
Max-Cut Above Spanning Tree is FPT

Max-Cut Above Spanning Tree is FPT

Jayakrishnan Madathil1 Saket Saurabh1,2 Meirav Zehavi3

1Institute of Mathematical Sciences, HBNI
Chennai, India

2Department of Informatics
University of Bergen, Norway

3Department of Computer Science
Ben-Gurion University, Israel

CSR, 2018

Max-Cut Above Spanning Tree is FPT

Outline

1 Introduction
Problem Statement and Results
Lower Bounds for Cut Size
Parameterizing Max-Cut

2 FPT Algorithm

3 Polynomial Kernel

Max-Cut Above Spanning Tree is FPT

Introduction

Cut of a graph G
Definition

A cut of G is a function

f : V (G)→ {0, 1}

.

Size of the cut f ,

||f || = |{uv ∈ E (G) | f (u) 6= f (v)}|

.

Max-Cut Above Spanning Tree is FPT

Introduction

Cut of a graph G
Definition

A cut of G is a function

f : V (G)→ {0, 1}

.

Size of the cut f ,

||f || = |{uv ∈ E (G) | f (u) 6= f (v)}|

.

Max-Cut Above Spanning Tree is FPT

Introduction

Max-Cut
Definition

Max-Cut

Input: A graph G and a non-negative integer k.

Question: Does G have a cut of size at least k?

Max-Cut is NP-hard.

Max-Cut Above Spanning Tree is FPT

Introduction

Max-Cut
Definition

Max-Cut

Input: A graph G and a non-negative integer k.

Question: Does G have a cut of size at least k?

Max-Cut is NP-hard.

Max-Cut Above Spanning Tree is FPT

Introduction

Problem Statement and Results

Outline

1 Introduction
Problem Statement and Results
Lower Bounds for Cut Size
Parameterizing Max-Cut

2 FPT Algorithm

3 Polynomial Kernel

Max-Cut Above Spanning Tree is FPT

Introduction

Problem Statement and Results

Problem Statement and Results

Max-Cut Above Spanning Tree (Max-Cut-AST)

Input: A connected n-vertex graph G and a non-negative
integer k.

Parameter: k

Question: Does G have a cut of size at least n − 1 + k?

Results:
8knO(1) algorithm and O(k5) kernel.
No 2o(k) algorithm unless the Exponential Time Hypothesis
fails.

Max-Cut Above Spanning Tree is FPT

Introduction

Problem Statement and Results

Problem Statement and Results

Max-Cut Above Spanning Tree (Max-Cut-AST)

Input: A connected n-vertex graph G and a non-negative
integer k.

Parameter: k

Question: Does G have a cut of size at least n − 1 + k?

Results:
8knO(1) algorithm and O(k5) kernel.
No 2o(k) algorithm unless the Exponential Time Hypothesis
fails.

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Outline

1 Introduction
Problem Statement and Results
Lower Bounds for Cut Size
Parameterizing Max-Cut

2 FPT Algorithm

3 Polynomial Kernel

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

Graph G , |V (G)| = n, |E (G)| = m.

G has a cut of size at least
1 m/2 [Erdős, 1965].

2 m/2 + (n − 1)/4 if G is connected [Edwards, 1975] .
Edwards-Erdős bound.

3 n − 1 if G is connected.
Spanning tree bound.

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

Graph G , |V (G)| = n, |E (G)| = m.

G has a cut of size at least
1 m/2 [Erdős, 1965].

2 m/2 + (n − 1)/4 if G is connected [Edwards, 1975] .
Edwards-Erdős bound.

3 n − 1 if G is connected.
Spanning tree bound.

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

Graph G , |V (G)| = n, |E (G)| = m.

G has a cut of size at least
1 m/2 [Erdős, 1965].

2 m/2 + (n − 1)/4 if G is connected [Edwards, 1975] .
Edwards-Erdős bound.

3 n − 1 if G is connected.
Spanning tree bound.

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Lower Bounds for Cut Size

Graph G , |V (G)| = n, |E (G)| = m.

G has a cut of size at least
1 m/2 [Erdős, 1965].

2 m/2 + (n − 1)/4 if G is connected [Edwards, 1975] .
Edwards-Erdős bound.

3 n − 1 if G is connected.
Spanning tree bound.

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

Connected graph G , |V (G)| = n.

Cut of size at least n − 1.

a b

c
d

e

n = 5

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

Connected graph G , |V (G)| = n.

Cut of size at least n − 1.

a b

c
d

e

n = 5

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

Connected graph G , |V (G)| = n.

Cut of size at least n − 1.

a b

c
d

e

n = 5

a b

c
d

e

Spanning Tree
n − 1 edges

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

Connected graph G , |V (G)| = n

Cut of size at least n − 1

a b

c
d

e

n = 5

a b

c
d

e

Spanning tree
n − 1 edges
2-colorable

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Spanning Tree Bound

Connected graph G , |V (G)| = n.

Cut of size at least n − 1.

a b

c
d

e

n = 5

a b

c
d

e

Spanning tree
n − 1 edges
2-colorable

a

b

c

d

e

Cut of size n − 1

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Edwards-Erdős Bound vs. Spanning Tree Bound

Connected graph G , |V (G)| = n, |E (G)| = m.

Edwards-Erdős Bound: m/2 + (n − 1)/4.

Spanning Tree Bound: n − 1.

Spanning Tree bound gives a better guarantee for cut size on
sparse graphs.

n − 1 > m/2 + (n − 1)/4⇐⇒ (average degree of G) < 3.

Max-Cut Above Spanning Tree is FPT

Introduction

Lower Bounds for Cut Size

Edwards-Erdős Bound vs. Spanning Tree Bound

Connected graph G , |V (G)| = n, |E (G)| = m.

Edwards-Erdős Bound: m/2 + (n − 1)/4.

Spanning Tree Bound: n − 1.

Spanning Tree bound gives a better guarantee for cut size on
sparse graphs.

n − 1 > m/2 + (n − 1)/4⇐⇒ (average degree of G) < 3.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Outline

1 Introduction
Problem Statement and Results
Lower Bounds for Cut Size
Parameterizing Max-Cut

2 FPT Algorithm

3 Polynomial Kernel

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Parameterizing Max-Cut

Parameterize by cut size?

Input: A graph G and a positive integer k , |V (G)| = n,
|E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least k?

Trivially FPT

k ≤ m/2 =⇒ yes.
m ≤ 2k. Brute force.

Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

FPT.

Above Guarantee parameterization.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Parameterizing Max-Cut

Parameterize by cut size?

Input: A graph G and a positive integer k , |V (G)| = n,
|E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least k?

Trivially FPT

k ≤ m/2 =⇒ yes.
m ≤ 2k. Brute force.

Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

FPT.

Above Guarantee parameterization.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Parameterizing Max-Cut

Parameterize by cut size?

Input: A graph G and a positive integer k , |V (G)| = n,
|E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least k?

Trivially FPT

k ≤ m/2 =⇒ yes.
m ≤ 2k. Brute force.

Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

FPT.

Above Guarantee parameterization.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Parameterizing Max-Cut

Parameterize by cut size?

Input: A graph G and a positive integer k , |V (G)| = n,
|E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least k?

Trivially FPT

k ≤ m/2 =⇒ yes.

m ≤ 2k. Brute force.

Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

FPT.

Above Guarantee parameterization.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Parameterizing Max-Cut

Parameterize by cut size?

Input: A graph G and a positive integer k , |V (G)| = n,
|E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least k?

Trivially FPT

k ≤ m/2 =⇒ yes.
m ≤ 2k. Brute force.

Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

FPT.

Above Guarantee parameterization.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Parameterizing Max-Cut

Parameterize by cut size?

Input: A graph G and a positive integer k , |V (G)| = n,
|E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least k?

Trivially FPT

k ≤ m/2 =⇒ yes.
m ≤ 2k. Brute force.

Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

FPT.

Above Guarantee parameterization.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Parameterizing Max-Cut

Parameterize by cut size?

Input: A graph G and a positive integer k , |V (G)| = n,
|E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least k?

Trivially FPT

k ≤ m/2 =⇒ yes.
m ≤ 2k. Brute force.

Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

FPT.

Above Guarantee parameterization.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Parameterizing Max-Cut

Parameterize by cut size?

Input: A graph G and a positive integer k , |V (G)| = n,
|E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least k?

Trivially FPT

k ≤ m/2 =⇒ yes.
m ≤ 2k. Brute force.

Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least m/2 + k?

FPT.

Above Guarantee parameterization.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Max-Cut: Above Guarantee Parameterizations

Max-Cut Above Edwards-Erdős (Max-Cut-AEE)

Input: A connected graph G and a positive integer k ,
|V (G)| = n, |E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least
m/2 + (n − 1)/4 + k?

Results:
8knO(1) algorithm and O(k5) kernel [Crowston et al., 2012]
Extended to signed graphs with an O(k) kernel [Etscheid and
Mnich, 2016]

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Max-Cut: Above Guarantee Parameterizations

Max-Cut Above Edwards-Erdős (Max-Cut-AEE)

Input: A connected graph G and a positive integer k ,
|V (G)| = n, |E (G)| = m.

Parameter: k

Question: Does G have a cut of size at least
m/2 + (n − 1)/4 + k?

Results:
8knO(1) algorithm and O(k5) kernel [Crowston et al., 2012]
Extended to signed graphs with an O(k) kernel [Etscheid and
Mnich, 2016]

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Max-Cut Above Spanning Tree
(Max-Cut-AST)
Our Problem

Max-Cut Above Spanning Tree (Max-Cut-AST)

Input: A connected graph G and a positive integer k ,
|V (G)| = n.

Parameter: k

Question: Does G have a cut of size at least n − 1 + k?

Results:
8knO(1) algorithm and O(k5) kernel.
No 2o(k) algorithm.

Max-Cut Above Spanning Tree is FPT

Introduction

Parameterizing Max-Cut

Max-Cut Above Spanning Tree
(Max-Cut-AST)
Our Problem

Max-Cut Above Spanning Tree (Max-Cut-AST)

Input: A connected graph G and a positive integer k ,
|V (G)| = n.

Parameter: k

Question: Does G have a cut of size at least n − 1 + k?

Results:
8knO(1) algorithm and O(k5) kernel.
No 2o(k) algorithm.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Algorithm
Strategy

In polynomial time

either conclude that (G , k) is a yes-instance

or find a small set S such that G − S has a nice structure.

Guess the optimal partition of S .

Optimally extend each guess to a partition of G − S .

Define an auxiliary problem on G − S .
Solve it in polynomial time by exploiting G −S ’s nice structure.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Algorithm
Strategy

In polynomial time

either conclude that (G , k) is a yes-instance
or find a small set S such that G − S has a nice structure.

Guess the optimal partition of S .

Optimally extend each guess to a partition of G − S .

Define an auxiliary problem on G − S .
Solve it in polynomial time by exploiting G −S ’s nice structure.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Algorithm
Strategy

In polynomial time

either conclude that (G , k) is a yes-instance
or find a small set S such that G − S has a nice structure.

Guess the optimal partition of S .

Optimally extend each guess to a partition of G − S .

Define an auxiliary problem on G − S .
Solve it in polynomial time by exploiting G −S ’s nice structure.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Algorithm
Strategy

In polynomial time

either conclude that (G , k) is a yes-instance
or find a small set S such that G − S has a nice structure.

Guess the optimal partition of S .

Optimally extend each guess to a partition of G − S .

Define an auxiliary problem on G − S .

Solve it in polynomial time by exploiting G −S ’s nice structure.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Algorithm
Strategy

In polynomial time

either conclude that (G , k) is a yes-instance
or find a small set S such that G − S has a nice structure.

Guess the optimal partition of S .

Optimally extend each guess to a partition of G − S .

Define an auxiliary problem on G − S .
Solve it in polynomial time by exploiting G −S ’s nice structure.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .
Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .
Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .
Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.

Delete a set of vertices X .
Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .

Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .
Mark a set of vertices A.

Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .
Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .
Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .
Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.

|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm

Apply a set of one-way reduction rules.

One-way rule: (G , k)→ (G ′, k ′) such that

(G ′, k ′) is a yes-instance =⇒ (G , k) is a yes-instance.
Converse need not hold.

Generic Reduction Rule:

Apply if [some condition] holds.
Delete a set of vertices X .
Mark a set of vertices A.
Decrement k appropriately.

Guarantees:

G ′ is connected.
|A| ≤ 3
A 6= ∅ =⇒ k drops by at least 1.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G ′ 6= K1.

If k ′ ≤ 0, then (G , k) is a yes-instance.

Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

G − S is a clique-cycle-forest. Every block (2-connected
component) of G − S is a clique or a cycle.

Guess the partition of S . Optimally extend it to G − S .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G ′ 6= K1.

If k ′ ≤ 0, then (G , k) is a yes-instance.

Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

G − S is a clique-cycle-forest. Every block (2-connected
component) of G − S is a clique or a cycle.

Guess the partition of S . Optimally extend it to G − S .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G ′ 6= K1.

If k ′ ≤ 0, then (G , k) is a yes-instance.

Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

G − S is a clique-cycle-forest. Every block (2-connected
component) of G − S is a clique or a cycle.

Guess the partition of S . Optimally extend it to G − S .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G ′ 6= K1.

If k ′ ≤ 0, then (G , k) is a yes-instance.

Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

G − S is a clique-cycle-forest.

Every block (2-connected
component) of G − S is a clique or a cycle.

Guess the partition of S . Optimally extend it to G − S .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G ′ 6= K1.

If k ′ ≤ 0, then (G , k) is a yes-instance.

Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

G − S is a clique-cycle-forest. Every block (2-connected
component) of G − S is a clique or a cycle.

Guess the partition of S . Optimally extend it to G − S .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G ′ 6= K1.

If k ′ ≤ 0, then (G , k) is a yes-instance.

Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

G − S is a clique-cycle-forest. Every block (2-connected
component) of G − S is a clique or a cycle.

Guess the partition of S . Optimally extend it to G − S .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Outline of Algorithm
Contd.

Rules apply as long as G ′ 6= K1.

If k ′ ≤ 0, then (G , k) is a yes-instance.

Otherwise, at most 3k vertices are marked.
Let S = set of marked vertices.

G − S is a clique-cycle-forest. Every block (2-connected
component) of G − S is a clique or a cycle.

Guess the partition of S . Optimally extend it to G − S .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Clique-cycle-forest
Definition

A clique is a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Clique-cycle-forest
Definition

A cycle is a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Clique-cycle-forest
Definition

Disjoint union of two clique-cycle-forests is a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Clique-cycle-forest
Definition

Graph obtained by identifying one vertex each from two different
components of a clique-cycle-forest is again a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Clique-cycle-forest
Definition

Graph obtained by identifying one vertex each from two different
components of a clique-cycle-forest is again a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Clique-cycle-forest
Example

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 1:

Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a clique.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by
⌈
x2/4− x/2

⌉
, where x = |X |.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 1: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a clique.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by
⌈
x2/4− x/2

⌉
, where x = |X |.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 1: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a clique.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by
⌈
x2/4− x/2

⌉
, where x = |X |.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 1: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a clique.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by
⌈
x2/4− x/2

⌉
, where x = |X |.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 1: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a clique.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by
⌈
x2/4− x/2

⌉
, where x = |X |.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 1: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a clique.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by
⌈
x2/4− x/2

⌉
, where x = |X |.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 1: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a clique.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by
⌈
x2/4− x/2

⌉
, where x = |X |.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules–Rule 1 contd.

Parameter: Reduce k by
⌈
x2/4− x/2

⌉
, where x = |X |.

New instance: (G ′′, k ′′).

|V (G ′′)| = n′ − x and k ′′ = k ′ − (x2/4− x/2)

Consider f , a cut of G ′ − v .

Define g , a cut of G ′:

g = f + X partitioned evenly.
||g || = ||f ||+ x2/4 + x/2.

Suppose ||f || ≥ (n − x − 1) + k ′′. Then,

||g || ≥ (n − x − 1) + (k ′ − (x2/4− x/2)) + x2/4 + x/2

= n − 1 + k ′.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules–Rule 1 contd.

Parameter: Reduce k by
⌈
x2/4− x/2

⌉
, where x = |X |.

New instance: (G ′′, k ′′).

|V (G ′′)| = n′ − x and k ′′ = k ′ − (x2/4− x/2)

Consider f , a cut of G ′ − v .

Define g , a cut of G ′:

g = f + X partitioned evenly.
||g || = ||f ||+ x2/4 + x/2.

Suppose ||f || ≥ (n − x − 1) + k ′′. Then,

||g || ≥ (n − x − 1) + (k ′ − (x2/4− x/2)) + x2/4 + x/2

= n − 1 + k ′.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules–Rule 1 contd.

Parameter: Reduce k by
⌈
x2/4− x/2

⌉
, where x = |X |.

New instance: (G ′′, k ′′).

|V (G ′′)| = n′ − x and k ′′ = k ′ − (x2/4− x/2)

Consider f , a cut of G ′ − v .

Define g , a cut of G ′:

g = f + X partitioned evenly.
||g || = ||f ||+ x2/4 + x/2.

Suppose ||f || ≥ (n − x − 1) + k ′′. Then,

||g || ≥ (n − x − 1) + (k ′ − (x2/4− x/2)) + x2/4 + x/2

= n − 1 + k ′.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules–Rule 1 contd.

Parameter: Reduce k by
⌈
x2/4− x/2

⌉
, where x = |X |.

New instance: (G ′′, k ′′).

|V (G ′′)| = n′ − x and k ′′ = k ′ − (x2/4− x/2)

Consider f , a cut of G ′ − v .

Define g , a cut of G ′:

g = f + X partitioned evenly.
||g || = ||f ||+ x2/4 + x/2.

Suppose ||f || ≥ (n − x − 1) + k ′′. Then,

||g || ≥ (n − x − 1) + (k ′ − (x2/4− x/2)) + x2/4 + x/2

= n − 1 + k ′.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules–Rule 1 contd.

Parameter: Reduce k by
⌈
x2/4− x/2

⌉
, where x = |X |.

New instance: (G ′′, k ′′).

|V (G ′′)| = n′ − x and k ′′ = k ′ − (x2/4− x/2)

Consider f , a cut of G ′ − v .

Define g , a cut of G ′:

g = f + X partitioned evenly.
||g || = ||f ||+ x2/4 + x/2.

Suppose ||f || ≥ (n − x − 1) + k ′′. Then,

||g || ≥ (n − x − 1) + (k ′ − (x2/4− x/2)) + x2/4 + x/2

= n − 1 + k ′.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules–Rule 1 contd.

Parameter: Reduce k by
⌈
x2/4− x/2

⌉
, where x = |X |.

New instance: (G ′′, k ′′).

|V (G ′′)| = n′ − x and k ′′ = k ′ − (x2/4− x/2)

Consider f , a cut of G ′ − v .

Define g , a cut of G ′:

g = f + X partitioned evenly.
||g || = ||f ||+ x2/4 + x/2.

Suppose ||f || ≥ (n − x − 1) + k ′′. Then,

||g || ≥ (n − x − 1) + (k ′ − (x2/4− x/2)) + x2/4 + x/2

= n − 1 + k ′.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules–Rule 1 contd.

Parameter: Reduce k by
⌈
x2/4− x/2

⌉
, where x = |X |.

New instance: (G ′′, k ′′).

|V (G ′′)| = n′ − x and k ′′ = k ′ − (x2/4− x/2)

Consider f , a cut of G ′ − v .

Define g , a cut of G ′:

g = f + X partitioned evenly.
||g || = ||f ||+ x2/4 + x/2.

Suppose ||f || ≥ (n − x − 1) + k ′′. Then,

||g || ≥ (n − x − 1) + (k ′ − (x2/4− x/2)) + x2/4 + x/2

= n − 1 + k ′.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 2:

Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a cycle.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by 1 if x is odd, and no change in k ′ if
x is even (x = |X |).

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 2: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a cycle.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by 1 if x is odd, and no change in k ′ if
x is even (x = |X |).

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 2: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a cycle.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by 1 if x is odd, and no change in k ′ if
x is even (x = |X |).

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 2: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X ∪ {v}] is a cycle.

vv

Delete: All vertices in X .

Mark: Nothing.

Parameter: Reduce k ′ by 1 if x is odd, and no change in k ′ if
x is even (x = |X |).

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 3:

Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X] is a clique.

vv

Delete: All vertices in X .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 3: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X] is a clique.

vv

Delete: All vertices in X .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 3: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X] is a clique.

vv

Delete: All vertices in X .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 3: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X] is a clique.

vv

Delete: All vertices in X .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 3: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X] is a clique.

vv

Delete: All vertices in X .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 3: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X] is a clique.

v
X
v

Delete: All vertices in X .

Mark: v .

Parameter: Reduce k ′ by
bx2/4c+ min

{
dG ′[X∪{v}](v), dx/2e

}
− x .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 3: Apply if ∃ v ∈ V (G ′) and X ⊆ V (G ′) such that

G ′[X] is a connected component of G ′ − {v},
G ′[X] is a clique.

v
X
v

Delete: All vertices in X .

Mark: v .

Parameter: Reduce k ′ by
bx2/4c+ min

{
dG ′[X∪{v}](v), dx/2e

}
− x .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules–Rule 3 contd.

dG ′[X∪{v}](v) > 1 and x > 2. Otherwise, Rule 1 applies.

bx2/4c+ min
{
dG [X∪{v}](v), dx/2e

}
− x ≥ bx2/4c+ 2− x

≥ b32/4c+ 2− 3

= 1.

Parameter drops.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules–Rule 3 contd.

dG ′[X∪{v}](v) > 1 and x > 2. Otherwise, Rule 1 applies.

bx2/4c+ min
{
dG [X∪{v}](v), dx/2e

}
− x ≥ bx2/4c+ 2− x

≥ b32/4c+ 2− 3

= 1.

Parameter drops.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Good P3:

Induced P3 abc such that

G ′ − {a, b, c} is connected,
d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

Delete: Vertices a, b, c .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Good P3: Induced P3 abc such that

G ′ − {a, b, c} is connected,

d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

Delete: Vertices a, b, c .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Good P3: Induced P3 abc such that

G ′ − {a, b, c} is connected,
d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

Delete: Vertices a, b, c .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Good P3: Induced P3 abc such that

G ′ − {a, b, c} is connected,
d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

Delete: Vertices a, b, c .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Good P3: Induced P3 abc such that

G ′ − {a, b, c} is connected,
d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

Delete: Vertices a, b, c .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Good P3: Induced P3 abc such that

G ′ − {a, b, c} is connected,
d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

Delete: Vertices a, b, c .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Good P3: Induced P3 abc such that

G ′ − {a, b, c} is connected,
d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

Delete: Vertices a, b, c .

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Good P3: Induced P3 abc such that
G ′ − {a, b, c} is connected,
d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

X X

X

Delete: Vertices a, b, c .
Mark: a, b, c .

Parameter: Reduce k ′ by d(d(α)− 2)/2e, where α = highest
degree vertex in {a, b, c}.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Good P3: Induced P3 abc such that
G ′ − {a, b, c} is connected,
d(a) > 2 or d(b) > 2 or d(c) > 2.

Rule 4: Apply if ∃ a good P3 abc.

b a

c

X X

X

Delete: Vertices a, b, c .
Mark: a, b, c .
Parameter: Reduce k ′ by d(d(α)− 2)/2e, where α = highest
degree vertex in {a, b, c}.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 5:

Apply if ∃ a, b ∈ V (G ′) and Y ⊆ V (G ′) such that

ac /∈ E (G ′),
G ′ − {a, c} has exactly two connected components, X and Y ,
|X | ≥ 2,
G ′[X ∪ {a}] G ′[X ∪ {c}] are cliques.

a

b

Delete: All vertices in X ∪ {a, b}.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 5: Apply if ∃ a, b ∈ V (G ′) and Y ⊆ V (G ′) such that

ac /∈ E (G ′),
G ′ − {a, c} has exactly two connected components, X and Y ,
|X | ≥ 2,
G ′[X ∪ {a}] G ′[X ∪ {c}] are cliques.

a

b

Delete: All vertices in X ∪ {a, b}.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 5: Apply if ∃ a, b ∈ V (G ′) and Y ⊆ V (G ′) such that

ac /∈ E (G ′),
G ′ − {a, c} has exactly two connected components, X and Y ,
|X | ≥ 2,
G ′[X ∪ {a}] G ′[X ∪ {c}] are cliques.

a

b

Delete: All vertices in X ∪ {a, b}.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 5: Apply if ∃ a, b ∈ V (G ′) and Y ⊆ V (G ′) such that

ac /∈ E (G ′),
G ′ − {a, c} has exactly two connected components, X and Y ,
|X | ≥ 2,
G ′[X ∪ {a}] G ′[X ∪ {c}] are cliques.

a

b

Delete: All vertices in X ∪ {a, b}.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 5: Apply if ∃ a, b ∈ V (G ′) and Y ⊆ V (G ′) such that
ac /∈ E (G ′),
G ′ − {a, c} has exactly two connected components, X and Y ,
|X | ≥ 2,
G ′[X ∪ {a}] G ′[X ∪ {c}] are cliques.

a

b

X

X

Delete: All vertices in X ∪ {a, b}.
Mark: a, b.

Parameter: Reduce k ′ by
dx/2e · bx/2c+

⌈
dG [Y∪{a}](a)/2

⌉
+
⌈
dG [Y∪{b}](b)/2

⌉
− 2.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Reduction Rules

Rule 5: Apply if ∃ a, b ∈ V (G ′) and Y ⊆ V (G ′) such that
ac /∈ E (G ′),
G ′ − {a, c} has exactly two connected components, X and Y ,
|X | ≥ 2,
G ′[X ∪ {a}] G ′[X ∪ {c}] are cliques.

a

b

X

X

Delete: All vertices in X ∪ {a, b}.
Mark: a, b.
Parameter: Reduce k ′ by
dx/2e · bx/2c+

⌈
dG [Y∪{a}](a)/2

⌉
+
⌈
dG [Y∪{b}](b)/2

⌉
− 2.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm

Lemma

Rules 1-5 are one-way safe.

Lemma

If G ′ has at least one edge then one of Rules 1-5 will apply.

Lemma

If k ′ ≤ 0, then (G ′, k ′) is a yes-instance, and hence (G , k) is a
yes-instance. Otherwise, |S | ≤ 3k , where S is the set of marked
vertices.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm

Lemma

Rules 1-5 are one-way safe.

Lemma

If G ′ has at least one edge then one of Rules 1-5 will apply.

Lemma

If k ′ ≤ 0, then (G ′, k ′) is a yes-instance, and hence (G , k) is a
yes-instance. Otherwise, |S | ≤ 3k , where S is the set of marked
vertices.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm

Lemma

Rules 1-5 are one-way safe.

Lemma

If G ′ has at least one edge then one of Rules 1-5 will apply.

Lemma

If k ′ ≤ 0, then (G ′, k ′) is a yes-instance, and hence (G , k) is a
yes-instance. Otherwise, |S | ≤ 3k , where S is the set of marked
vertices.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Lemma

G − S is a clique-cycle-forest.

Proof by induction on the length of the reduction.

Let G = G0 → G1 → · · · → G` = K1.

Ind. hyp.: G1 − S is a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Lemma

G − S is a clique-cycle-forest.

Proof by induction on the length of the reduction.

Let G = G0 → G1 → · · · → G` = K1.

Ind. hyp.: G1 − S is a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Lemma

G − S is a clique-cycle-forest.

Proof by induction on the length of the reduction.

Let G = G0 → G1 → · · · → G` = K1.

Ind. hyp.: G1 − S is a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Lemma

G − S is a clique-cycle-forest.

Proof by induction on the length of the reduction.

Let G = G0 → G1 → · · · → G` = K1.

Ind. hyp.: G1 − S is a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Lemma

G − S is a clique-cycle-forest.

Proof by induction on the length of the reduction.

Let G = G0 → G1 → · · · → G` = K1.

Ind. hyp.: G1 − S is a clique-cycle-forest.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

S

G1 − S

X − S

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

S

G1 − S X − S

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 1: X ∪ {v} is a clique.

S

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 1: X ∪ {v} is a clique.

Case 1: v ∈ S

Sv

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 1: X ∪ {v} is a clique.

Case 2: v /∈ S .

S

v

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 1: X ∪ {v} is a clique.

Case 2: v /∈ S .

S

v

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 1: X ∪ {v} is a clique.

Case 2: v /∈ S .

S

vv

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 2: X ∪ {v} is a cycle.

X − v is a path.

S

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 2: X ∪ {v} is a cycle. X − v is a path.

S

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 2: X ∪ {v} is a cycle.

Case 1: v ∈ S . X − v is a path.

Sv

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 2: X ∪ {v} is a cycle.

Case 2: v /∈ S .

S

v

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 2: X ∪ {v} is a cycle.

Case 2: v /∈ S .

S

vv

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 3: X is a clique. v is marked.

Sv

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 4: X is a P3. X is marked.

S

X − S = ∅

G − S = G1 − S

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 4: X is a P3. X is marked.

S

X − S = ∅G − S = G1 − S

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm
Key Lemma

Ind. hyp.: G1 − S is a clique-cycle-forest.

Rule 5: X \ {a, b} is a clique. a, b are marked.

Sa b

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Max-Cut-With-Weighted-Vertices

Input:
A graph G , an integer t ∈ N, and
weight functions w0 : V (G)→ N ∪ {0} and

w1 : V (G)→ N ∪ {0}.

Objective: Test if ∃ f : V (G)→ {0, 1} such that∑
xy∈E(G) |f (x)− f (y)|+

∑
f (x)=0 w0(x)+

∑
f (x)=1 w1(x) ≥ t?

Lemma (Crowston et al.)

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-forests.

Lemma

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-cycle-forests.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Max-Cut-With-Weighted-Vertices

Input:
A graph G , an integer t ∈ N, and
weight functions w0 : V (G)→ N ∪ {0} and

w1 : V (G)→ N ∪ {0}.
Objective: Test if ∃ f : V (G)→ {0, 1} such that∑

xy∈E(G) |f (x)− f (y)|+
∑

f (x)=0 w0(x)+
∑

f (x)=1 w1(x) ≥ t?

Lemma (Crowston et al.)

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-forests.

Lemma

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-cycle-forests.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Max-Cut-With-Weighted-Vertices

Input:
A graph G , an integer t ∈ N, and
weight functions w0 : V (G)→ N ∪ {0} and

w1 : V (G)→ N ∪ {0}.
Objective: Test if ∃ f : V (G)→ {0, 1} such that∑

xy∈E(G) |f (x)− f (y)|+
∑

f (x)=0 w0(x)+
∑

f (x)=1 w1(x) ≥ t?

Lemma (Crowston et al.)

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-forests.

Lemma

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-cycle-forests.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Max-Cut-With-Weighted-Vertices

Input:
A graph G , an integer t ∈ N, and
weight functions w0 : V (G)→ N ∪ {0} and

w1 : V (G)→ N ∪ {0}.
Objective: Test if ∃ f : V (G)→ {0, 1} such that∑

xy∈E(G) |f (x)− f (y)|+
∑

f (x)=0 w0(x)+
∑

f (x)=1 w1(x) ≥ t?

Lemma (Crowston et al.)

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-forests.

Lemma

Max-Cut-With-Weighted-Vertices is polynomial time
solvable on clique-cycle-forests.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

G − S is a clique-cycle-forest.

Guess the optimal partition of S .

For each guess f : S → {0, 1}, construct a MCWWV instance
on G − S .

2|S| ≤ 23k = 8k such instances.

Original Max-Cut-AST instance is a yes-instance if and
only if one of these 8k instances of MCWWV is a yes-instance.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

G − S is a clique-cycle-forest.

Guess the optimal partition of S .

For each guess f : S → {0, 1}, construct a MCWWV instance
on G − S .

2|S| ≤ 23k = 8k such instances.

Original Max-Cut-AST instance is a yes-instance if and
only if one of these 8k instances of MCWWV is a yes-instance.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

G − S is a clique-cycle-forest.

Guess the optimal partition of S .

For each guess f : S → {0, 1}, construct a MCWWV instance
on G − S .

2|S| ≤ 23k = 8k such instances.

Original Max-Cut-AST instance is a yes-instance if and
only if one of these 8k instances of MCWWV is a yes-instance.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

G − S is a clique-cycle-forest.

Guess the optimal partition of S .

For each guess f : S → {0, 1}, construct a MCWWV instance
on G − S .

2|S| ≤ 23k = 8k such instances.

Original Max-Cut-AST instance is a yes-instance if and
only if one of these 8k instances of MCWWV is a yes-instance.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

G − S is a clique-cycle-forest.

Guess the optimal partition of S .

For each guess f : S → {0, 1}, construct a MCWWV instance
on G − S .

2|S| ≤ 23k = 8k such instances.

Original Max-Cut-AST instance is a yes-instance if and
only if one of these 8k instances of MCWWV is a yes-instance.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

G − S is a clique-cycle-forest.

Guess the optimal partition of S .

For each guess f : S → {0, 1}, construct a MCWWV instance
on G − S .

2|S| ≤ 23k = 8k such instances.

Original Max-Cut-AST instance is a yes-instance if and
only if one of these 8k instances of MCWWV is a yes-instance.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

Fix f : S → {0, 1}. Construct an instance of MCWWV.

` = no. of edges of G [S] that are satisfied by f .

For x ∈ V (G)− S ,

w0(x) = |{s ∈ S | sx ∈ E (G), and f (s) = 1}|,
w1(x) = |{s ∈ S | sx ∈ E (G), and f (s) = 0}|.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

Fix f : S → {0, 1}. Construct an instance of MCWWV.

` = no. of edges of G [S] that are satisfied by f .

For x ∈ V (G)− S ,

w0(x) = |{s ∈ S | sx ∈ E (G), and f (s) = 1}|,
w1(x) = |{s ∈ S | sx ∈ E (G), and f (s) = 0}|.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

Fix f : S → {0, 1}. Construct an instance of MCWWV.

` = no. of edges of G [S] that are satisfied by f .

For x ∈ V (G)− S ,

w0(x) = |{s ∈ S | sx ∈ E (G), and f (s) = 1}|,
w1(x) = |{s ∈ S | sx ∈ E (G), and f (s) = 0}|.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

S

x

` = 4
w0(x) = 2
w1(x) = 3

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

S

x

` = 4
w0(x) = 2
w1(x) = 3

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

S

x

` = 4
w0(x) = 2
w1(x) = 3

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST

S

x

` = 4
w0(x) = 2
w1(x) = 3

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST contd.

Set t = n − 1 + k − `.

Let f ′ : V (G − S)→ {0, 1} = optimum solution for MCWWV
on (G − S ,w0,w1, t)

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST contd.

Set t = n − 1 + k − `.
Let f ′ : V (G − S)→ {0, 1} = optimum solution for MCWWV
on (G − S ,w0,w1, t)

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST contd.

Define a cut g : V (G)→ {0, 1} of G .

g(x) = f (x) if x ∈ S and
g(x) = f ′(x) if x ∈ V (G − S).

||g || = `+
∑

xy∈E(G−S)

|g(x)− g(y)|

+
∑

x ∈ V (G − S)
g(x) = 0

w0(x) +
∑

x ∈ V (G − S)
g(x) = 1

w1(x)

= `+ ||f ′||.

||g || ≥ n − 1 + k ⇐⇒ ||f ′|| ≥ n − 1 + k − ` = t.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST contd.

Define a cut g : V (G)→ {0, 1} of G .

g(x) = f (x) if x ∈ S and
g(x) = f ′(x) if x ∈ V (G − S).

||g || = `+
∑

xy∈E(G−S)

|g(x)− g(y)|

+
∑

x ∈ V (G − S)
g(x) = 0

w0(x) +
∑

x ∈ V (G − S)
g(x) = 1

w1(x)

= `+ ||f ′||.

||g || ≥ n − 1 + k ⇐⇒ ||f ′|| ≥ n − 1 + k − ` = t.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST contd.

Define a cut g : V (G)→ {0, 1} of G .

g(x) = f (x) if x ∈ S and
g(x) = f ′(x) if x ∈ V (G − S).

||g || = `+
∑

xy∈E(G−S)

|g(x)− g(y)|

+
∑

x ∈ V (G − S)
g(x) = 0

w0(x) +
∑

x ∈ V (G − S)
g(x) = 1

w1(x)

= `+ ||f ′||.

||g || ≥ n − 1 + k ⇐⇒ ||f ′|| ≥ n − 1 + k − ` = t.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST contd.

Define a cut g : V (G)→ {0, 1} of G .

g(x) = f (x) if x ∈ S and
g(x) = f ′(x) if x ∈ V (G − S).

||g || = `+
∑

xy∈E(G−S)

|g(x)− g(y)|

+
∑

x ∈ V (G − S)
g(x) = 0

w0(x) +
∑

x ∈ V (G − S)
g(x) = 1

w1(x)

= `+ ||f ′||.

||g || ≥ n − 1 + k ⇐⇒ ||f ′|| ≥ n − 1 + k − ` = t.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

FPT Algorithm for Max-Cut-AST contd.

Define a cut g : V (G)→ {0, 1} of G .

g(x) = f (x) if x ∈ S and
g(x) = f ′(x) if x ∈ V (G − S).

||g || = `+
∑

xy∈E(G−S)

|g(x)− g(y)|

+
∑

x ∈ V (G − S)
g(x) = 0

w0(x) +
∑

x ∈ V (G − S)
g(x) = 1

w1(x)

= `+ ||f ′||.

||g || ≥ n − 1 + k ⇐⇒ ||f ′|| ≥ n − 1 + k − ` = t.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Lower Bound

No 2o(k) algorithm

Max-Cut has no 2o(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

Reduce Max-Cut instance (G , t) to Max-Cut-AST
instance (G , k).

Set k = t − (n − 1).

k ≤ t.

2o(k) algorithm for Max-Cut-AST will imply 2o(t) algorithm
for Max-Cut.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Lower Bound

No 2o(k) algorithm

Max-Cut has no 2o(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

Reduce Max-Cut instance (G , t) to Max-Cut-AST
instance (G , k).

Set k = t − (n − 1).

k ≤ t.

2o(k) algorithm for Max-Cut-AST will imply 2o(t) algorithm
for Max-Cut.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Lower Bound

No 2o(k) algorithm

Max-Cut has no 2o(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

Reduce Max-Cut instance (G , t) to Max-Cut-AST
instance (G , k).

Set k = t − (n − 1).

k ≤ t.

2o(k) algorithm for Max-Cut-AST will imply 2o(t) algorithm
for Max-Cut.

Max-Cut Above Spanning Tree is FPT

FPT Algorithm

Lower Bound

No 2o(k) algorithm

Max-Cut has no 2o(t) algorithm, t =cut size, unless the
Exponential Time Hypothesis fails.

Reduce Max-Cut instance (G , t) to Max-Cut-AST
instance (G , k).

Set k = t − (n − 1).

k ≤ t.

2o(k) algorithm for Max-Cut-AST will imply 2o(t) algorithm
for Max-Cut.

Max-Cut Above Spanning Tree is FPT

Polynomial Kernel

Polynomial Kernel
Strategy

G has an even cycle implies G has a cut of size n− 1 + 1 = n.

One even cycle means one additional edge in the cut.

If G has k vertex disjoint even cycles, then (G , k) is a
yes-instance.

Cycles need not be vertex disjoint.

Identify families of cycles such that all edges of all the cycles
in the family fall into a cut.

Max-Cut Above Spanning Tree is FPT

Polynomial Kernel

Polynomial Kernel
Strategy

G has an even cycle implies G has a cut of size n− 1 + 1 = n.

One even cycle means one additional edge in the cut.

If G has k vertex disjoint even cycles, then (G , k) is a
yes-instance.

Cycles need not be vertex disjoint.

Identify families of cycles such that all edges of all the cycles
in the family fall into a cut.

Max-Cut Above Spanning Tree is FPT

Polynomial Kernel

Polynomial Kernel
Strategy contd.

G − S is a clique-cycle-forest, a forest of blocks.

Bound the number of components of G − S .

Bound the number of blocks in each component.

Bound the size of each block.

O(k5) kernel.

Max-Cut Above Spanning Tree is FPT

Results and Conclusion

Results and Conclusion

FPT algorithm and O(k5) kernel.

Simple reduction to Max-Cut-AEE possible?

O(k) kernel?

Extend the results to signed graphs?

Max-Cut Above Spanning Tree is FPT

Thank You.

	Introduction
	Problem Statement and Results
	Lower Bounds for Cut Size
	Parameterizing Max-Cut

	FPT Algorithm
	Lower Bound

	Polynomial Kernel
	Results and Conclusion
	

