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Introduction

Cut of a graph G
Definition

A cut of G is a function

f : V (G )→ {0, 1}

.

Size of the cut f ,

||f || = |{uv ∈ E (G ) | f (u) 6= f (v)}|
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Input: A graph G and a non-negative integer k.

Question: Does G have a cut of size at least k?

Max-Cut is NP-hard.
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Problem Statement and Results

Max-Cut Above Spanning Tree (Max-Cut-AST)

Input: A connected n-vertex graph G and a non-negative
integer k.

Parameter: k

Question: Does G have a cut of size at least n − 1 + k?

Results:
8knO(1) algorithm and O(k5) kernel.
No 2o(k) algorithm unless the Exponential Time Hypothesis
fails.
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Lower Bounds for Cut Size

Graph G , |V (G )| = n, |E (G )| = m.

G has a cut of size at least
1 m/2 [Erdős, 1965].

2 m/2 + (n − 1)/4 if G is connected [Edwards, 1975] .
Edwards-Erdős bound.

3 n − 1 if G is connected.
Spanning tree bound.
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Cut of size at least n − 1.
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n = 5
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Edwards-Erdős Bound vs. Spanning Tree Bound

Connected graph G , |V (G )| = n, |E (G )| = m.

Edwards-Erdős Bound: m/2 + (n − 1)/4.

Spanning Tree Bound: n − 1.

Spanning Tree bound gives a better guarantee for cut size on
sparse graphs.

n − 1 > m/2 + (n − 1)/4⇐⇒ (average degree of G ) < 3.
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Parameterizing Max-Cut

Parameterize by cut size?

Input: A graph G and a positive integer k , |V (G )| = n,
|E (G )| = m.

Parameter: k

Question: Does G have a cut of size at least k?

Trivially FPT

k ≤ m/2 =⇒ yes.
m ≤ 2k. Brute force.

Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

FPT.

Above Guarantee parameterization.
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Max-Cut: Above Guarantee Parameterizations

Max-Cut Above Edwards-Erdős (Max-Cut-AEE)

Input: A connected graph G and a positive integer k ,
|V (G )| = n, |E (G )| = m.

Parameter: k

Question: Does G have a cut of size at least
m/2 + (n − 1)/4 + k?

Results:
8knO(1) algorithm and O(k5) kernel [Crowston et al., 2012]
Extended to signed graphs with an O(k) kernel [Etscheid and
Mnich, 2016]
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Input: A connected graph G and a positive integer k ,
|V (G )| = n, |E (G )| = m.

Parameter: k

Question: Does G have a cut of size at least
m/2 + (n − 1)/4 + k?

Results:
8knO(1) algorithm and O(k5) kernel [Crowston et al., 2012]
Extended to signed graphs with an O(k) kernel [Etscheid and
Mnich, 2016]



Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Max-Cut Above Spanning Tree
(Max-Cut-AST)
Our Problem

Max-Cut Above Spanning Tree (Max-Cut-AST)

Input: A connected graph G and a positive integer k ,
|V (G )| = n.

Parameter: k

Question: Does G have a cut of size at least n − 1 + k?

Results:
8knO(1) algorithm and O(k5) kernel.
No 2o(k) algorithm.



Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Max-Cut Above Spanning Tree
(Max-Cut-AST)
Our Problem

Max-Cut Above Spanning Tree (Max-Cut-AST)

Input: A connected graph G and a positive integer k ,
|V (G )| = n.

Parameter: k

Question: Does G have a cut of size at least n − 1 + k?

Results:
8knO(1) algorithm and O(k5) kernel.
No 2o(k) algorithm.



Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Algorithm
Strategy

In polynomial time

either conclude that (G , k) is a yes-instance

or find a small set S such that G − S has a nice structure.

Guess the optimal partition of S .

Optimally extend each guess to a partition of G − S .

Define an auxiliary problem on G − S .
Solve it in polynomial time by exploiting G −S ’s nice structure.
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FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .
Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.
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Outline of Algorithm
Contd.

Rules apply as long as G ′ 6= K1.

If k ′ ≤ 0, then (G , k) is a yes-instance.

Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

G − S is a clique-cycle-forest. Every block (2-connected
component) of G − S is a clique or a cycle.

Guess the partition of S . Optimally extend it to G − S .
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A clique is a clique-cycle-forest.
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FPT Algorithm
Reduction Rules

Rule 1:

Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X ] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a clique.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by
⌈
x2/4− x/2

⌉
, where x = |X |.
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⌈
x2/4− x/2

⌉
, where x = |X |.
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Parameter: Reduce k by
⌈
x2/4− x/2

⌉
, where x = |X |.

New instance: (G ′′, k ′′).

|V (G ′′)| = n′ − x and k ′′ = k ′ − (x2/4− x/2)

Consider f , a cut of G ′ − v .

Define g , a cut of G ′:

g = f + X partitioned evenly.
||g || = ||f ||+ x2/4 + x/2.

Suppose ||f || ≥ (n − x − 1) + k ′′. Then,

||g || ≥ (n − x − 1) + (k ′ − (x2/4− x/2)) + x2/4 + x/2

= n − 1 + k ′.
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Rule 2:

Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X ] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a cycle.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by 1 if x is odd, and no change in k ′ if
x is even (x = |X |).
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Mark: v .

Parameter: Reduce k ′ by
bx2/4c+ min

{
dG ′[X∪{v}](v), dx/2e

}
− x .
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dG ′[X∪{v}](v) > 1 and x > 2. Otherwise, Rule 1 applies.

bx2/4c+ min
{
dG [X∪{v}](v), dx/2e

}
− x ≥ bx2/4c+ 2− x

≥ b32/4c+ 2− 3

= 1.

Parameter drops.
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Induced P3 abc such that

G ′ − {a, b, c} is connected,
d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

Delete: Vertices a, b, c .
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X X

X

Delete: Vertices a, b, c .
Mark: a, b, c .

Parameter: Reduce k ′ by d(d(α)− 2)/2e, where α = highest
degree vertex in {a, b, c}.
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Rule 5:

Apply if ∃ a, b ∈ V (G ′) and Y ⊆ V (G ′) such that

ac /∈ E (G ′),
G ′ − {a, c} has exactly two connected components, X and Y ,
|X | ≥ 2,
G ′[X ∪ {a}] G ′[X ∪ {c}] are cliques.

a

b

Delete: All vertices in X ∪ {a, b}.
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Lemma

Rules 1-5 are one-way safe.

Lemma

If G ′ has at least one edge then one of Rules 1-5 will apply.

Lemma

If k ′ ≤ 0, then (G ′, k ′) is a yes-instance, and hence (G , k) is a
yes-instance. Otherwise, |S | ≤ 3k , where S is the set of marked
vertices.
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Lemma

G − S is a clique-cycle-forest.

Proof by induction on the length of the reduction.

Let G = G0 → G1 → · · · → G` = K1.

Ind. hyp.: G1 − S is a clique-cycle-forest.
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S



Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 2: X ∪ {v} is a cycle. X − v is a path.

S



Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 2: X ∪ {v} is a cycle.

Case 1: v ∈ S . X − v is a path.

Sv



Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 2: X ∪ {v} is a cycle.

Case 2: v /∈ S .

S

v



Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 2: X ∪ {v} is a cycle.

Case 2: v /∈ S .

S

vv



Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 3: X is a clique. v is marked.
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FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 5: X \ {a, b} is a clique. a, b are marked.

Sa b
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FPT Algorithm

Max-Cut-With-Weighted-Vertices

Input:
A graph G , an integer t ∈ N, and
weight functions w0 : V (G )→ N ∪ {0} and

w1 : V (G )→ N ∪ {0}.

Objective: Test if ∃ f : V (G )→ {0, 1} such that∑
xy∈E(G) |f (x)− f (y)|+

∑
f (x)=0 w0(x)+

∑
f (x)=1 w1(x) ≥ t?

Lemma (Crowston et al.)

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-forests.

Lemma

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-cycle-forests.
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FPT Algorithm for Max-Cut-AST

G − S is a clique-cycle-forest.

Guess the optimal partition of S .

For each guess f : S → {0, 1}, construct a MCWWV instance
on G − S .

2|S| ≤ 23k = 8k such instances.

Original Max-Cut-AST instance is a yes-instance if and
only if one of these 8k instances of MCWWV is a yes-instance.
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FPT Algorithm for Max-Cut-AST

Fix f : S → {0, 1}. Construct an instance of MCWWV.

` = no. of edges of G [S ] that are satisfied by f .

For x ∈ V (G )− S ,

w0(x) = |{s ∈ S | sx ∈ E (G ), and f (s) = 1}|,
w1(x) = |{s ∈ S | sx ∈ E (G ), and f (s) = 0}|.
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S

x

` = 4
w0(x) = 2
w1(x) = 3
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FPT Algorithm for Max-Cut-AST contd.

Set t = n − 1 + k − `.

Let f ′ : V (G − S)→ {0, 1} = optimum solution for MCWWV
on (G − S ,w0,w1, t)
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FPT Algorithm for Max-Cut-AST contd.

Define a cut g : V (G )→ {0, 1} of G .

g(x) = f (x) if x ∈ S and
g(x) = f ′(x) if x ∈ V (G − S).

||g || = `+
∑

xy∈E(G−S)

|g(x)− g(y)|

+
∑

x ∈ V (G − S)
g(x) = 0

w0(x) +
∑

x ∈ V (G − S)
g(x) = 1

w1(x)

= `+ ||f ′||.

||g || ≥ n − 1 + k ⇐⇒ ||f ′|| ≥ n − 1 + k − ` = t.
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Lower Bound

No 2o(k) algorithm

Max-Cut has no 2o(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

Reduce Max-Cut instance (G , t) to Max-Cut-AST
instance (G , k).

Set k = t − (n − 1).

k ≤ t.

2o(k) algorithm for Max-Cut-AST will imply 2o(t) algorithm
for Max-Cut.
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Polynomial Kernel
Strategy

G has an even cycle implies G has a cut of size n− 1 + 1 = n.

One even cycle means one additional edge in the cut.

If G has k vertex disjoint even cycles, then (G , k) is a
yes-instance.

Cycles need not be vertex disjoint.

Identify families of cycles such that all edges of all the cycles
in the family fall into a cut.
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Polynomial Kernel

Polynomial Kernel
Strategy contd.

G − S is a clique-cycle-forest, a forest of blocks.

Bound the number of components of G − S .

Bound the number of blocks in each component.

Bound the size of each block.

O(k5) kernel.
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Results and Conclusion

Results and Conclusion

FPT algorithm and O(k5) kernel.

Simple reduction to Max-Cut-AEE possible?

O(k) kernel?

Extend the results to signed graphs?
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Thank You.
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