Max-Cut Above Spanning Tree is FPT

Jayakrishnan Madathil ${ }^{1}$ Saket Saurabh ${ }^{1,2}$ Meirav Zehavi ${ }^{3}$
${ }^{1}$ Institute of Mathematical Sciences, HBNI Chennai, India
${ }^{2}$ Department of Informatics
University of Bergen, Norway
${ }^{3}$ Department of Computer Science
Ben-Gurion University, Israel
CSR, 2018

Outline

(1) Introduction

- Problem Statement and Results
- Lower Bounds for Cut Size
- Parameterizing Max-Cut
(2) FPT Algorithm
(3) Polynomial Kernel

Cut of a graph G

 Definition- A cut of G is a function

$$
f: V(G) \rightarrow\{0,1\}
$$

Cut of a graph G

 Definition- A cut of G is a function

$$
f: V(G) \rightarrow\{0,1\}
$$

- Size of the cut f,

$$
\|f\|=|\{u v \in E(G) \mid f(u) \neq f(v)\}|
$$

Max-CuT
 Definition

- Max-Cut

Input: A graph G and a non-negative integer k.
Question: Does G have a cut of size at least k ?

Max-Cut

Definition

- Max-CuT

Input: A graph G and a non-negative integer k.
Question: Does G have a cut of size at least k ?

- Max-Cut is NP-hard.

Problem Statement and Results

Outline

(1) Introduction

- Problem Statement and Results
- Lower Bounds for Cut Size
- Parameterizing Max-Cut
(2) FPT Algorithm

3 Polynomial Kernel

Problem Statement and Results

- Max-Cut Above Spanning Tree (Max-Cut-AST)

Input: A connected n-vertex graph G and a non-negative integer k.
Parameter: k
Question: Does G have a cut of size at least $n-1+k$?

Problem Statement and Results

- Max-Cut Above Spanning Tree (Max-Cut-AST)

Input: A connected n-vertex graph G and a non-negative integer k.
Parameter: k
Question: Does G have a cut of size at least $n-1+k$?

- Results:
- $8^{k} n^{\mathcal{O}(1)}$ algorithm and $\mathcal{O}\left(k^{5}\right)$ kernel.
- No $2^{o(k)}$ algorithm unless the Exponential Time Hypothesis fails.

Lower Bounds for Cut Size

Outline

(1) Introduction

- Problem Statement and Results
- Lower Bounds for Cut Size
- Parameterizing Max-Cut

(2) FPT Algorithm

3 Polynomial Kernel

Lower Bounds for Cut Size

Lower Bounds for Cut Size

- Graph $G,|V(G)|=n,|E(G)|=m$.

Lower Bounds for Cut Size

Lower Bounds for Cut Size

- Graph $G,|V(G)|=n,|E(G)|=m$.
- G has a cut of size at least
(1) $m / 2$ [Erdős, 1965].

Lower Bounds for Cut Size

- Graph $G,|V(G)|=n,|E(G)|=m$.
- G has a cut of size at least
(1) $\mathrm{m} / 2$ [Erdös, 1965].
(C) $m / 2+(n-1) / 4$ if G is connected [Edwards, 1975]. Edwards-Erdős bound.

Lower Bounds for Cut Size

- Graph $G,|V(G)|=n,|E(G)|=m$.
- G has a cut of size at least
(1) $m / 2$ [Erdős, 1965].
(2) $m / 2+(n-1) / 4$ if G is connected [Edwards, 1975]. Edwards-Erdős bound.
(3) $n-1$ if G is connected.

Spanning tree bound.

Lower Bounds for Cut Size

Spanning Tree Bound

- Connected graph $G,|V(G)|=n$.
- Cut of size at least $n-1$.

Spanning Tree Bound

- Connected graph $G,|V(G)|=n$.
- Cut of size at least $n-1$.

Spanning Tree Bound

- Connected graph $G,|V(G)|=n$.
- Cut of size at least $n-1$.

$n=5$

Spanning Tree Bound

- Connected graph $G,|V(G)|=n$
- Cut of size at least $n-1$

Spanning Tree Bound

- Connected graph $G,|V(G)|=n$.
- Cut of size at least $n-1$.

$n=5$

Spanning tree
$n-1$ edges
2-colorable

Cut of size $n-1$

Edwards-Erdős Bound vs. Spanning Tree Bound

- Connected graph $G,|V(G)|=n,|E(G)|=m$.
- Edwards-Erdős Bound: $m / 2+(n-1) / 4$.
- Spanning Tree Bound: $n-1$.

Edwards-Erdős Bound vs. Spanning Tree Bound

- Connected graph $G,|V(G)|=n,|E(G)|=m$.
- Edwards-Erdős Bound: $m / 2+(n-1) / 4$.
- Spanning Tree Bound: $n-1$.
- Spanning Tree bound gives a better guarantee for cut size on sparse graphs.
- $n-1>m / 2+(n-1) / 4 \Longleftrightarrow($ average degree of $G)<3$.

Outline

(1) Introduction

- Problem Statement and Results
- Lower Bounds for Cut Size
- Parameterizing Max-Cut

(2) FPT Algorithm

3 Polynomial Kernel

Parameterizing Max-Cut

- Parameterize by cut size?

Parameterizing Max-Cut

- Parameterize by cut size?

Input: A graph G and a positive integer $k,|V(G)|=n$,
$|E(G)|=m$.
Parameter: k
Question: Does G have a cut of size at least k ?

Parameterizing Max-Cut

- Parameterize by cut size?

Input: A graph G and a positive integer $k,|V(G)|=n$,
$|E(G)|=m$.
Parameter: k
Question: Does G have a cut of size at least k ?

- Trivially FPT

Parameterizing Max-Cut

- Parameterize by cut size?

Input: A graph G and a positive integer $k,|V(G)|=n$,
$|E(G)|=m$.
Parameter: k
Question: Does G have a cut of size at least k ?

- Trivially FPT
- $k \leq m / 2 \Longrightarrow$ yes.

Parameterizing Max-Cut

- Parameterize by cut size?

Input: A graph G and a positive integer $k,|V(G)|=n$,
$|E(G)|=m$.
Parameter: k
Question: Does G have a cut of size at least k ?

- Trivially FPT
- $k \leq m / 2 \Longrightarrow$ yes.
- $m \leq 2 k$. Brute force.

Parameterizing Max-Cut

- Parameterize by cut size?

Input: A graph G and a positive integer $k,|V(G)|=n$,
$|E(G)|=m$.
Parameter: k
Question: Does G have a cut of size at least k ?

- Trivially FPT
- $k \leq m / 2 \Longrightarrow$ yes.
- $m \leq 2 k$. Brute force.
- Parameterize above the cut size [Mahajan and Raman, 1997]

Parameterizing Max-Cut

- Parameterize by cut size?

Input: A graph G and a positive integer $k,|V(G)|=n$,
$|E(G)|=m$.
Parameter: k
Question: Does G have a cut of size at least k ?

- Trivially FPT
- $k \leq m / 2 \Longrightarrow$ yes.
- $m \leq 2 k$. Brute force.
- Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least $m / 2+k$?

Parameterizing Max-Cut

- Parameterize by cut size?

Input: A graph G and a positive integer $k,|V(G)|=n$,
$|E(G)|=m$.
Parameter: k
Question: Does G have a cut of size at least k ?

- Trivially FPT
- $k \leq m / 2 \Longrightarrow$ yes.
- $m \leq 2 k$. Brute force.
- Parameterize above the cut size [Mahajan and Raman, 1997]

Question: Does G have a cut of size at least $m / 2+k$?

- FPT.
- Above Guarantee parameterization.

Max-Cut: Above Guarantee Parameterizations

- Max-Cut Above Edwards-Erdős (Max-Cut-AEE) Input: A connected graph G and a positive integer k, $|V(G)|=n,|E(G)|=m$.
Parameter: k
Question: Does G have a cut of size at least $m / 2+(n-1) / 4+k$?

Max-Cut: Above Guarantee Parameterizations

- Max-Cut Above Edwards-Erdős (Max-Cut-AEE)

Input: A connected graph G and a positive integer k, $|V(G)|=n,|E(G)|=m$.
Parameter: k
Question: Does G have a cut of size at least
$m / 2+(n-1) / 4+k$?

- Results:
- $8^{k} n^{\mathcal{O}(1)}$ algorithm and $\mathcal{O}\left(k^{5}\right)$ kernel [Crowston et al., 2012]
- Extended to signed graphs with an $\mathcal{O}(k)$ kernel [Etscheid and Mnich, 2016]

Max-Cut Above Spanning Tree (Max-Cut-AST)
Our Problem

- Max-Cut Above Spanning Tree (Max-Cut-AST) Input: A connected graph G and a positive integer k, $|V(G)|=n$.
Parameter: k
Question: Does G have a cut of size at least $n-1+k$?

Max-Cut Above Spanning Tree (Max-Cut-AST)
Our Problem

- Max-Cut Above Spanning Tree (Max-Cut-AST) Input: A connected graph G and a positive integer k, $|V(G)|=n$.
Parameter: k
Question: Does G have a cut of size at least $n-1+k$?
- Results:
- $8^{k} n^{\mathcal{O}(1)}$ algorithm and $\mathcal{O}\left(k^{5}\right)$ kernel.
- No $2^{o(k)}$ algorithm.

Algorithm

Strategy

- In polynomial time
either conclude that (G, k) is a yes-instance

Algorithm

Strategy

- In polynomial time
either conclude that (G, k) is a yes-instance or find a small set S such that $G-S$ has a nice structure.

Algorithm

Strategy

- In polynomial time
either conclude that (G, k) is a yes-instance or find a small set S such that $G-S$ has a nice structure.
- Guess the optimal partition of S.
- Optimally extend each guess to a partition of $G-S$.

Algorithm

Strategy

- In polynomial time
either conclude that (G, k) is a yes-instance or find a small set S such that $G-S$ has a nice structure.
- Guess the optimal partition of S.
- Optimally extend each guess to a partition of $G-S$.

Define an auxiliary problem on $G-S$.

Algorithm

Strategy

- In polynomial time
either conclude that (G, k) is a yes-instance
or find a small set S such that $G-S$ has a nice structure.
- Guess the optimal partition of S.
- Optimally extend each guess to a partition of $G-S$.

Define an auxiliary problem on $G-S$.
Solve it in polynomial time by exploiting $G-S$'s nice structure.

Outline of Algorithm

- Apply a set of one-way reduction rules.

Outline of Algorithm

- Apply a set of one-way reduction rules.
- One-way rule: $(G, k) \rightarrow\left(G^{\prime}, k^{\prime}\right)$ such that
- $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance $\Longrightarrow(G, k)$ is a yes-instance.
- Converse need not hold.

Outline of Algorithm

- Apply a set of one-way reduction rules.
- One-way rule: $(G, k) \rightarrow\left(G^{\prime}, k^{\prime}\right)$ such that
- $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance $\Longrightarrow(G, k)$ is a yes-instance.
- Converse need not hold.
- Generic Reduction Rule:

Outline of Algorithm

- Apply a set of one-way reduction rules.
- One-way rule: $(G, k) \rightarrow\left(G^{\prime}, k^{\prime}\right)$ such that
- $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance $\Longrightarrow(G, k)$ is a yes-instance.
- Converse need not hold.
- Generic Reduction Rule:
- Apply if [some condition] holds.

Outline of Algorithm

- Apply a set of one-way reduction rules.
- One-way rule: $(G, k) \rightarrow\left(G^{\prime}, k^{\prime}\right)$ such that
- $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance $\Longrightarrow(G, k)$ is a yes-instance.
- Converse need not hold.
- Generic Reduction Rule:
- Apply if [some condition] holds.
- Delete a set of vertices X.

Outline of Algorithm

- Apply a set of one-way reduction rules.
- One-way rule: $(G, k) \rightarrow\left(G^{\prime}, k^{\prime}\right)$ such that
- $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance $\Longrightarrow(G, k)$ is a yes-instance.
- Converse need not hold.
- Generic Reduction Rule:
- Apply if [some condition] holds.
- Delete a set of vertices X.
- Mark a set of vertices A.

Outline of Algorithm

- Apply a set of one-way reduction rules.
- One-way rule: $(G, k) \rightarrow\left(G^{\prime}, k^{\prime}\right)$ such that
- $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance $\Longrightarrow(G, k)$ is a yes-instance.
- Converse need not hold.
- Generic Reduction Rule:
- Apply if [some condition] holds.
- Delete a set of vertices X.
- Mark a set of vertices A.
- Decrement k appropriately.

Outline of Algorithm

- Apply a set of one-way reduction rules.
- One-way rule: $(G, k) \rightarrow\left(G^{\prime}, k^{\prime}\right)$ such that
- $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance $\Longrightarrow(G, k)$ is a yes-instance.
- Converse need not hold.
- Generic Reduction Rule:
- Apply if [some condition] holds.
- Delete a set of vertices X.
- Mark a set of vertices A.
- Decrement k appropriately.
- Guarantees:

Outline of Algorithm

- Apply a set of one-way reduction rules.
- One-way rule: $(G, k) \rightarrow\left(G^{\prime}, k^{\prime}\right)$ such that
- $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance $\Longrightarrow(G, k)$ is a yes-instance.
- Converse need not hold.
- Generic Reduction Rule:
- Apply if [some condition] holds.
- Delete a set of vertices X.
- Mark a set of vertices A.
- Decrement k appropriately.
- Guarantees:
- G^{\prime} is connected.

Outline of Algorithm

- Apply a set of one-way reduction rules.
- One-way rule: $(G, k) \rightarrow\left(G^{\prime}, k^{\prime}\right)$ such that
- $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance $\Longrightarrow(G, k)$ is a yes-instance.
- Converse need not hold.
- Generic Reduction Rule:
- Apply if [some condition] holds.
- Delete a set of vertices X.
- Mark a set of vertices A.
- Decrement k appropriately.
- Guarantees:
- G^{\prime} is connected.
- $|A| \leq 3$
- $A \neq \emptyset \Longrightarrow k$ drops by at least 1 .

Outline of Algorithm

 Contd.- Rules apply as long as $G^{\prime} \neq K_{1}$.

Outline of Algorithm
 Contd.

- Rules apply as long as $G^{\prime} \neq K_{1}$.
- If $k^{\prime} \leq 0$, then (G, k) is a yes-instance.

Outline of Algorithm

Contd.

- Rules apply as long as $G^{\prime} \neq K_{1}$.
- If $k^{\prime} \leq 0$, then (G, k) is a yes-instance.
- Otherwise, at most $3 k$ vertices are marked.

Let $S=$ set of marked vertices.

Outline of Algorithm

 Contd.- Rules apply as long as $G^{\prime} \neq K_{1}$.
- If $k^{\prime} \leq 0$, then (G, k) is a yes-instance.
- Otherwise, at most $3 k$ vertices are marked. Let $S=$ set of marked vertices.
- $G-S$ is a clique-cycle-forest.

Outline of Algorithm
 Contd.

- Rules apply as long as $G^{\prime} \neq K_{1}$.
- If $k^{\prime} \leq 0$, then (G, k) is a yes-instance.
- Otherwise, at most $3 k$ vertices are marked. Let $S=$ set of marked vertices.
- $G-S$ is a clique-cycle-forest. Every block (2-connected component) of $G-S$ is a clique or a cycle.

Outline of Algorithm

Contd.

- Rules apply as long as $G^{\prime} \neq K_{1}$.
- If $k^{\prime} \leq 0$, then (G, k) is a yes-instance.
- Otherwise, at most $3 k$ vertices are marked. Let $S=$ set of marked vertices.
- $G-S$ is a clique-cycle-forest. Every block (2-connected component) of $G-S$ is a clique or a cycle.
- Guess the partition of S. Optimally extend it to $G-S$.

Outline of Algorithm

Contd.

- Rules apply as long as $G^{\prime} \neq K_{1}$.
- If $k^{\prime} \leq 0$, then (G, k) is a yes-instance.
- Otherwise, at most $3 k$ vertices are marked. Let $S=$ set of marked vertices.
- $G-S$ is a clique-cycle-forest. Every block (2-connected component) of $G-S$ is a clique or a cycle.
- Guess the partition of S. Optimally extend it to $G-S$.

Clique-cycle-forest

Definition

A clique is a clique-cycle-forest.

Clique-cycle-forest

Definition

A cycle is a clique-cycle-forest.

Clique-cycle-forest

Definition

Disjoint union of two clique-cycle-forests is a clique-cycle-forest.

Clique-cycle-forest

Definition

Graph obtained by identifying one vertex each from two different components of a clique-cycle-forest is again a clique-cycle-forest.

Clique-cycle-forest

Definition

Graph obtained by identifying one vertex each from two different components of a clique-cycle-forest is again a clique-cycle-forest.

FPT Algorithm
Clique-cycle-forest
Example

FPT Algorithm

Reduction Rules

- Rule 1:

FPT Algorithm

Reduction Rules

- Rule 1: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$, - $G^{\prime}[X \cup\{v\}]$ is a clique.

FPT Algorithm

Reduction Rules

- Rule 1: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$, - $G^{\prime}[X \cup\{v\}]$ is a clique.

FPT Algorithm

Reduction Rules

- Rule 1: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$, - $G^{\prime}[X \cup\{v\}]$ is a clique.

- Delete: All vertices in X.

FPT Algorithm

Reduction Rules

- Rule 1: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$,
- $G^{\prime}[X \cup\{v\}]$ is a clique.

- Delete: All vertices in X.
- Mark: Nothing.

FPT Algorithm

Reduction Rules

- Rule 1: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$,
- $G^{\prime}[X \cup\{v\}]$ is a clique.

- Delete: All vertices in X.
- Mark: Nothing.
- Parameter: Reduce k^{\prime} by $\left\lceil x^{2} / 4-x / 2\right\rceil$, where $x=|X|$.

FPT Algorithm

Reduction Rules

- Rule 1: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$,
- $G^{\prime}[X \cup\{v\}]$ is a clique.

- Delete: All vertices in X.
- Mark: Nothing.
- Parameter: Reduce k^{\prime} by $\left\lceil x^{2} / 4-x / 2\right\rceil$, where $x=|X|$.

FPT Algorithm

Reduction Rules-Rule 1 contd.

- Parameter: Reduce k by $\left\lceil x^{2} / 4-x / 2\right\rceil$, where $x=|X|$.

FPT Algorithm

Reduction Rules-Rule 1 contd.

- Parameter: Reduce k by $\left\lceil x^{2} / 4-x / 2\right\rceil$, where $x=|X|$.
- New instance: $\left(G^{\prime \prime}, k^{\prime \prime}\right)$.

FPT Algorithm

Reduction Rules-Rule 1 contd.

- Parameter: Reduce k by $\left\lceil x^{2} / 4-x / 2\right\rceil$, where $x=|X|$.
- New instance: $\left(G^{\prime \prime}, k^{\prime \prime}\right)$.
- $\left|V\left(G^{\prime \prime}\right)\right|=n^{\prime}-x$ and $k^{\prime \prime}=k^{\prime}-\left(x^{2} / 4-x / 2\right)$

FPT Algorithm

Reduction Rules-Rule 1 contd.

- Parameter: Reduce k by $\left\lceil x^{2} / 4-x / 2\right\rceil$, where $x=|X|$.
- New instance: $\left(G^{\prime \prime}, k^{\prime \prime}\right)$.
- $\left|V\left(G^{\prime \prime}\right)\right|=n^{\prime}-x$ and $k^{\prime \prime}=k^{\prime}-\left(x^{2} / 4-x / 2\right)$
- Consider f, a cut of $G^{\prime}-v$.

FPT Algorithm

Reduction Rules-Rule 1 contd.

- Parameter: Reduce k by $\left\lceil x^{2} / 4-x / 2\right\rceil$, where $x=|X|$.
- New instance: $\left(G^{\prime \prime}, k^{\prime \prime}\right)$.
- $\left|V\left(G^{\prime \prime}\right)\right|=n^{\prime}-x$ and $k^{\prime \prime}=k^{\prime}-\left(x^{2} / 4-x / 2\right)$
- Consider f, a cut of $G^{\prime}-v$.
- Define g, a cut of G^{\prime} :
- $g=f+X$ partitioned evenly.
- $\|g\|=\|f\|+x^{2} / 4+x / 2$.

FPT Algorithm

Reduction Rules-Rule 1 contd.

- Parameter: Reduce k by $\left\lceil x^{2} / 4-x / 2\right\rceil$, where $x=|X|$.
- New instance: $\left(G^{\prime \prime}, k^{\prime \prime}\right)$.
- $\left|V\left(G^{\prime \prime}\right)\right|=n^{\prime}-x$ and $k^{\prime \prime}=k^{\prime}-\left(x^{2} / 4-x / 2\right)$
- Consider f, a cut of $G^{\prime}-v$.
- Define g, a cut of G^{\prime} :
- $g=f+X$ partitioned evenly.
- $\|g\|=\|f\|+x^{2} / 4+x / 2$.
- Suppose $\|f\| \geq(n-x-1)+k^{\prime \prime}$. Then,

$$
\begin{aligned}
\|g\| & \geq(n-x-1)+\left(k^{\prime}-\left(x^{2} / 4-x / 2\right)\right)+x^{2} / 4+x / 2 \\
& =n-1+k^{\prime} .
\end{aligned}
$$

FPT Algorithm

Reduction Rules-Rule 1 contd.

- Parameter: Reduce k by $\left\lceil x^{2} / 4-x / 2\right\rceil$, where $x=|X|$.
- New instance: $\left(G^{\prime \prime}, k^{\prime \prime}\right)$.
- $\left|V\left(G^{\prime \prime}\right)\right|=n^{\prime}-x$ and $k^{\prime \prime}=k^{\prime}-\left(x^{2} / 4-x / 2\right)$
- Consider f, a cut of $G^{\prime}-v$.
- Define g, a cut of G^{\prime} :
- $g=f+X$ partitioned evenly.
- $\|g\|=\|f\|+x^{2} / 4+x / 2$.
- Suppose $\|f\| \geq(n-x-1)+k^{\prime \prime}$. Then,

$$
\begin{aligned}
\|g\| & \geq(n-x-1)+\left(k^{\prime}-\left(x^{2} / 4-x / 2\right)\right)+x^{2} / 4+x / 2 \\
& =n-1+k^{\prime} .
\end{aligned}
$$

FPT Algorithm

Reduction Rules

- Rule 2 :

FPT Algorithm

Reduction Rules

- Rule 2: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that - $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$, - $G^{\prime}[X \cup\{v\}]$ is a cycle.

FPT Algorithm
Reduction Rules

- Rule 2: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that - $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$,
- $G^{\prime}[X \cup\{v\}]$ is a cycle.

FPT Algorithm

Reduction Rules

- Rule 2: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$,
- $G^{\prime}[X \cup\{v\}]$ is a cycle.

- Delete: All vertices in X.
- Mark: Nothing.
- Parameter: Reduce k^{\prime} by 1 if x is odd, and no change in k^{\prime} if x is even $(x=|X|)$.

FPT Algorithm

Reduction Rules

- Rule 3:

FPT Algorithm

Reduction Rules

- Rule 3: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$,
- $G^{\prime}[X]$ is a clique.

FPT Algorithm

Reduction Rules

- Rule 3: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$,
- $G^{\prime}[X]$ is a clique.

FPT Algorithm

Reduction Rules

- Rule 3: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$,
- $G^{\prime}[X]$ is a clique.

- Delete: All vertices in X.

FPT Algorithm

Reduction Rules

- Rule 3: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that
- $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$,
- $G^{\prime}[X]$ is a clique.

- Delete: All vertices in X.

FPT Algorithm

Reduction Rules

- Rule 3: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that - $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$, - $G^{\prime}[X]$ is a clique.

- Delete: All vertices in X.
- Mark: v.

FPT Algorithm

Reduction Rules

- Rule 3: Apply if $\exists v \in V\left(G^{\prime}\right)$ and $X \subseteq V\left(G^{\prime}\right)$ such that - $G^{\prime}[X]$ is a connected component of $G^{\prime}-\{v\}$, - $G^{\prime}[X]$ is a clique.

- Delete: All vertices in X.
- Mark: v.
- Parameter: Reduce k^{\prime} by

$$
\left\lfloor x^{2} / 4\right\rfloor+\min \left\{d_{G^{\prime}[x \cup\{v\}]}(v),\lceil x / 2\rceil\right\}-x .
$$

FPT Algorithm

Reduction Rules-Rule 3 contd.

- $d_{G^{\prime}[X \cup\{v\}]}(v)>1$ and $x>2$. Otherwise, Rule 1 applies.

FPT Algorithm

Reduction Rules-Rule 3 contd.

- $d_{G^{\prime}[X \cup\{v\}]}(v)>1$ and $x>2$. Otherwise, Rule 1 applies.

$$
\begin{aligned}
\left\lfloor x^{2} / 4\right\rfloor+\min \left\{d_{G[X \cup\{v\}]}(v),\lceil x / 2\rceil\right\}-x & \geq\left\lfloor x^{2} / 4\right\rfloor+2-x \\
& \geq\left\lfloor 3^{2} / 4\right\rfloor+2-3 \\
& =1
\end{aligned}
$$

- Parameter drops.

FPT Algorithm

Reduction Rules

- Good P_{3} :

FPT Algorithm

Reduction Rules

- Good P_{3} : Induced P_{3} abc such that - $G^{\prime}-\{a, b, c\}$ is connected,

FPT Algorithm

Reduction Rules

- Good P_{3} : Induced P_{3} abc such that
- $G^{\prime}-\{a, b, c\}$ is connected,
- $d(a)>2$ or $d(b)>2$ or $d(c)>2$.

FPT Algorithm

Reduction Rules

- Good P_{3} : Induced P_{3} abc such that
- $G^{\prime}-\{a, b, c\}$ is connected, - $d(a)>2$ or $d(b)>2$ or $d(c)>2$.
- Rule 4: Apply if \exists a good $P_{3} a b c$.

FPT Algorithm

Reduction Rules

- Good P_{3} : Induced P_{3} abc such that
- $G^{\prime}-\{a, b, c\}$ is connected,
- $d(a)>2$ or $d(b)>2$ or $d(c)>2$.
- Rule 4: Apply if \exists a good $P_{3} a b c$.

FPT Algorithm

Reduction Rules

- Good P_{3} : Induced P_{3} abc such that
- $G^{\prime}-\{a, b, c\}$ is connected,
- $d(a)>2$ or $d(b)>2$ or $d(c)>2$.
- Rule 4: Apply if \exists a good $P_{3} a b c$.

- Delete: Vertices a, b, c.

FPT Algorithm

Reduction Rules

- Good P_{3} : Induced P_{3} abc such that
- $G^{\prime}-\{a, b, c\}$ is connected,
- $d(a)>2$ or $d(b)>2$ or $d(c)>2$.
- Rule 4: Apply if \exists a good $P_{3} a b c$.

- Delete: Vertices a, b, c.

FPT Algorithm

Reduction Rules

- Good P_{3} : Induced P_{3} abc such that
- $G^{\prime}-\{a, b, c\}$ is connected,
- $d(a)>2$ or $d(b)>2$ or $d(c)>2$.
- Rule 4: Apply if \exists a good $P_{3} a b c$.

- Delete: Vertices a, b, c.
- Mark: a, b, c.

FPT Algorithm

Reduction Rules

- Good P_{3} : Induced P_{3} abc such that
- $G^{\prime}-\{a, b, c\}$ is connected,
- $d(a)>2$ or $d(b)>2$ or $d(c)>2$.
- Rule 4: Apply if \exists a good $P_{3} a b c$.

- Delete: Vertices a, b, c.
- Mark: a, b, c.
- Parameter: Reduce k^{\prime} by $\lceil(d(\alpha)-2) / 2\rceil$, where $\alpha=$ highest degree vertex in $\{a, b, c\}$.

FPT Algorithm

Reduction Rules

- Rule 5:

FPT Algorithm

Reduction Rules

- Rule 5: Apply if $\exists a, b \in V\left(G^{\prime}\right)$ and $Y \subseteq V\left(G^{\prime}\right)$ such that
- ac $\notin E\left(G^{\prime}\right)$,
- $G^{\prime}-\{a, c\}$ has exactly two connected components, X and Y,
- $|X| \geq 2$,
- $G^{\prime}[X \cup\{a\}] G^{\prime}[X \cup\{c\}]$ are cliques.

FPT Algorithm

Reduction Rules

- Rule 5: Apply if $\exists a, b \in V\left(G^{\prime}\right)$ and $Y \subseteq V\left(G^{\prime}\right)$ such that
- ac $\notin E\left(G^{\prime}\right)$,
- $G^{\prime}-\{a, c\}$ has exactly two connected components, X and Y,
- $|X| \geq 2$,
- $G^{\prime}[X \cup\{a\}] G^{\prime}[X \cup\{c\}]$ are cliques.

- Delete: All vertices in $X \cup\{a, b\}$.

FPT Algorithm

Reduction Rules

- Rule 5: Apply if $\exists a, b \in V\left(G^{\prime}\right)$ and $Y \subseteq V\left(G^{\prime}\right)$ such that
- ac $\notin E\left(G^{\prime}\right)$,
- $G^{\prime}-\{a, c\}$ has exactly two connected components, X and Y,
- $|X| \geq 2$,
- $G^{\prime}[X \cup\{a\}] G^{\prime}[X \cup\{c\}]$ are cliques.

- Delete: All vertices in $X \cup\{a, b\}$.

FPT Algorithm

Reduction Rules

- Rule 5: Apply if $\exists a, b \in V\left(G^{\prime}\right)$ and $Y \subseteq V\left(G^{\prime}\right)$ such that - $a c \notin E\left(G^{\prime}\right)$,
- $G^{\prime}-\{a, c\}$ has exactly two connected components, X and Y,
- $|X| \geq 2$,
- $G^{\prime}[X \cup\{a\}] G^{\prime}[X \cup\{c\}]$ are cliques.

- Delete: All vertices in $X \cup\{a, b\}$.
- Mark: a, b.

FPT Algorithm

Reduction Rules

- Rule 5: Apply if $\exists a, b \in V\left(G^{\prime}\right)$ and $Y \subseteq V\left(G^{\prime}\right)$ such that - $a c \notin E\left(G^{\prime}\right)$,
- $G^{\prime}-\{a, c\}$ has exactly two connected components, X and Y,
- $|X| \geq 2$,
- $G^{\prime}[X \cup\{a\}] G^{\prime}[X \cup\{c\}]$ are cliques.

- Delete: All vertices in $X \cup\{a, b\}$.
- Mark: a, b.
- Parameter: Reduce k^{\prime} by

$$
\lceil x / 2\rceil \cdot\lfloor x / 2\rfloor+\left\lceil d_{G[Y \cup\{a\}]}(a) / 2\right\rceil+\left\lceil d_{G[Y \cup\{b\}]}(b) / 2\right\rceil-2 .
$$

FPT Algorithm

Lemma

Rules 1-5 are one-way safe.

FPT Algorithm

Lemma

Rules 1-5 are one-way safe.

Lemma

If G^{\prime} has at least one edge then one of Rules 1-5 will apply.

FPT Algorithm

Lemma

Rules 1-5 are one-way safe.

Lemma

If G^{\prime} has at least one edge then one of Rules 1-5 will apply.

Lemma

If $k^{\prime} \leq 0$, then $\left(G^{\prime}, k^{\prime}\right)$ is a yes-instance, and hence (G, k) is a yes-instance. Otherwise, $|S| \leq 3 k$, where S is the set of marked vertices.

FPT Algorithm

Key Lemma

Lemma
$G-S$ is a clique-cycle-forest.

FPT Algorithm

Key Lemma

Lemma
$G-S$ is a clique-cycle-forest.

- Proof by induction on the length of the reduction.

FPT Algorithm

Key Lemma

Lemma
$G-S$ is a clique-cycle-forest.

- Proof by induction on the length of the reduction.
- Let $G=G_{0} \rightarrow G_{1} \rightarrow \cdots \rightarrow G_{\ell}=K_{1}$.

FPT Algorithm

Key Lemma

Lemma

$G-S$ is a clique-cycle-forest.

- Proof by induction on the length of the reduction.
- Let $G=G_{0} \rightarrow G_{1} \rightarrow \cdots \rightarrow G_{\ell}=K_{1}$.
- Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.

FPT Algorithm

Key Lemma

Lemma

$G-S$ is a clique-cycle-forest.

- Proof by induction on the length of the reduction.
- Let $G=G_{0} \rightarrow G_{1} \rightarrow \cdots \rightarrow G_{\ell}=K_{1}$.
- Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 1: $X \cup\{v\}$ is a clique.

00000

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 1: $X \cup\{v\}$ is a clique.
Case 1: $v \in S$

OOOON s

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 1: $X \cup\{v\}$ is a clique.
Case 2: $v \notin S$.

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 1: $X \cup\{v\}$ is a clique.
Case 2: $v \notin S$.

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 1: $X \cup\{v\}$ is a clique.
Case 2: $v \notin S$.

00000 s

FPT Algorithm

Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 2: $X \cup\{v\}$ is a cycle.

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 2: $X \cup\{v\}$ is a cycle. $X-v$ is a path.

00000
 S

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 2: $X \cup\{v\}$ is a cycle.
Case 1: $v \in S . X-v$ is a path.

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 2: $X \cup\{v\}$ is a cycle.
Case 2: $v \notin S$.

$\bigcirc \bigcirc \bigcirc \bigcirc$

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 2: $X \cup\{v\}$ is a cycle.
Case 2: $v \notin S$.

00000 s

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 3: X is a clique. v is marked.

FPT Algorithm

Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 4: X is a $P_{3} . X$ is marked.

FPT Algorithm

Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 4: X is a $P_{3} . X$ is marked.

FPT Algorithm
Key Lemma

Ind. hyp.: $G_{1}-S$ is a clique-cycle-forest.
Rule 5: $X \backslash\{a, b\}$ is a clique. a, b are marked.

Max-Cut-With-Weighted-Vertices

- Input:
- A graph G, an integer $t \in \mathbb{N}$, and
- weight functions $w_{0}: V(G) \rightarrow \mathbb{N} \cup\{0\}$ and $w_{1}: V(G) \rightarrow \mathbb{N} \cup\{0\}$.

Max-Cut-With-Weighted-Vertices

- Input:
- A graph G, an integer $t \in \mathbb{N}$, and
- weight functions $w_{0}: V(G) \rightarrow \mathbb{N} \cup\{0\}$ and $w_{1}: V(G) \rightarrow \mathbb{N} \cup\{0\}$.
- Objective: Test if $\exists f: V(G) \rightarrow\{0,1\}$ such that $\sum_{x y \in E(G)}|f(x)-f(y)|+\sum_{f(x)=0} w_{0}(x)+\sum_{f(x)=1} w_{1}(x) \geq t ?$

Max-Cut-With-Weighted-Vertices

- Input:
- A graph G, an integer $t \in \mathbb{N}$, and
- weight functions $w_{0}: V(G) \rightarrow \mathbb{N} \cup\{0\}$ and

$$
w_{1}: V(G) \rightarrow \mathbb{N} \cup\{0\}
$$

- Objective: Test if $\exists f: V(G) \rightarrow\{0,1\}$ such that $\sum_{x y \in E(G)}|f(x)-f(y)|+\sum_{f(x)=0} w_{0}(x)+\sum_{f(x)=1} w_{1}(x) \geq t ?$

Lemma (Crowston et al.)

Max-Cut-With-Weighted-Vertices is polynomial time solvable on clique-forests.

Max-Cut-With-Weighted-Vertices

- Input:
- A graph G, an integer $t \in \mathbb{N}$, and
- weight functions $w_{0}: V(G) \rightarrow \mathbb{N} \cup\{0\}$ and

$$
w_{1}: V(G) \rightarrow \mathbb{N} \cup\{0\} .
$$

- Objective: Test if $\exists f: V(G) \rightarrow\{0,1\}$ such that

$$
\sum_{x y \in E(G)}|f(x)-f(y)|+\sum_{f(x)=0} w_{0}(x)+\sum_{f(x)=1} w_{1}(x) \geq t ?
$$

Lemma (Crowston et al.)

Max-Cut-With-Weighted-Vertices is polynomial time solvable on clique-forests.

Lemma

Max-Cut-With-Weighted-Vertices is polynomial time solvable on clique-cycle-forests.

FPT Algorithm for Max-Cut-AST

- $G-S$ is a clique-cycle-forest.

FPT Algorithm for Max-Cut-AST

- $G-S$ is a clique-cycle-forest.
- Guess the optimal partition of S.

FPT Algorithm for Max-CuT-AST

- $G-S$ is a clique-cycle-forest.
- Guess the optimal partition of S.
- For each guess $f: S \rightarrow\{0,1\}$, construct a MCWWV instance on $G-S$.

FPT Algorithm for Max-Cut-AST

- $G-S$ is a clique-cycle-forest.
- Guess the optimal partition of S.
- For each guess $f: S \rightarrow\{0,1\}$, construct a MCWWV instance on $G-S$.
- $2^{|S|} \leq 2^{3 k}=8^{k}$ such instances.

FPT Algorithm for Max-Cut-AST

- $G-S$ is a clique-cycle-forest.
- Guess the optimal partition of S.
- For each guess $f: S \rightarrow\{0,1\}$, construct a MCWWV instance on $G-S$.
- $2^{|S|} \leq 2^{3 k}=8^{k}$ such instances.
- Original Max-Cut-AST instance is a yes-instance if and only if one of these 8^{k} instances of MCWWV is a yes-instance.

FPT Algorithm for Max-Cut-AST

- $G-S$ is a clique-cycle-forest.
- Guess the optimal partition of S.
- For each guess $f: S \rightarrow\{0,1\}$, construct a MCWWV instance on $G-S$.
- $2^{|S|} \leq 2^{3 k}=8^{k}$ such instances.
- Original Max-Cut-AST instance is a yes-instance if and only if one of these 8^{k} instances of MCWWV is a yes-instance.

FPT Algorithm for Max-Cut-AST

Fix $f: S \rightarrow\{0,1\}$. Construct an instance of MCWWV.

FPT Algorithm for Max-Cut-AST

Fix $f: S \rightarrow\{0,1\}$. Construct an instance of MCWWV. - $\ell=$ no. of edges of $G[S]$ that are satisfied by f.

FPT Algorithm for Max-Cut-AST

Fix $f: S \rightarrow\{0,1\}$. Construct an instance of MCWWV.

- $\ell=$ no. of edges of $G[S]$ that are satisfied by f.
- For $x \in V(G)-S$,
- $w_{0}(x)=\mid\{s \in S \mid s x \in E(G)$, and $f(s)=1\} \mid$,
- $w_{1}(x)=\mid\{s \in S \mid s x \in E(G)$, and $f(s)=0\} \mid$.

FPT Algorithm for Max-Cut-AST

FPT Algorithm for Max-Cut-AST

FPT Algorithm for Max-Cut-AST

®

FPT Algorithm for Max-Cut-AST

FPT Algorithm for Max-CuT-AST contd.

- Set $t=n-1+k-\ell$.

FPT Algorithm for Max-Cut-AST contd.

- Set $t=n-1+k-\ell$.
- Let $f^{\prime}: V(G-S) \rightarrow\{0,1\}=$ optimum solution for MCWWV on $\left(G-S, w_{0}, w_{1}, t\right)$

FPT Algorithm for Max-Cut-AST contd.

- Define a cut $g: V(G) \rightarrow\{0,1\}$ of G.

FPT Algorithm for Max-Cut-AST contd.

- Define a cut $g: V(G) \rightarrow\{0,1\}$ of G.
- $g(x)=f(x)$ if $x \in S$ and $g(x)=f^{\prime}(x)$ if $x \in V(G-S)$.

FPT Algorithm for Max-Cut-AST contd.

- Define a cut $g: V(G) \rightarrow\{0,1\}$ of G.
- $g(x)=f(x)$ if $x \in S$ and $g(x)=f^{\prime}(x)$ if $x \in V(G-S)$.

$$
\begin{aligned}
\|g\|= & \ell+\sum_{x y \in E(G-S)}|g(x)-g(y)| \\
& +\sum_{\substack{x \in V(G-S) \\
g(x)=0}} w_{0}(x)+\sum_{\substack{x \in V(G-S) \\
g(x)=1}} w_{1}(x) \\
= & \ell+\left\|f^{\prime}\right\| .
\end{aligned}
$$

FPT Algorithm for Max-Cut-AST contd.

- Define a cut $g: V(G) \rightarrow\{0,1\}$ of G.
- $g(x)=f(x)$ if $x \in S$ and

$$
g(x)=f^{\prime}(x) \text { if } x \in V(G-S)
$$

$$
\begin{aligned}
\|g\|= & \ell \\
& +\sum_{x y \in E(G-S)}|g(x)-g(y)| \\
& +\sum_{\substack{x \in V(G-S) \\
g(x)=0}} w_{0}(x)+\sum_{\substack{x \in V(G-S) \\
g(x)=1}} w_{1}(x) \\
= & \ell+\left\|f^{\prime}\right\| .
\end{aligned}
$$

- $\|g\| \geq n-1+k \Longleftrightarrow\left\|f^{\prime}\right\| \geq n-1+k-\ell=t$.

FPT Algorithm for Max-Cut-AST contd.

- Define a cut $g: V(G) \rightarrow\{0,1\}$ of G.
- $g(x)=f(x)$ if $x \in S$ and

$$
g(x)=f^{\prime}(x) \text { if } x \in V(G-S)
$$

$$
\begin{aligned}
\|g\|= & \ell \\
& +\sum_{x y \in E(G-S)}|g(x)-g(y)| \\
& +\sum_{\substack{x \in V(G-S) \\
g(x)=0}} w_{0}(x)+\sum_{\substack{x \in V(G-S) \\
g(x)=1}} w_{1}(x) \\
= & \ell+\left\|f^{\prime}\right\| .
\end{aligned}
$$

- $\|g\| \geq n-1+k \Longleftrightarrow\left\|f^{\prime}\right\| \geq n-1+k-\ell=t$.

No $2^{o(k)}$ algorithm

- Max-Cut has no $2^{\circ(t)}$ algorithm, $t=$ cut size, unless the Exponential Time Hypothesis fails.

No $2^{o(k)}$ algorithm

- Max-Cut has no $2^{\circ(t)}$ algorithm, $t=$ cut size, unless the Exponential Time Hypothesis fails.
- Reduce Max-Cut instance (G, t) to Max-Cut-AST instance (G, k).
- Set $k=t-(n-1)$.

No $2^{o(k)}$ algorithm

- Max-Cut has no $2^{\circ(t)}$ algorithm, $t=$ cut size, unless the Exponential Time Hypothesis fails.
- Reduce Max-Cut instance (G, t) to Max-Cut-AST instance (G, k).
- Set $k=t-(n-1)$.
- $k \leq t$.

No $2^{o(k)}$ algorithm

- Max-Cut has no $2^{o(t)}$ algorithm, $t=$ cut size, unless the Exponential Time Hypothesis fails.
- Reduce Max-Cut instance (G, t) to Max-Cut-AST instance (G, k).
- Set $k=t-(n-1)$.
- $k \leq t$.
- $2^{o(k)}$ algorithm for MAX-CUT-AST will imply $2^{o(t)}$ algorithm for Max-Cut.

Polynomial Kernel

Strategy

Polynomial Kernel

Strategy

- G has an even cycle implies G has a cut of size $n-1+1=n$.
- One even cycle means one additional edge in the cut.
- If G has k vertex disjoint even cycles, then (G, k) is a yes-instance.
- Cycles need not be vertex disjoint.
- Identify families of cycles such that all edges of all the cycles in the family fall into a cut.

Polynomial Kernel

Strategy contd.

- $G-S$ is a clique-cycle-forest, a forest of blocks.
- Bound the number of components of $G-S$.
- Bound the number of blocks in each component.
- Bound the size of each block.
- $\mathcal{O}\left(k^{5}\right)$ kernel.

Results and Conclusion

- FPT algorithm and $\mathcal{O}\left(k^{5}\right)$ kernel.
- Simple reduction to Max-Cut-AEE possible?
- $\mathcal{O}(k)$ kernel?
- Extend the results to signed graphs?

Thank You.

