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Introduction

A great interest on problems in vertex-colored graphs.

De�nition: given a vertex-colored graph G c , a maximum colorful
subgraph is one with the maximum number of colors possible.

May not be properly colored.

Some past works: tropical dominating sets[JA Angles,2015],
tropical connected components[JA Angles, 2016], maximum
colorful matchings[J Cohen,2017] and maximum colorful paths[ J
Cohen, 2017].

This work: Maximum Colorful Cycle Problem (MCCP): look for a
cycle with the maximum number of colors possible in a
vertex-colored graph.
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Hardness results for MCCP

Observation: MCCP is even harder than the longest
cycle problem (coloring each vertex by a distinct color).

There is no exact algorithms for speci�c graphs on the longest
cycle problem.

The Hamilton cycle problem: remain NP-complete on undirected
planar graphs of maximum degree three [Garey,1974], for
3-connected 3-regular bipartite graphs [Akiyama,1979] and easy
for proper interval graphs [Ibarra,2009].

The longest path problem is easy for threshold graphs
[Mahadev,1994] and bipartite chain graphs [Uehara, 2007]
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Hardness results for MCCP

Lemma 1: MCCP is NP-hard for interval graphs and
biconnected graphs.

Proof:

Reduce from the MAX-SAT problem

Variables: x1, x2, . . . , xs
xi appears in clauses bi1, bi2, . . . , biαi

, xi appears in
clauses b′i1, b

′
i2, . . . , b

′
iβi

Construct an intersection model and its interval graph G c ,
each clause by a distinct color.
Assign true/false values for x ′i s to obtain the maximum
number of satis�ed clauses ≡ a cycle with the maximum
number of colors in G c .
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Hardness results for MCCP
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Figure: Reduction of the MAX SAT problem to MCCP for interval graphs.
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Hardness results for MCCP

Lemma 1: MCCP is NP-hard for split graphs.

Use the fact: the longest path problem is NP-hard for split
graphs.

v

Clique Independent Set
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Algorithm for bipartite chain graphs

A bipartite chain graph G c = (X ,Y ,E ) if: N(x1) ⊇ N(x2) ⊇ . . . ⊇ N(x|X |).
Similarly, we have N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(y|Y |).

Cc and Cm : the maximum number colors of cycles and matchings of G c ,
respectively.

Lemma 2: Cm − 2 ≤ Cc ≤ Cm

N(xi1
) ⊇

yij yik−1
yj1

N(xi2
) ⊇ ⊇ N(xik

) v1 v2

v2t v2t−1

K

Cm − 2 ≤ Cc Cc ≤ Cm

M
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Algorithm for bipartite chain graphs

Denote v(H, c): the number of vertices of color c in a subgraph H of G c .

Let Xm,n = {xi ∈ X |c(xi ) /∈ {x1, x2, . . . , xm} ∪ {y1, y2, . . . , yn}}

Similarly for Ym,n = {yj ∈ Y |c(yj) /∈ {x1, x2, . . . , xm} ∪ {y1, y2, . . . , yn}}.

De�ne X `
m,n = {xmin[c11], xmin[c12], . . . , xmin[c1`]}: ` �rst vertices with distinct

colors in Xm,n.

Similarly for Y `
m,n = {ymin[c21], ymin[c22], . . . , ymin[c2`]}.

Key lemma: Let K be a maximum colorful cycle of G c , then there exists
another maximum colorful cycle K ′ where V (K ′) = {x1, x2, . . . , xm} ∪ X `

m,n∪
{y1, y2, . . . , yn} ∪ Y `′

m,n with 1 ≤ m ≤ |X |, 1 ≤ n ≤ |Y | and
0 ≤ ` = |XK | −m, 0 ≤ `′ = |YK | − n.
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Algorithm for bipartite chain graphs

Main ideas for key lemma: Replace xj by xi if: i < j and xi /∈ K and xj ∈ K
and v(K , c(xj)) ≥ 2 => obtain x1, x2, . . . , xm.

Replace ` = |XK | −m remaining vertices of XK by vertices

X `
m,n = {xmin[c11], xmin[c12], . . . , xmin[c1`]}.

xi /∈ K xj ∈ K

v(K, c(xj)) ≥ 2
X

x1 x2 xm

X
xmin[c11]

xmin[c12]

xmin[c1`]

Similarly for Y ...
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Algorithm for threshold graphs

G is a threshold graph with the repetition of: (1) adding an isolated vertex,
or (2) adding a dominating vertex, to G .

G c : a vertex-colored threshold graph.

X : the set of dominating vertices, Y : the set of isolated vertices.

The set of vertices V (G c): {v1, v2, . . . , vm}

Lemma 4: Cm − 1 ≤ Cc ≤ Cm + 1

N(xi1
) ⊇

yij yik−1
yj1

N(xi2
) ⊇ ⊇ N(xik

) v1 v2

v2t v2t−1

K

Cm − 1 ≤ Cc Cc ≤ Cm + 1

M
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Algorithm for threshold graphs

C1 := C (Y ) \ C (X ) = {c11, c12, . . . , c1k1}
For each c1i in C1, min[c1i ]: the index of the �rst vertex in Y with color c1i .

C2 := C (X ) = {c21, c22, . . . , c2k2}
For each c2i in C2, max[c2i ]: the index of the last vertex in X with color c2i .

K : a maximum colorful cycle

XK and YK be the sets of dominating vertices and isolated vertices in K ,

respectively.

Main observation:

w and t: isolated vertices such that w was added earlier than t, then
N(w) ⊇ N(t)
w and t: dominating vertices such that w was added earlier than t, then
N(w) ⊆ N(t)

Lemma 5: Any maximum colorful cycle can be reduced to another maximum
colorful cycle in which any isolated vertex has a distinct color.
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respectively.

Main observation:

w and t: isolated vertices such that w was added earlier than t, then
N(w) ⊇ N(t)
w and t: dominating vertices such that w was added earlier than t, then
N(w) ⊆ N(t)

Lemma 5: Any maximum colorful cycle can be reduced to another maximum
colorful cycle in which any isolated vertex has a distinct color.

45 / 67



Case 1: Cc = Cm + 1

Lemma 6: If Cc = Cm + 1, then any maximum colorful cycle must contain all
colors of G c .

By contradiction, then there exists a matching M with ≥ Cm + 1 colors.

Consider P ′ = P ∪ K \ (u,w), then P ′ has |P ′| ≥ Cm + 2 colors and M ∈ P ′.

K

u v

w

P
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Case 1: Cc = Cm + 1

Case 1.1: There exists a maximum colorful cycle K with some edge

connecting two dominating vertices u and v .

Lemma 7: There exists another maximum colorful cycle K ′ whose set of

vertices V (K ′) = V (X ) ∪ {vmin[c11], vmin[c12], . . . , vmin[c1k1 ]
}.

u v

w ∈ X

X

K
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Case 1: Cc = Cm + 1

Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that

connects two dominating vertices.

For each isolated vertex v , X+(v) and X−(v): the sets of dominating vertices
added to G c after and before v , respectively. Similarly for Y+(v) and Y−(v).

Lemma 8: There exists exactly one isolated vertex v∗ such that

|X+(v∗)|+ |C(X+(v∗))| = Cm + 1

Moreover, the set of dominating vertices XK = X+(v∗) and the number of

isolated vertices |YK | = |X+(v∗)|.

Denote {c ′11, c ′12, . . . , c ′1k′} = C(Y ) \ C(X+(v∗)).
Lemma 9: There exists another maximum colorful cycle K ′ where
V (K ′) = X+(v∗) ∪ {vmin[c′11], vmin[c′12], . . . , vmin[c′

1|X+(v∗)|]
}.
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Case 2: Cc = Cm

Lemma 10: For any maximum colorful cycle K , there exists at most one
dominating vertex v such that v /∈ K and c(v) /∈ (K ).

By contradiction, then there exists a matching M with ≥ Cm + 1 colors.

K

u v

M
c(u) /∈ C(K) c(v) /∈ C(K)

C(K) = Cm
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Case 2: Cc = Cm

Case 2.1: There exists a maximum colorful cycle K such that there exists
exactly one dominating vertex v∗∗ such that v∗∗ /∈ K and c(v∗∗) /∈ C (K ).

Lemma 11: There exists another colorful cycle K ′ such that

V (K ′) = V (X ) \ {v∗∗} ∪ {vmin[c′11], vmin[c′12], . . . , vmin[c′
1`

]} where
` = Cm − |X |+ 1.

Case 2.2: For any maximum colorful cycle K , there does not exist any
dominating vertex v such that v /∈ K and c(v) /∈ C (K ).

Lemma 12: There exists another colorful cycle K ′ where
V (K ′) = Xt(G

c) ∪ {vmax[c21], vmax[c22], . . . , vmax[c2k2 ]
}

∪{vmin[c11], vmin[c12], . . . , vmin[c1`]} where ` = Cm − |X | and
t = |V (K)| − k2 − Cm + |X |.
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Case 2: Cc = Cm − 1

Easily construct a cycle with Cm − 1 colors from any maximum colorful
matching based on the order of dominating vertices

N(xi1
) ⊇

yij yik−1
yj1

N(xi2
) ⊇ ⊇ N(xik

)

Cm − 1 = Cc

M
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Algorithm for threshold graphs
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Future works

Study on su�cient and necessary conditions for
the existence of tropical structures.

Parameters: the number of colors, degrees of
vertices, the number of vertices and edges, etc.

Work on others unsolved maximum colorful
problems such as maximum colorful
independent set/cliques, or for edge-colored
graphs.

65 / 67



Future works

Study on su�cient and necessary conditions for
the existence of tropical structures.

Parameters: the number of colors, degrees of
vertices, the number of vertices and edges, etc.

Work on others unsolved maximum colorful
problems such as maximum colorful
independent set/cliques, or for edge-colored
graphs.

66 / 67



Thank you for your attention!
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