Maximum colorful cycles in vertex-colored graphs

Yannis Manoussakis, Giuseppe F. Italiano, Nguyen Kim Thang, HongPhong PHAM

The 13th International Computer Science Symposium in Russia, Moscow 2018

9th June, 2018

Outline

- Introduction
- Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

Outline

- Introduction
- Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

Introduction

- A great interest on problems in vertex-colored graphs.

Introduction

- A great interest on problems in vertex-colored graphs.
- Definition: given a vertex-colored graph G^{c}, a maximum colorful subgraph is one with the maximum number of colors possible.

Introduction

- A great interest on problems in vertex-colored graphs.
- Definition: given a vertex-colored graph G^{c}, a maximum colorful subgraph is one with the maximum number of colors possible.
- May not be properly colored.

Introduction

- A great interest on problems in vertex-colored graphs.
- Definition: given a vertex-colored graph G^{c}, a maximum colorful subgraph is one with the maximum number of colors possible.
- May not be properly colored.
- Some past works: tropical dominating sets[JA Angles, 2015], tropical connected components[JA Angles, 2016], maximum colorful matchings[J Cohen,2017] and maximum colorful paths[J Cohen, 2017].

Introduction

- A great interest on problems in vertex-colored graphs.
- Definition: given a vertex-colored graph G^{c}, a maximum colorful subgraph is one with the maximum number of colors possible.
- May not be properly colored.
- Some past works: tropical dominating sets[JA Angles, 2015], tropical connected components[JA Angles, 2016], maximum colorful matchings[J Cohen, 2017] and maximum colorful paths [J Cohen, 2017].
- This work: Maximum Colorful Cycle Problem (MCCP): look for a cycle with the maximum number of colors possible in a vertex-colored graph.

Outline

- Introduction
- Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

Hardness results for MCCP

- Observation: MCCP is even harder than the longest cycle problem (coloring each vertex by a distinct color).

Hardness results for MCCP

- Observation: MCCP is even harder than the longest cycle problem (coloring each vertex by a distinct color).
- There is no exact algorithms for specific graphs on the longest cycle problem.

Hardness results for MCCP

- Observation: MCCP is even harder than the longest cycle problem (coloring each vertex by a distinct color).
- There is no exact algorithms for specific graphs on the longest cycle problem.
- The Hamilton cycle problem: remain NP-complete on undirected planar graphs of maximum degree three [Garey,1974], for 3-connected 3-regular bipartite graphs [Akiyama,1979] and easy for proper interval graphs [lbarra, 2009].

Hardness results for MCCP

- Observation: MCCP is even harder than the longest cycle problem (coloring each vertex by a distinct color).
- There is no exact algorithms for specific graphs on the longest cycle problem.
- The Hamilton cycle problem: remain NP-complete on undirected planar graphs of maximum degree three [Garey,1974], for 3-connected 3-regular bipartite graphs [Akiyama,1979] and easy for proper interval graphs [lbarra,2009].
- The longest path problem is easy for threshold graphs [Mahadev,1994] and bipartite chain graphs [Uehara, 2007]

Hardness results for MCCP

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.

Hardness results for MCCP

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:

Hardness results for MCCP

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:
- Reduce from the MAX-SAT problem
- Variables: $x_{1}, x_{2}, \ldots, x_{s}$
- x_{i} appears in clauses $b_{i 1}, b_{i 2}, \ldots, b_{i \alpha_{i}}, \overline{x_{i}}$ appears in clauses $b_{i 1}^{\prime}, b_{i 2}^{\prime}, \ldots, b_{i \beta_{i}}^{\prime}$

Hardness results for MCCP

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:
- Reduce from the MAX-SAT problem
- Variables: $x_{1}, x_{2}, \ldots, x_{s}$
- x_{i} appears in clauses $b_{i 1}, b_{i 2}, \ldots, b_{i \alpha_{i}}, \overline{x_{i}}$ appears in clauses $b_{i 1}^{\prime}, b_{i 2}^{\prime}, \ldots, b_{i \beta_{i}}^{\prime}$
- Construct an intersection model and its interval graph G^{c}, each clause by a distinct color.

Hardness results for MCCP

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:
- Reduce from the MAX-SAT problem
- Variables: $x_{1}, x_{2}, \ldots, x_{s}$
- x_{i} appears in clauses $b_{i 1}, b_{i 2}, \ldots, b_{i \alpha_{i}}, \overline{x_{i}}$ appears in clauses $b_{i 1}^{\prime}, b_{i 2}^{\prime}, \ldots, b_{i \beta_{i}}^{\prime}$
- Construct an intersection model and its interval graph G^{c}, each clause by a distinct color.

Hardness results for MCCP

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:
- Reduce from the MAX-SAT problem
- Variables: $x_{1}, x_{2}, \ldots, x_{s}$
- x_{i} appears in clauses $b_{i 1}, b_{i 2}, \ldots, b_{i \alpha_{i}}, \overline{x_{i}}$ appears in clauses $b_{i 1}^{\prime}, b_{i 2}^{\prime}, \ldots, b_{i \beta_{i}}^{\prime}$
- Construct an intersection model and its interval graph G^{c}, each clause by a distinct color.
- Assign true/false values for $x_{i}^{\prime} s$ to obtain the maximum number of satisfied clauses \equiv a cycle with the maximum number of colors in G^{c}.

Hardness results for MCCP

Figure: Reduction of the MAX SAT problem to MCCP for interval graphs.

Hardness results for MCCP

- Lemma 1: MCCP is NP-hard for split graphs.

Hardness results for MCCP

- Lemma 1: MCCP is NP-hard for split graphs.
- Use the fact: the longest path problem is NP-hard for split graphs.

Outline

- Introduction
- Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

Algorithm for bipartite chain graphs

- A bipartite chain graph $G^{c}=(X, Y, E)$ if: $N\left(x_{1}\right) \supseteq N\left(x_{2}\right) \supseteq \ldots \supseteq N\left(x_{|X|}\right)$. Similarly, we have $N\left(y_{1}\right) \supseteq N\left(y_{2}\right) \supseteq \ldots \supseteq N\left(y_{|Y|}\right)$.

Algorithm for bipartite chain graphs

- A bipartite chain graph $G^{c}=(X, Y, E)$ if: $N\left(x_{1}\right) \supseteq N\left(x_{2}\right) \supseteq \ldots \supseteq N\left(x_{|X|}\right)$. Similarly, we have $N\left(y_{1}\right) \supseteq N\left(y_{2}\right) \supseteq \ldots \supseteq N\left(y_{|Y|}\right)$.
- C_{c} and C_{m} : the maximum number colors of cycles and matchings of G^{c}, respectively.

Algorithm for bipartite chain graphs

- A bipartite chain graph $G^{c}=(X, Y, E)$ if: $N\left(x_{1}\right) \supseteq N\left(x_{2}\right) \supseteq \ldots \supseteq N\left(x_{|X|}\right)$. Similarly, we have $N\left(y_{1}\right) \supseteq N\left(y_{2}\right) \supseteq \ldots \supseteq N\left(y_{|Y|}\right)$.
- C_{c} and C_{m} : the maximum number colors of cycles and matchings of G^{c}, respectively.
- Lemma 2: $C_{m}-2 \leq C_{c} \leq C_{m}$

Algorithm for bipartite chain graphs

- Denote $v(H, c)$: the number of vertices of color c in a subgraph H of G^{c}.

Algorithm for bipartite chain graphs

- Denote $v(H, c)$: the number of vertices of color c in a subgraph H of G^{c}.
- Let $X_{m, n}=\left\{x_{i} \in X \mid c\left(x_{i}\right) \notin\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right\}$

Algorithm for bipartite chain graphs

- Denote $v(H, c)$: the number of vertices of color c in a subgraph H of G^{c}.
- Let $X_{m, n}=\left\{x_{i} \in X \mid c\left(x_{i}\right) \notin\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right\}$
- Similarly for $Y_{m, n}=\left\{y_{j} \in Y \mid c\left(y_{j}\right) \notin\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right\}$.

Algorithm for bipartite chain graphs

- Denote $v(H, c)$: the number of vertices of color c in a subgraph H of G^{c}.
- Let $X_{m, n}=\left\{x_{i} \in X \mid c\left(x_{i}\right) \notin\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right\}$
- Similarly for $Y_{m, n}=\left\{y_{j} \in Y \mid c\left(y_{j}\right) \notin\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right\}$.
- Define $X_{m, n}^{\ell}=\left\{x_{\min \left[c_{11}\right]}, x_{\min \left[c_{12}\right]}, \ldots, x_{\min \left[c_{1}\right]}\right\}: \ell$ first vertices with distinct colors in $X_{m, n}$.

Algorithm for bipartite chain graphs

- Denote $v(H, c)$: the number of vertices of color c in a subgraph H of G^{c}.
- Let $X_{m, n}=\left\{x_{i} \in X \mid c\left(x_{i}\right) \notin\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right\}$
- Similarly for $Y_{m, n}=\left\{y_{j} \in Y \mid c\left(y_{j}\right) \notin\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right\}$.
- Define $X_{m, n}^{\ell}=\left\{x_{\min \left[c_{11}\right]}, x_{\min \left[c_{12}\right]}, \ldots, x_{\min \left[c_{1}\right]}\right\}: \ell$ first vertices with distinct colors in $X_{m, n}$.
- Similarly for $Y_{m, n}^{\ell}=\left\{y_{\min \left[c_{21}\right]}, y_{\min \left[c_{22}\right]}, \ldots, y_{\min \left[c_{2}\right]}\right\}$.

Algorithm for bipartite chain graphs

- Denote $v(H, c)$: the number of vertices of color c in a subgraph H of G^{c}.
- Let $X_{m, n}=\left\{x_{i} \in X \mid c\left(x_{i}\right) \notin\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right\}$
- Similarly for $Y_{m, n}=\left\{y_{j} \in Y \mid c\left(y_{j}\right) \notin\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right\}$.
- Define $X_{m, n}^{\ell}=\left\{x_{\min \left[c_{11}\right]}, x_{\min \left[c_{12}\right]}, \ldots, x_{\min \left[c_{1}\right]}\right\}: \ell$ first vertices with distinct colors in $X_{m, n}$.
- Similarly for $Y_{m, n}^{\ell}=\left\{y_{\min \left[c_{21}\right]}, y_{\min \left[c_{22}\right]}, \ldots, y_{\min \left[c_{2}\right]}\right\}$.
- Key lemma: Let K be a maximum colorful cycle of G^{c}, then there exists another maximum colorful cycle K^{\prime} where $V\left(K^{\prime}\right)=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup X_{m, n}^{\ell} \cup$ $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \cup Y_{m, n}^{\ell^{\prime}}$ with $1 \leq m \leq|X|, 1 \leq n \leq|Y|$ and $0 \leq \ell=\left|X_{K}\right|-m, 0 \leq \ell^{\prime}=\left|Y_{K}\right|-n$.

Algorithm for bipartite chain graphs

- Main ideas for key lemma: Replace x_{j} by x_{i} if: $i<j$ and $x_{i} \notin K$ and $x_{j} \in K$ and $v\left(K, c\left(x_{j}\right)\right) \geq 2=>$ obtain $x_{1}, x_{2}, \ldots, x_{m}$.

$$
X \bullet \quad x_{i} \notin K \ldots, x_{j} \in K
$$

Algorithm for bipartite chain graphs

- Main ideas for key lemma: Replace x_{j} by x_{i} if: $i<j$ and $x_{i} \notin K$ and $x_{j} \in K$ and $v\left(K, c\left(x_{j}\right)\right) \geq 2=>$ obtain $x_{1}, x_{2}, \ldots, x_{m}$.
- Replace $\ell=\left|X_{K}\right|-m$ remaining vertices of X_{K} by vertices

$$
\left.X_{m, n}^{\ell}=\left\{x_{\min \left[c_{11}\right]}, x_{\min \left[c_{12}\right]}\right], \ldots, x_{\min \left[c_{1}\right]}\right\} .
$$

Algorithm for bipartite chain graphs

- Main ideas for key lemma: Replace x_{j} by x_{i} if: $i<j$ and $x_{i} \notin K$ and $x_{j} \in K$ and $v\left(K, c\left(x_{j}\right)\right) \geq 2=>$ obtain $x_{1}, x_{2}, \ldots, x_{m}$.
- Replace $\ell=\left|X_{K}\right|-m$ remaining vertices of X_{K} by vertices

$$
\left.X_{m, n}^{\ell}=\left\{x_{\min \left[c_{11}\right]}, x_{\min \left[c_{12}\right]}\right], \ldots, x_{\min \left[c_{1}\right]}\right\} .
$$

- Similarly for Y ...

Algorithm for bipartite chain graphs

```
Algorithm 2 Maximum colorful cycle in vertex-colored bipartite chain graphs.
    : \(C_{m} \leftarrow\) the number of colors of a maximum colorful matching (using algorithm [5])
    for \(C_{m} \geq C_{c} \geq C_{m}-2\) do
    for \(1 \leq m \leq|X|, 1 \leq n \leq|Y|\) do
        \(X_{m, n} \leftarrow\left\{x_{i} \in X \mid c\left(x_{i}\right) \notin \mathcal{C}\left(\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right) \cup \mathcal{C}\left(\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right)\right\}\)
        \(Y_{m, n} \leftarrow\left\{y_{j} \in Y \mid c\left(y_{j}\right) \notin \mathcal{C}\left(\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right) \cup \mathcal{C}\left(\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right)\right\}\)
        Denote \(\mathcal{C}\left(X_{m, n}\right):=\left\{c_{11}, c_{12}, \ldots, c_{1 k_{1}}\right\}\) and \(\mathcal{C}\left(Y_{m, n}\right):=\left\{c_{21}, c_{22}, \ldots, c_{2 k_{2}}\right\}\).
        for \(0 \leq \ell \leq C_{c}\) do
            \(\ell^{\prime} \leftarrow \max \left\{C_{c}-\ell-\left|\mathcal{C}\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right|-\left|\mathcal{C}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right|, 0\right\}\)
            \(X_{m, n}^{\ell} \leftarrow\left\{x_{\min \left[c_{11}\right]}, x_{\min \left[c_{12}\right]}, \ldots, x_{\min \left[c_{1 \ell}\right]}\right\}\) the set of \(\ell\) first vertices (in the
            ordering of \(x\)-vertices) with distinct colors in \(X_{m, n}\).
            \(Y_{m, n}^{\ell^{\prime}} \leftarrow\left\{y_{\min \left[c_{21}\right]}, y_{\min \left[c_{22}\right]}, \ldots, y_{\min \left[c_{2 \ell^{\prime}}\right]}\right\}\) the set of \(\ell^{\prime}\) first vertices (in the
            ordering of \(y\)-vertices) with distinct colors in \(Y_{m, n}\)
            if \(\exists\) a Hamiltonian cycle \(K\) of \(\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup X_{m, n}^{\ell} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \cup\)
            \(Y_{m, n}^{\ell^{\prime}}\) then
                    return \(K\) as the maximum colorful cycle
                end if
            end for
        end for
    end for
```


Outline

- Introduction
- Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

Algorithm for threshold graphs

- G is a threshold graph with the repetition of: (1) adding an isolated vertex, or (2) adding a dominating vertex, to G.

Algorithm for threshold graphs

- G is a threshold graph with the repetition of: (1) adding an isolated vertex, or (2) adding a dominating vertex, to G.
- G^{c} : a vertex-colored threshold graph.
- X : the set of dominating vertices, Y : the set of isolated vertices.
- The set of vertices $V\left(G^{c}\right):\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$

Algorithm for threshold graphs

- G is a threshold graph with the repetition of: (1) adding an isolated vertex, or (2) adding a dominating vertex, to G.
- G^{c} : a vertex-colored threshold graph.
- X : the set of dominating vertices, Y : the set of isolated vertices.
- The set of vertices $V\left(G^{c}\right):\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$
- Lemma 4: $C_{m}-1 \leq C_{c} \leq C_{m}+1$

Algorithm for threshold graphs

- $\mathcal{C}_{1}:=C(Y) \backslash C(X)=\left\{c_{11}, c_{12}, \ldots, c_{1 k_{1}}\right\}$
- For each $c_{1 i}$ in $\mathcal{C}_{1}, \min \left[c_{1}\right]$: the index of the first vertex in Y with color $c_{1 i}$.

Algorithm for threshold graphs

- $\mathcal{C}_{1}:=C(Y) \backslash C(X)=\left\{c_{11}, c_{12}, \ldots, c_{1 k_{1}}\right\}$
- For each $c_{1 i}$ in $\mathcal{C}_{1}, \min \left[c_{1}\right]$: the index of the first vertex in Y with color $c_{1 i}$.
- $\mathcal{C}_{2}:=C(X)=\left\{c_{21}, c_{22}, \ldots, c_{2 k_{2}}\right\}$
- For each $c_{2 i}$ in \mathcal{C}_{2}, $\max \left[c_{2 i}\right]$: the index of the last vertex in X with color $c_{2 i}$.

Algorithm for threshold graphs

- $\mathcal{C}_{1}:=C(Y) \backslash C(X)=\left\{c_{11}, c_{12}, \ldots, c_{1 k_{1}}\right\}$
- For each $c_{1 i}$ in $\mathcal{C}_{1}, \min \left[c_{1}\right]$: the index of the first vertex in Y with color $c_{1 i}$.
- $\mathcal{C}_{2}:=C(X)=\left\{c_{21}, c_{22}, \ldots, c_{2 k_{2}}\right\}$
- For each $c_{2 i}$ in $\mathcal{C}_{2}, \max \left[c_{2}\right]$: the index of the last vertex in X with color $c_{2 i}$.
- K : a maximum colorful cycle
- X_{K} and Y_{K} be the sets of dominating vertices and isolated vertices in K, respectively.

Algorithm for threshold graphs

- $\mathcal{C}_{1}:=C(Y) \backslash C(X)=\left\{c_{11}, c_{12}, \ldots, c_{1 k_{1}}\right\}$
- For each $c_{1 i}$ in $\mathcal{C}_{1}, \min \left[c_{1 i}\right]$: the index of the first vertex in Y with color $c_{1 i}$.
- $\mathcal{C}_{2}:=C(X)=\left\{c_{21}, c_{22}, \ldots, c_{2 k_{2}}\right\}$
- For each $c_{2 i}$ in $\mathcal{C}_{2}, \max \left[c_{2}\right]$: the index of the last vertex in X with color $c_{2 i}$.
- K : a maximum colorful cycle
- X_{K} and Y_{K} be the sets of dominating vertices and isolated vertices in K, respectively.
- Main observation:
- w and t : isolated vertices such that w was added earlier than t, then $N(w) \supseteq N(t)$
- w and t : dominating vertices such that w was added earlier than t, then $N(w) \subseteq N(t)$

Algorithm for threshold graphs

- $\mathcal{C}_{1}:=C(Y) \backslash C(X)=\left\{c_{11}, c_{12}, \ldots, c_{1 k_{1}}\right\}$
- For each $c_{1 i}$ in $\mathcal{C}_{1}, \min \left[c_{1 i}\right]$: the index of the first vertex in Y with color $c_{1 i}$.
- $\mathcal{C}_{2}:=C(X)=\left\{c_{21}, c_{22}, \ldots, c_{2 k_{2}}\right\}$
- For each $c_{2 i}$ in \mathcal{C}_{2}, $\max \left[c_{2}\right]$: the index of the last vertex in X with color $c_{2 i}$.
- K : a maximum colorful cycle
- X_{K} and Y_{K} be the sets of dominating vertices and isolated vertices in K, respectively.
- Main observation:
- w and t : isolated vertices such that w was added earlier than t, then $N(w) \supseteq N(t)$
- w and t : dominating vertices such that w was added earlier than t, then $N(w) \subseteq N(t)$
- Lemma 5: Any maximum colorful cycle can be reduced to another maximum colorful cycle in which any isolated vertex has a distinct color.

Case 1: $C_{c}=C_{m}+1$

- Lemma 6: If $C_{c}=C_{m}+1$, then any maximum colorful cycle must contain all colors of G^{c}.

Case 1: $C_{c}=C_{m}+1$

- Lemma 6: If $C_{c}=C_{m}+1$, then any maximum colorful cycle must contain all colors of G^{c}.
- By contradiction, then there exists a matching M with $\geq C_{m}+1$ colors.

Case 1: $C_{c}=C_{m}+1$

- Lemma 6: If $C_{c}=C_{m}+1$, then any maximum colorful cycle must contain all colors of G^{c}.
- By contradiction, then there exists a matching M with $\geq C_{m}+1$ colors.
- Consider $P^{\prime}=P \cup K \backslash(u, w)$, then P^{\prime} has $\left|P^{\prime}\right| \geq C_{m}+2$ colors and $M \in P^{\prime}$.

Case 1: $C_{c}=C_{m}+1$

- Case 1.1: There exists a maximum colorful cycle K with some edge connecting two dominating vertices u and v.

Case 1: $C_{c}=C_{m}+1$

- Case 1.1: There exists a maximum colorful cycle K with some edge connecting two dominating vertices u and v.
- Lemma 7: There exists another maximum colorful cycle K^{\prime} whose set of vertices $V\left(K^{\prime}\right)=V(X) \cup\left\{v_{\min \left[c_{11}\right]}, v_{\min \left[c_{12}\right]}, \ldots, v_{\min \left[c_{1_{1}}\right]}\right\}$.

Case 1: $C_{c}=C_{m}+1$

- Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.

Case 1: $C_{c}=C_{m}+1$

- Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.
- For each isolated vertex $v, X^{+}(v)$ and $X^{-}(v)$: the sets of dominating vertices added to G^{c} after and before v, respectively. Similarly for $Y^{+}(v)$ and $Y^{-}(v)$.

Case 1: $C_{c}=C_{m}+1$

- Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.
- For each isolated vertex $v, X^{+}(v)$ and $X^{-}(v)$: the sets of dominating vertices added to G^{c} after and before v, respectively. Similarly for $Y^{+}(v)$ and $Y^{-}(v)$.
- Lemma 8: There exists exactly one isolated vertex v^{*} such that

$$
\left|X^{+}\left(v^{*}\right)\right|+\left|C\left(X^{+}\left(v^{*}\right)\right)\right|=C_{m}+1
$$

Moreover, the set of dominating vertices $X_{K}=X^{+}\left(v^{*}\right)$ and the number of isolated vertices $\left|Y_{K}\right|=\left|X^{+}\left(v^{*}\right)\right|$.

Case 1: $C_{c}=C_{m}+1$

- Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.
- For each isolated vertex $v, X^{+}(v)$ and $X^{-}(v)$: the sets of dominating vertices added to G^{c} after and before v, respectively. Similarly for $Y^{+}(v)$ and $Y^{-}(v)$.
- Lemma 8: There exists exactly one isolated vertex v^{*} such that

$$
\left|X^{+}\left(v^{*}\right)\right|+\left|C\left(X^{+}\left(v^{*}\right)\right)\right|=C_{m}+1
$$

Moreover, the set of dominating vertices $X_{K}=X^{+}\left(v^{*}\right)$ and the number of isolated vertices $\left|Y_{K}\right|=\left|X^{+}\left(v^{*}\right)\right|$.

- Denote $\left\{c_{11}^{\prime}, c_{12}^{\prime}, \ldots, c_{1 k^{\prime}}^{\prime}\right\}=C(Y) \backslash C\left(X^{+}\left(v^{*}\right)\right)$.

Case 1: $C_{c}=C_{m}+1$

- Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.
- For each isolated vertex $v, X^{+}(v)$ and $X^{-}(v)$: the sets of dominating vertices added to G^{c} after and before v, respectively. Similarly for $Y^{+}(v)$ and $Y^{-}(v)$.
- Lemma 8: There exists exactly one isolated vertex v^{*} such that

$$
\left|X^{+}\left(v^{*}\right)\right|+\left|C\left(X^{+}\left(v^{*}\right)\right)\right|=C_{m}+1
$$

Moreover, the set of dominating vertices $X_{K}=X^{+}\left(v^{*}\right)$ and the number of isolated vertices $\left|Y_{K}\right|=\left|X^{+}\left(v^{*}\right)\right|$.

- Denote $\left\{c_{11}^{\prime}, c_{12}^{\prime}, \ldots, c_{1 k^{\prime}}^{\prime}\right\}=C(Y) \backslash C\left(X^{+}\left(v^{*}\right)\right)$.
- Lemma 9: There exists another maximum colorful cycle K^{\prime} where $V\left(K^{\prime}\right)=X^{+}\left(v^{*}\right) \cup\left\{v_{\min \left[c_{11}^{\prime}\right]}, v_{\min \left[c_{12}^{\prime}\right]}, \ldots, v_{\min \left[c_{1 \mid X}^{\prime}\left(v^{*}\right)\right]}\right\}$.

Case 2: $C_{c}=C_{m}$

- Lemma 10: For any maximum colorful cycle K, there exists at most one dominating vertex v such that $v \notin K$ and $c(v) \notin(K)$.

Case 2: $C_{c}=C_{m}$

- Lemma 10: For any maximum colorful cycle K, there exists at most one dominating vertex v such that $v \notin K$ and $c(v) \notin(K)$.
- By contradiction, then there exists a matching M with $\geq C_{m}+1$ colors.

Case 2: $C_{c}=C_{m}$

- Case 2.1: There exists a maximum colorful cycle K such that there exists exactly one dominating vertex $v^{* *}$ such that $v^{* *} \notin K$ and $c\left(v^{* *}\right) \notin C(K)$.

Case 2: $C_{c}=C_{m}$

- Case 2.1: There exists a maximum colorful cycle K such that there exists exactly one dominating vertex $v^{* *}$ such that $v^{* *} \notin K$ and $c\left(v^{* *}\right) \notin C(K)$.
- Lemma 11: There exists another colorful cycle K^{\prime} such that $\left.V\left(K^{\prime}\right)=V(X) \backslash\left\{v^{* *}\right\} \cup\left\{v_{\min \left[c_{11}^{\prime}\right]}, v_{\min \left[c_{12}^{\prime}\right]}\right], \ldots, v_{\min \left[c_{11}^{\prime}\right]}\right\}$ where $\ell=C_{m}-|X|+1$.

Case 2: $C_{c}=C_{m}$

- Case 2.1: There exists a maximum colorful cycle K such that there exists exactly one dominating vertex $v^{* *}$ such that $v^{* *} \notin K$ and $c\left(v^{* *}\right) \notin C(K)$.
- Lemma 11: There exists another colorful cycle K^{\prime} such that

$$
\begin{aligned}
& \left.V\left(K^{\prime}\right)=V(X) \backslash\left\{v^{* *}\right\} \cup\left\{v_{\min \left[c_{11}^{\prime}\right]}, v_{\min \left[c_{12}^{\prime}\right]}\right], \ldots, v_{\min \left[c_{1}^{\prime} \ell\right.}\right\} \text { where } \\
& \ell=C_{m}-|X|+1 .
\end{aligned}
$$

- Case 2.2: For any maximum colorful cycle K, there does not exist any dominating vertex v such that $v \notin K$ and $c(v) \notin C(K)$.

Case 2: $C_{c}=C_{m}$

- Case 2.1: There exists a maximum colorful cycle K such that there exists exactly one dominating vertex $v^{* *}$ such that $v^{* *} \notin K$ and $c\left(v^{* *}\right) \notin C(K)$.
- Lemma 11: There exists another colorful cycle K^{\prime} such that

$$
\begin{aligned}
& \left.V\left(K^{\prime}\right)=V(X) \backslash\left\{v^{* *}\right\} \cup\left\{v_{\min \left[c_{11}^{\prime}\right]}, v_{\min \left[c_{12}^{\prime}\right]}\right], \ldots, v_{\min \left[c_{1}^{\prime} \ell\right.}\right\} \text { where } \\
& \ell=C_{m}-|X|+1 .
\end{aligned}
$$

- Case 2.2: For any maximum colorful cycle K, there does not exist any dominating vertex v such that $v \notin K$ and $c(v) \notin C(K)$.
- Lemma 12: There exists another colorful cycle K^{\prime} where

$$
\begin{aligned}
& V\left(K^{\prime}\right)=X_{t}\left(G^{c}\right) \cup\left\{v_{\max \left[c_{2}\right]}, v_{\left.\max \left[c_{22}\right]\right]}, \ldots, v_{\max \left[c_{k_{2}}\right]}\right\} \\
& \cup\left\{v_{\min \left[c_{11}\right], V_{\text {min }\left[c_{12}\right]}, \ldots, v_{\text {min }}\left[c_{1}\right]}\right] \text { where } \ell=C_{m}-|X| \text { and } \\
& t=|V(K)|-k_{2}-C_{m}+|X| .
\end{aligned}
$$

Case 2: $C_{c}=C_{m}-1$

- Easily construct a cycle with $C_{m}-1$ colors from any maximum colorful matching based on the order of dominating vertices

Algorithm for threshold graphs

```
Algorithm 1 Maximum colorful cycle in vertex-colored threshold graphs.
    \(C_{m} \leftarrow\) the number of colors of a maximum colorful matching (using algorithm [5])
    \(\mathcal{C}_{1}:=\mathcal{C}(Y) \backslash \mathcal{C}(X)=\left\{c_{11}, c_{12}, \ldots, c_{1 k_{1}}\right\}\) and \(\mathcal{C}_{2}:=\mathcal{C}(X)=\left\{c_{21}, c_{22}, \ldots, c_{2 k_{2}}\right\}\)
    if \(\exists\) a Hamiltonian cycle \(K\) of \(V(X) \cup\left\{v_{\min \left[c_{11}\right]}, \ldots, v_{\min \left[c_{1 k_{1}}\right]}\right\}\) then \# Case 1.1
        return \(K\) as the maximum colorful cycle \# Lemma 4
    else \# Case 1.2
        \(v^{*} \leftarrow\) the unique vertex satisfying \(\left|X^{+}\left(v^{*}\right)\right|+\left|C\left(X^{+}\left(v^{*}\right)\right)\right|=C_{m}+1\)
        \(X^{+}\left(v^{*}\right) \leftarrow\) set of dominating vertices added to the graph after \(v^{*}\)
        \(\left\{c_{11}^{\prime}, c_{12}^{\prime}, \ldots, c_{1 k^{\prime}}^{\prime}\right\} \leftarrow \mathcal{C}(Y) \backslash \mathcal{C}\left(X^{+}\left(v^{*}\right)\right)\)
        if \(\exists\) a Hamiltonian cycle \(K\) of \(X^{+}\left(v^{*}\right) \cup\left\{v_{\min \left[c_{11}\right]}, v_{\min \left[c_{12}\right]}, \ldots, v_{\min \left[c_{1 k_{1}}\right]}\right\}\) then
            return \(K\) as the maximum colorful cycle \# Lemma 6
        end if
    end if
    for \(v^{* *} \in V\left(G^{c}\right)\) do \# Case 2.1
        \(\left\{c_{11}^{\prime}, c_{12}^{\prime}, \ldots, c_{1 k^{\prime}}^{\prime}\right\} \leftarrow \mathcal{C}(Y) \backslash \mathcal{C}(X) \cup\left\{c\left(v^{* *}\right)\right\}\) and \(\ell \leftarrow C_{m}-|\mathcal{C}(X)|+1\)
        if \(\exists\) a Hamiltonian cycle \(K\) of \(V(X) \backslash\left\{v^{* *}\right\} \cup\left\{v_{\min \left[c_{11}^{\prime}\right]}, v_{\min \left[c_{12}^{\prime}\right]}, \ldots, v_{\min \left[c_{1}^{\prime}\right]}\right\}\)
        then
            return \(K\) as the maximum colorful cycle \# Lemma 8
        end if
    end for
    for \(0 \leq t \leq\left|V(X) \backslash\left\{v_{\max \left[c_{21}\right]}, v_{\max \left[c_{22}\right]}, \ldots, v_{\max \left[c_{2 k_{2}}\right]}\right\}\right|\) do \# Case 2.2
        \(X_{t}\left(G^{c}\right) \leftarrow t\) last vertices in \(V(X) \backslash\left\{v_{\max \left[c_{21}\right]}, v_{\max \left[c_{22}\right]}, \ldots, v_{\max \left[c_{2 k_{2}}\right]}\right\}\)
        if \(\exists\) a Hamiltonian cycle \(K\) of \(X_{t}\left(G^{c}\right) \cup\left\{v_{\max \left[c_{21}\right]}, v_{\max \left[c_{22}\right]}, \ldots, v_{\max \left[c_{2 k_{2}}\right]}\right\}\)
        \(\cup\left\{v_{\min \left[c_{11}\right]}, v_{\min \left[c_{12}\right]}, \ldots, v_{\min \left[c_{1}\right]}\right\}\) where \(\ell=C_{m}-|\mathcal{C}(X)|\) then
            return \(K\) as the maximum colorful cycle \# Lemma 9
        end if
    end for
    return \(K\) as a maximum colorful cycle constructed from any maximum colorful
    matching based on Lemma 1
                                \# Case 3
```


Outline

- Introduction
- Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

Future works

- Study on sufficient and necessary conditions for the existence of tropical structures.
- Parameters: the number of colors, degrees of vertices, the number of vertices and edges, etc.

Future works

- Study on sufficient and necessary conditions for the existence of tropical structures.
- Parameters: the number of colors, degrees of vertices, the number of vertices and edges, etc.
- Work on others unsolved maximum colorful problems such as maximum colorful independent set/cliques, or for edge-colored graphs.

Thank you for your attention!

