = n.

@ Cut of size at least n — 1.

MAX-CUT ABOVE SPANNING TREE is FPT
Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

e Connected graph G, |V(G)| = n.

@ Cut of size at least n — 1.

Spanning Tree
n—1 edges

MAX-CUT ABOVE SPANNING TREE is FPT
Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

e Connected graph G, |V(G)| =n

@ Cut of size at least n — 1

Spanning tree
n— 1 edges
2-colorable

MAX-CUT ABOVE SPANNING TREE is FPT
Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

e Connected graph G, |V(G)| = n.

@ Cut of size at least n — 1.

n=5 Spanning tree Cut of size n—1
n—1 edges
2-colorable

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Edwards-Erdés Bound vs. Spanning Tree Bound

o Connected graph G, |V(G)| = n, |[E(G)| = m.
e Edwards-Erdés Bound: m/2 + (n—1)/4.

e Spanning Tree Bound: n— 1.

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Lower Bounds for Cut Size

Edwards-Erdés Bound vs. Spanning Tree Bound

o Connected graph G, |V(G)| = n, |[E(G)| = m.
e Edwards-Erdés Bound: m/2 + (n—1)/4.
e Spanning Tree Bound: n— 1.

@ Spanning Tree bound gives a better guarantee for cut size on
sparse graphs.

e n—1>m/2+ (n—1)/4 <= (average degree of G) < 3.

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

Outline

@ Introduction

@ Parameterizing MAX-CUT

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

Parameterizing MAX-CuT

@ Parameterize by cut size?

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)[= m.
Parameter: k
Question: Does G have a cut of size at least k7

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)| = m.
Parameter: k
Question: Does G have a cut of size at least k7
o Trivially FPT

MAaX-CuT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)[= m.
Parameter: k
Question: Does G have a cut of size at least k7

o Trivially FPT
o k<m/2 = yes.

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)| = m.
Parameter: k
Question: Does G have a cut of size at least k7
o Trivially FPT

o k<m/2 = yes.
o m < 2k. Brute force.

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)| = m.
Parameter: k
Question: Does G have a cut of size at least k7
o Trivially FPT

o k<m/2 = yes.
o m < 2k. Brute force.

@ Parameterize above the cut size [Mahajan and Raman, 1997]

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)| = m.
Parameter: k
Question: Does G have a cut of size at least k7
o Trivially FPT

o k<m/2 = yes.
o m < 2k. Brute force.

@ Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

Parameterizing MAX-CuT

@ Parameterize by cut size?
Input: A graph G and a positive integer k, |V(G)| = n,
[E(G)[= m.
Parameter: k

Question: Does G have a cut of size at least k?
o Trivially FPT
o k<m/2 = yes.
o m < 2k. Brute force.

@ Parameterize above the cut size [Mahajan and Raman, 1997]
Question: Does G have a cut of size at least m/2 + k?
e FPT.

o Above Guarantee parameterization.

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

MaX-Cut: Above Guarantee Parameterizations

e MaAX-CuT ABOVE EDWARDS-ERDOS (MAX-CuT-AEE)

Input: A connected graph G and a positive integer k,
V(G)| = n, |[E(G)| = m.
Parameter: k

Question: Does G have a cut of size at least
m/2+(n—1)/4+ k?

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

MaX-Cut: Above Guarantee Parameterizations

e MaAX-CuT ABOVE EDWARDS-ERDOS (MAX-CuT-AEE)

Input: A connected graph G and a positive integer k,
V(G)| = n, |[E(G)| = m.
Parameter: k

Question: Does G have a cut of size at least
m/2+(n—1)/4+ k?
@ Results:
o 8n®W) algorithm and O(k®) kernel [Crowston et al., 2012]

o Extended to signed graphs with an O(k) kernel [Etscheid and
Mnich, 2016]

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

MAX-CUT ABOVE SPANNING TREE
(Max-Cur-AST)

Our Problem

e MAX-CUT ABOVE SPANNING TREE (MAX-CuT-AST)

Input: A connected graph G and a positive integer k,
V(G)[=n.
Parameter: k

Question: Does G have a cut of size at least n — 1 + k?

MAX-CUT ABOVE SPANNING TREE is FPT

Introduction

Parameterizing MAX-CuT

MAX-CUT ABOVE SPANNING TREE
(Max-Cur-AST)

Our Problem

e MAX-CUT ABOVE SPANNING TREE (MAX-CuT-AST)

Input: A connected graph G and a positive integer k,
[V(G)| = n.

Parameter: k

Question: Does G have a cut of size at least n — 1 + k7

@ Results:

o 8kn®M) algorithm and O(k®) kernel.
o No 2°(K algorithm.

MAaX-CuT ABOVE SPANNING TREE is FPT

Algorithm

Strategy

@ In polynomial time
either conclude that (G, k) is a yes-instance

MAaX-CuT ABOVE SPANNING TREE is FPT

Algorithm

Strategy

@ In polynomial time

either conclude that (G, k) is a yes-instance
or find a small set S such that G — S has a nice structure.

MAX-CUT ABOVE SPANNING TREE is FPT

Algorithm

Strategy

@ In polynomial time

either conclude that (G, k) is a yes-instance
or find a small set S such that G — S has a nice structure.

@ Guess the optimal partition of S.
@ Optimally extend each guess to a partition of G — S.

MAX-CUT ABOVE SPANNING TREE is FPT

Algorithm

Strategy

@ In polynomial time
either conclude that (G, k) is a yes-instance
or find a small set S such that G — S has a nice structure.
@ Guess the optimal partition of S.
@ Optimally extend each guess to a partition of G — S.
Define an auxiliary problem on G — S.

MAX-CUT ABOVE SPANNING TREE is FPT

Algorithm

Strategy

@ In polynomial time

either conclude that (G, k) is a yes-instance

or find a small set S such that G — S has a nice structure.
@ Guess the optimal partition of S.
@ Optimally extend each guess to a partition of G — S.

Define an auxiliary problem on G — S.
Solve it in polynomial time by exploiting G — S’s nice structure.

MAaX-CuT ABOVE SPANNING TREE is FPT

Outline of Algorithm

@ Apply a set of one-way reduction rules.

MAaX-CuT ABOVE SPANNING TREE is FPT

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
o Converse need not hold.

MAaX-CuT ABOVE SPANNING TREE is FPT

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

MAaX-CuT ABOVE SPANNING TREE is FPT

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:
o Apply if [some condition] holds.

MAX-CUT ABOVE SPANNING TREE is FPT

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

o Apply if [some condition] holds.
o Delete a set of vertices X.

MAX-CUT ABOVE SPANNING TREE is FPT

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

o Apply if [some condition] holds.
o Delete a set of vertices X.
o Mark a set of vertices A.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X.
Mark a set of vertices A.
Decrement k appropriately.

MAX-CUT ABOVE SPANNING TREE is FPT

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

Apply if [some condition] holds.
o Delete a set of vertices X.

e Mark a set of vertices A.

e Decrement k appropriately.

@ Guarantees:

MAX-CUT ABOVE SPANNING TREE is FPT

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

Apply if [some condition] holds.
o Delete a set of vertices X.
e Mark a set of vertices A.
e Decrement k appropriately.
o Guarantees:
e G’ is connected.

MAX-CUT ABOVE SPANNING TREE is FPT

Outline of Algorithm

@ Apply a set of one-way reduction rules.

@ One-way rule: (G, k) — (G’, k) such that
o (G', k') is a yes-instance = (G, k) is a yes-instance.
e Converse need not hold.

o Generic Reduction Rule:

Apply if [some condition] holds.
o Delete a set of vertices X.

e Mark a set of vertices A.

e Decrement k appropriately.

@ Guarantees:

e G’ is connected.
o |Al <3
o A# () = k drops by at least 1.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Outline of Algorithm
Contd.

@ Rules apply as long as G’ # Kj.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Outline of Algorithm
Contd.

@ Rules apply as long as G’ # Kj.
o If k" <0, then (G, k) is a yes-instance.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Outline of Algorithm
Contd.

@ Rules apply as long as G’ # Kj.
o If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G’ # K.
If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

@ G — S is a clique-cycle-forest.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G’ # K.
If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

@ G — S is a clique-cycle-forest. Every block (2-connected
component) of G — S is a clique or a cycle.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G’ # K.
If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

@ G — S is a clique-cycle-forest. Every block (2-connected
component) of G — S is a clique or a cycle.

Guess the partition of S. Optimally extend it to G — S.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G’ # K.
If k" <0, then (G, k) is a yes-instance.

@ Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

@ G — S is a clique-cycle-forest. Every block (2-connected
component) of G — S is a clique or a cycle.

Guess the partition of S. Optimally extend it to G — S.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Clique-cycle-forest

Definition

A clique is a clique-cycle-forest.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Clique-cycle-forest

Definition

A cycle is a clique-cycle-forest.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Clique-cycle-forest

Definition

Disjoint union of two clique-cycle-forests is a clique-cycle-forest.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Clique-cycle-forest

Definition

Graph obtained by identifying one vertex each from two different
components of a clique-cycle-forest is again a clique-cycle-forest.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Clique-cycle-forest

Definition

Graph obtained by identifying one vertex each from two different
components of a clique-cycle-forest is again a clique-cycle-forest.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Clique-cycle-forest

Example

ASL LT

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 1:

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

@ Delete: All vertices in X.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

@ Delete: All vertices in X.
@ Mark: Nothing.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

o Delete: All vertices in X.
@ Mark: Nothing.
o Parameter: Reduce k' by [x?/4 — x/2|, where x = |X|.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 1: Apply if 3 v € V(G’) and X C V(G’) such that

o G'[X]is a connected component of G’ — {v},
o G'[XU{v}]is a clique.

o Delete: All vertices in X.
@ Mark: Nothing.
o Parameter: Reduce k' by [x?/4 — x/2|, where x = |X|.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 1 contd.

o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 1 contd.

o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.

e New instance: (G”, k").

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 1 contd.

o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
e New instance: (G”, k").
o |V(G")|=n—xand k" = K — (x2/4 — x/2)

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 1 contd.

Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
New instance: (G”, k").
[V(G")| =n' —x and K" = k' — (x?/4 — x/2)

Consider f, a cut of G' — v.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 1 contd.

Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
New instance: (G”, k").
[V(G")| =n' —x and K" = k' — (x?/4 — x/2)

Consider f, a cut of G' — v.

Define g, a cut of G”:

e g = f + X partitioned evenly.
o |lgll =IIfll+x*/4 + x/2.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 1 contd.

o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
New instance: (G”, k").
[V(G")| =n' —x and K" = k' — (x?/4 — x/2)

Consider f, a cut of G' — v.

Define g, a cut of G':
e g = f + X partitioned evenly.
o llgll =Ifll +x*/4+ x/2.
Suppose ||f]| > (n —x —1) + k”. Then,

llgll > (n—x = 1)+ (K = (x*/4 = x/2)) + x* /4 + x/2
=n—1+kK.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 1 contd.

o Parameter: Reduce k by [x?/4 — x/2|, where x = |X|.
New instance: (G”, k").
[V(G")| =n' —x and K" = k' — (x?/4 — x/2)

Consider f, a cut of G' — v.

Define g, a cut of G':
e g = f + X partitioned evenly.
o llgll =Ifll +x*/4+ x/2.
Suppose ||f]| > (n —x —1) + k”. Then,

llgll > (n—x = 1)+ (K = (x*/4 = x/2)) + x* /4 + x/2
=n—1+kK.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 2:

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 2: Apply if 3 v € V(G’) and X C V(G’) such that

o G’[X] is a connected component of G’ — {v},
o G'[XU{v}]is a cycle.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 2: Apply if 3 v € V(G’) and X C V(G’) such that

o G’[X] is a connected component of G’ — {v},
o G'[XU{v}]is a cycle.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 2: Apply if 3 v € V(G’) and X C V(G’) such that

o G’[X] is a connected component of G’ — {v},
o G'[XU{v}]is a cycle.

@ Delete: All vertices in X.
@ Mark: Nothing.

e Parameter: Reduce k’ by 1 if x is odd, and no change in k' if
x is even (x = |X]).

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 3:

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 3: Apply if 3 v € V(G') and X C V(G’) such that

e G’'[X] is a connected component of G’ — {v},
o G'[X]is a clique.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 3: Apply if 3 v € V(G') and X C V(G’) such that

e G’'[X] is a connected component of G’ — {v},
o G'[X]is a clique.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 3: Apply if 3 v € V(G') and X C V(G’) such that

e G’'[X] is a connected component of G’ — {v},
o G'[X]is a clique.

@ Delete: All vertices in X.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 3: Apply if 3 v € V(G') and X C V(G’) such that

e G’'[X] is a connected component of G’ — {v},
o G'[X]is a clique.

@ Delete: All vertices in X.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 3: Apply if 3 v € V(G’) and X C V(G’) such that

e G’'[X] is a connected component of G’ — {v},
o G'[X]is a clique.

@ Delete: All vertices in X.
o Mark: v.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 3: Apply if 3 v € V(G’) and X C V(G’) such that

e G’'[X] is a connected component of G’ — {v},
o G'[X]is a clique.

@ Delete: All vertices in X.
o Mark: v.

e Parameter: Reduce kK’ by
[x?/4] + min {dexuguy(v), [x/2]} = x.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 3 contd.

o dgixuqvy(v) > 1 and x > 2. Otherwise, Rule 1 applies.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules—Rule 3 contd.

o dgixuqvy(v) > 1 and x > 2. Otherwise, Rule 1 applies.

[x?/4] + min {dgpxup(v), [x/2]} —x > [x*/4] +2 - x

[x
> [3%/4] +2-3
1.

@ Parameter drops.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Good Ps:

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Good P3: Induced P3 abc such that
o G’ —{a, b, c} is connected,

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Good P3: Induced P3 abc such that

o G'—{a, b, c} is connected,
e d(a)>2ord(b)>2ord(c)>2.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Good P3: Induced P3 abc such that

o G'—{a, b, c} is connected,
e d(a)>2ord(b)>2ord(c)>2.

@ Rule 4: Apply if 3 a good P5 abc.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Good P3: Induced P3 abc such that

o G'—{a, b, c} is connected,
e d(a)>2ord(b)>2ord(c)>2.

@ Rule 4: Apply if 3 a good P5 abc.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Good P3: Induced P3 abc such that

o G'—{a, b, c} is connected,
e d(a)>2ord(b)>2ord(c)>2.

@ Rule 4: Apply if 3 a good P5 abc.

o Delete: Vertices a, b, c.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Good P3: Induced P3 abc such that

o G'—{a, b, c} is connected,
e d(a)>2ord(b)>2ord(c)>2.

@ Rule 4: Apply if 3 a good P5 abc.

o Delete: Vertices a, b, c.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Reduction Rules

@ Good P3: Induced P3 abc such that
o G'—{a, b, c} is connected,
o d(a)>2ord(b)>2ord(c)>2.

@ Rule 4: Apply if 3 a good P5 abc.

o Delete: Vertices a, b, c.
e Mark: a, b, c.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Reduction Rules

@ Good P3: Induced P3 abc such that
o G'—{a, b, c} is connected,
o d(a)>2ord(b)>2ord(c)>2.

@ Rule 4: Apply if 3 a good P5 abc.

o Delete: Vertices a, b, c.

e Mark: a, b, c.

o Parameter: Reduce k' by [(d(a) — 2)/2], where o = highest
degree vertex in {a, b, c}.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Reduction Rules

@ Rule 5:

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Reduction Rules

@ Rule 5: Apply if 32,6 € V(G') and Y C V(G') such that
o ac ¢ E(G'),
o G’ —{a, c} has exactly two connected components, X and Y,
o |X|>2,
o G'[XU{a}] G'[X U{c}] are cliques.

MAX-CUT ABOVE SPANNING TREE is FPT
FPT Algorithm

FPT Algorithm

Reduction Rules

@ Rule 5: Apply if 32,6 € V(G') and Y C V(G') such that
o ac ¢ E(G'),
o G’ —{a, c} has exactly two connected components, X and Y,
o |X|>2,
o G'[XU{a}] G'[X U{c}] are cliques.

o Delete: All vertices in X U {a, b}.

MAX-CUT ABOVE SPANNING TREE is FPT
FPT Algorithm

FPT Algorithm

Reduction Rules

@ Rule 5: Apply if 32,6 € V(G') and Y C V(G') such that
o ac ¢ E(G'),
o G’ —{a, c} has exactly two connected components, X and Y,
o |X|>2,
o G'[XU{a}] G'[X U{c}] are cliques.

o Delete: All vertices in X U {a, b}.

MAX-CUT ABOVE SPANNING TREE is FPT
FPT Algorithm

FPT Algorithm

Reduction Rules

@ Rule 5: Apply if 32,6 € V(G') and Y C V(G') such that
e ac ¢ E(G'),
o G’ —{a, c} has exactly two connected components, X and Y,
o |X|>2,
o G'[XU{a}] G'[XU{c}] are cliques.

e Delete: All vertices in X U{a, b}.
e Mark: a, b.

MAX-CUT ABOVE SPANNING TREE is FPT
FPT Algorithm

FPT Algorithm

Reduction Rules

@ Rule 5: Apply if 32,6 € V(G') and Y C V(G') such that
e ac ¢ E(G'),
o G’ —{a, c} has exactly two connected components, X and Y,
o |X|>2,
o G'[XU{a}] G'[XU{c}] are cliques.

e Delete: All vertices in X U{a, b}.
e Mark: a, b.
e Parameter: Reduce kK’ by

[x/2] - |x/2] + [depyugay(a)/2] + [deryugsy(b)/2] — 2.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Rules 1-5 are one-way safe.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Rules 1-5 are one-way safe. \
If G has at least one edge then one of Rules 1-5 will apply. l

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Rules 1-5 are one-way safe. \
If G has at least one edge then one of Rules 1-5 will apply. \

If K <0, then (G, k") is a yes-instance, and hence (G, k) is a

yes-instance. Otherwise,
vertices.

S| < 3k, where S is the set of marked

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

G — S is a clique-cycle-forest.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

G — S is a clique-cycle-forest. l

@ Proof by induction on the length of the reduction.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

G — S is a clique-cycle-forest. l

@ Proof by induction on the length of the reduction.
oletG=Gy— G — ---— G = Kj.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

G — S is a clique-cycle-forest. l

@ Proof by induction on the length of the reduction.
oletG=Gy— G — ---— G = Kj.

@ Ind. hyp.: G; — S is a clique-cycle-forest.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

G — S is a clique-cycle-forest. l

@ Proof by induction on the length of the reduction.
oletG=Gy— G — ---— G = Kj.

@ Ind. hyp.: G; — S is a clique-cycle-forest.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.

00000 s

S

MAX-CUT ABOVE SPANNING TREE is FPT
FPT Algorithm

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.

00000 s

O
e ene
e

G —-S

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 1: X U {v} is a clique.

00000 s

[P

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 1: X U {v} is a clique.
Case 1l: v S

0000 s

[P

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 1: X U {v} is a clique.
Case 2: v ¢ S.

00000 s

[P

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 1: X U {v} is a clique.
Case 2: v ¢ S.

00000 s

[P

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 1: X U {v} is a clique.
Case 2: v ¢ S.

00000 s

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 2: X U {v} is a cycle.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 2: X U {v} is a cycle. X — v is a path.

00000 s

[P

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 2: X U {v} is a cycle.
Case 1: v 5. X — v is a path.

0000 S

[A

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 2: X U {v} is a cycle.
Case 2: v ¢ S.

00000 s

[P

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 2: X U {v} is a cycle.
Case 2: v ¢ S.

00000 s

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.

Rule 3: X is a clique. v is marked.

0000 S

[A

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 4: X is a P3. X is marked.

00000 s

e

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 4: X is a P3. X is marked.

00000 s

e

G-5=G—-S X-5=10

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Key Lemma

Ind. hyp.: G; — S is a clique-cycle-forest.
Rule 5: X\ {a, b} is a clique. a, b are marked.

O00G® s

[P

MAaX-CuT ABOVE SPANNING TREE is FPT

MAX-CUT-WITH-WEIGHTED-VERTICES

e Input:
e A graph G, an integer t € N, and
e weight functions wy : V(G) — NU {0} and
wy : V(G) - NU{0}.

MAaX-CuT ABOVE SPANNING TREE is FPT

MAX-CUT-WITH-WEIGHTED-VERTICES

e Input:
e A graph G, an integer t € N, and
e weight functions wy : V(G) — NU {0} and
wy : V(G) - NU{0}.
e Objective: Test if 3 7 : V(G) — {0,1} such that

nyEE(G) ’f(X) - f(y)H—Zf(x):O WO(X)+Zf(x):1 Wl(X) > t?

MAX-CUT ABOVE SPANNING TREE is FPT

MAX-CUT-WITH-WEIGHTED- VERTICES

e Input:
e A graph G, an integer t € N, and
e weight functions wy : V(G) — N U {0} and
wy : V(G) - NU{0}.
e Objective: Test if 3 7 : V(G) — {0,1} such that

nyEE(G) ‘f(X) - f(y)H_Zf(x):O WO(X)+Zf(x):1 Wl(X) > t?

Lemma (Crowston et al.)

MAX-CuT-WITH-WEIGHTED-VERTICES is polynomial time
solvable on clique-forests.

MAX-CUT ABOVE SPANNING TREE is FPT

MAX-CUT-WITH-WEIGHTED- VERTICES

e Input:
e A graph G, an integer t € N, and
e weight functions wy : V(G) — N U {0} and
wy : V(G) - NU{0}.
e Objective: Test if 3 7 : V(G) — {0,1} such that

nyEE(G) ‘f(X) - f(y)H_Zf(x):O WO(X)+Zf(x):1 Wl(X) > t?

Lemma (Crowston et al.)

MAX-CuT-WITH-WEIGHTED-VERTICES is polynomial time
solvable on clique-forests.

MAx-CuT-WITH-WEIGHTED- VERTICES is polynomial time
solvable on clique-cycle-forests.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST

@ G — S is a clique-cycle-forest.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST

@ G — S is a clique-cycle-forest.

@ Guess the optimal partition of S.

MAaX-CuT ABOVE SPANNING TREE is FPT
FPT Algorithm

FPT Algorithm for MAX-CuT-AST

@ G — S is a clique-cycle-forest.

@ Guess the optimal partition of S.
@ For each guess f : S — {0, 1}, construct a MCWWYV instance

on G —S.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST

@ G — S is a clique-cycle-forest.

@ Guess the optimal partition of S.

@ For each guess f : S — {0, 1}, construct a MCWWYV instance
on G —S.

o 2I5I < 23k — 8k such instances.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST

G — S is a clique-cycle-forest.

Guess the optimal partition of S.
For each guess f : S — {0,1}, construct a MCWWYV instance
on G —S.

215! < 23k — 8k such instances.

Original MAX-CUT-AST instance is a yes-instance if and
only if one of these 8% instances of MCWWV is a yes-instance.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST

G — S is a clique-cycle-forest.

Guess the optimal partition of S.
For each guess f : S — {0,1}, construct a MCWWYV instance
on G —S.

215! < 23k — 8k such instances.

Original MAX-CUT-AST instance is a yes-instance if and
only if one of these 8% instances of MCWWV is a yes-instance.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST

Fix f : S — {0,1}. Construct an instance of MCWWV.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST

Fix f : S — {0,1}. Construct an instance of MCWWV.
@ (= no. of edges of G[S] that are satisfied by f.

MAaX-CuT ABOVE SPANNING TREE is FPT
FPT Algorithm for MAX-CuT-AST

Fix f : S — {0,1}. Construct an instance of MCWWV.
@ (= no. of edges of G[S] that are satisfied by f.
e For x e V(G)—S,

o wp(x) s€ S |sxe€ E(G), and f(s)

=1 1},
o wmi(x)=[{s €S |sxecE(G), and f(s)

0},

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST

O O O O s

O O
O O

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm for MAX-CuT-AST

OO&%OO

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

FPT Algorithm for MAX-CuT-AST

OO&%OO

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST

~
I
| &

3
S
—
X
NaPNa
Il
w N

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST contd.

@ Sett=n—-1+k—"¢.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST contd.

@ Sett=n—-1+k—~1.
o Let f': V(G —S) — {0,1} = optimum solution for MCWWV
on (G — S, wo, wy, t)

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST contd.

@ Define a cut g: V(G) — {0,1} of G.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm for MAX-CuT-AST contd.

@ Define a cut g: V(G) — {0,1} of G.
e g(x)="f(x)if xe S and
g(x)="f'(x)if xe V(G -2S5).

MAaX-CuT ABOVE SPANNING TREE is FPT
FPT Algorithm

FPT Algorithm for MAX-CuT-AST contd.

@ Define a cut g: V(G) — {0,1} of G.
e g(x)="f(x)if xe S and
g(x)="f'(x)if xe V(G -2S5).

lgll=¢+ D lg(x)—eW)l

xy€E(G—-S)

+ > wm)+ Y wm(x)
x e V(G-Y5) x e V(G-15)
g(x)=0 gx)=1

=L+ |-

MAaX-CuT ABOVE SPANNING TREE is FPT
FPT Algorithm

FPT Algorithm for MAX-CuT-AST contd.

@ Define a cut g: V(G) — {0,1} of G.
e g(x)="f(x)if xe S and
g(x)="f'(x)if xe V(G -2S5).

lgll=¢+ D lg(x)—eW)l

xy€E(G—-S)
+ > wm)+ Y wm(x)
x e V(G-Y5) x e V(G-15)
g(x)=0 gx)=1
= ¢+

ollgllzn—1+ke=|If|zn-1+k-L=t

MAaX-CuT ABOVE SPANNING TREE is FPT
FPT Algorithm

FPT Algorithm for MAX-CuT-AST contd.

@ Define a cut g: V(G) — {0,1} of G.
e g(x)="f(x)if xe S and
g(x)="f'(x)if xe V(G -2S5).

lgll=¢+ D lg(x)—eW)l

xy€E(G—-S)
+ > wm)+ Y wm(x)
x e V(G-Y5) x e V(G-15)
g(x)=0 gx)=1
= ¢+

ollgllzn—1+ke=|If|zn-1+k-L=t

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Lower Bound

No 2°(%) algorithm

e MAX-CUT has no 2°(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Lower Bound

No 2°(%) algorithm

e MAX-CUT has no 2°(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

@ Reduce MAX-CuUT instance (G, t) to MAX-CuT-AST
instance (G, k).

@ Setk=t—(n—1).

MAaX-CuT ABOVE SPANNING TREE is FPT

FPT Algorithm

Lower Bound

No 2°(%) algorithm

e MAX-CUT has no 2°(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

@ Reduce MAX-CuUT instance (G, t) to MAX-CuT-AST
instance (G, k).

@ Setk=t—(n—1).
o k<t.

MAX-CUT ABOVE SPANNING TREE is FPT

FPT Algorithm

Lower Bound

No 2°(%) algorithm

e MAX-CUT has no 2°(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

Reduce MAX-CUT instance (G, t) to MAX-CuT-AST
instance (G, k).

Set k=t—(n—1).
k<t

2°(K) algorithm for MAX-CuT-AST will imply 2°(t) algorithm
for Max-Cur.

MAaX-CuT ABOVE SPANNING TREE is FPT

Polynomial Kernel

Polynomial Kernel
Strategy

MAX-CUT ABOVE SPANNING TREE is FPT

Polynomial Kernel

Polynomial Kernel

Strategy
@ G has an even cycle implies G has a cut of size n—1+1=n.
@ One even cycle means one additional edge in the cut.
e If G has k vertex disjoint even cycles, then (G, k) is a
yes-instance.
@ Cycles need not be vertex disjoint.
o Identify families of cycles such that all edges of all the cycles

in the family fall into a cut.

MAX-CUT ABOVE SPANNING TREE is FPT

Polynomial Kernel

Polynomial Kernel
Strategy contd.

G — S is a clique-cycle-forest, a forest of blocks.
Bound the number of components of G — S.
Bound the number of blocks in each component.
Bound the size of each block.

O(k®) kernel.

MAaX-CuT ABOVE SPANNING TREE is FPT

Results and Conclusion

Results and Conclusion

e FPT algorithm and O(k®) kernel.

Simple reduction to MAX-CuT-AEE possible?
O(k) kernel?
Extend the results to signed graphs?

MAaX-CuT ABOVE SPANNING TREE is FPT

Thank You.

	Introduction
	Problem Statement and Results
	Lower Bounds for Cut Size
	Parameterizing Max-Cut

	FPT Algorithm
	Lower Bound

	Polynomial Kernel
	Results and Conclusion
	

