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Introduction

o A great interest on problems in vertex-colored graphs.

o Definition: given a vertex-colored graph G¢, a maximum colorful
subgraph is one with the maximum number of colors possible.

e May not be properly colored.

o Some past works: tropical dominating sets[JA Angles,2015],
tropical connected components[JA Angles, 2016], maximum
colorful matchings[J Cohen,2017] and maximum colorful paths[ J
Cohen, 2017].

o This work: Maximum Colorful Cycle Problem (MCCP): look for a
cycle with the maximum number of colors possible in a
vertex-colored graph.
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o Observation: MCCP is even harder than the longest
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o There is no exact algorithms for specific graphs on the longest
cycle problem.

o The Hamilton cycle problem: remain NP-complete on undirected
planar graphs of maximum degree three [Garey,1974], for
3-connected 3-regular bipartite graphs [Akiyama,1979] and easy
for proper interval graphs [Ibarra,2009].

o The longest path problem is easy for threshold graphs
[Mahadev,1994] and bipartite chain graphs [Uehara, 2007]
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Hardness results for MCCP

o Lemma 1: MCCP is NP-hard for interval graphs and
biconnected graphs.

o Proof:
o Reduce from the MAX-SAT problem
o Variables: xi,x, ..., Xs
o X; appears in clauses bj1, bja, . .., bia,;, X; appears in
clauses bj, by, ..., bg.
o Construct an intersection model and its interval graph G°¢,
each clause by a distinct color.
o Assign true/false values for x!s to obtain the maximum
number of satisfied clauses = a cycle with the maximum
number of colors in G°.



Hardness results for MCCP
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Figure: Reduction of the MAX SAT problem to MCCP for interval graphs.
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o Lemma 1: MCCP is NP-hard for split graphs.

o Use the fact: the longest path problem is NP-hard for split
graphs.
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o C. and C,, : the maximum number colors of cycles and matchings of G°¢,
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@ Denote v(H, c): the number of vertices of color ¢ in a subgraph H of G°©.
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o Similarly for Ymn, = {y; € Yl|c(y;) ¢ {x1, %2, .., xm} U{y1,¥2,-- ., ¥n}}
o Define X[, , = {Xmin[cya]> Xminfcaa]s - - - » Xminfege] 1 £ first vertices with distinct
colors in Xp, .
o Similarly for Y,f,,,, = {Ymin[caa]> Ymin[caa]s - - - » Yimin[car] J -

o Key lemma: Let K be a maximum colorful cycle of G¢, then there exists
another maximum colorful cycle K" where V(K’) = {x1,x2, ..., xm} U X5 U
{1, y2, -, ya U YE pwith1<m<|X|, 1< n<|Y]|and
0<{=|Xk|—m0< ¥ =|Yx|—n.
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o Similarly for Y ...



Algorithm for bipartite chain graphs

Algorithm 2 Maximum colorful cycle in vertex-colored bipartite chain graphs.

1: Cm 4 the number of colors of a maximum colorful matching (using algorithm [5])
2: for Cp, > C. > Cpy, — 2 do

3: forl1<m<|X[,1<n<|Y]|do

4 van <~ {xl € ch('rl) ¢ C({.’m,xz, cee ,:L‘m}) U C({y17y27 s 7yn})}

5: Ym:n <~ {yj € ch(yj) ¢ C({xlvx% LR xm}) u C({y17y2= o 7y71r})}

6: Denote C(Xm,n) := {c11,¢12, ..., 1k } and C(Ym,n) := {c21,¢22, ..., Caky }-

T for 0 </ < C. do

8 0+ max{C. — € — |C(z1, 22, ..., Tm)| — |C(y1, Y2, ..., yn)|,0}

9

Xﬁm  {Tminfc11]> Tminfera]s - - - » Tminfey,] } the set of £ first vertices (in the
ordering of z-vertices) with distinct colors in X, ».

10: Yf:m < {Yminfea1]> Ymin[cas] s - - - 5 ymm[cu,]} the set of £ first vertices (in the
ordering of y-vertices) with distinct colors in Y, n

11: if 3 a Hamiltonian cycle K of {z1,x2,...,zm} U X,Z,hnU {y1,y2,..-,yn} U
er;:,n then

12: return K as the maximum colorful cycle

13: end if

14: end for

15:  end for

16: end for
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Algorithm for threshold graphs

@ G is a threshold graph with the repetition of: (1) adding an isolated vertex,
or (2) adding a dominating vertex, to G.
@ G°€: a vertex-colored threshold graph.

e X: the set of dominating vertices, Y: the set of isolated vertices.
o The set of vertices V(G): {vi,va,...,Vm}
o Lemma4: C, —1<C <Cp+1
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] Cl = C(Y) \ C(X) = {Clla C12,.. ., Cllq}

o For each ci; in C1, min[cy]: the index of the first vertex in Y with color ci;.
] C2 = C(X) = {Cgl, Cooyny C2k2}

e For each ¢ in C2, max[c;]: the index of the last vertex in X with color ;.
@ K: a maximum colorful cycle

o Xk and Yk be the sets of dominating vertices and isolated vertices in K,

respectively.

@ Main observation:

e w and t: isolated vertices such that w was added earlier than t, then
N(w) 2 N(t)

e w and t: dominating vertices such that w was added earlier than t, then
N(w) C N(t)

o Lemma 5. Any maximum colorful cycle can be reduced to another maximum
colorful cycle in which any isolated vertex has a distinct color.
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Casel: C,=C,+1

e Lemma 6: If C. = C,, + 1, then any maximum colorful cycle must contain all
colors of G°©.
e By contradiction, then there exists a matching M with > C,, + 1 colors.
o Consider P = PUK \ (u,w), then P’ has |P’| > C, + 2 colors and M € P’.
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o Lemma 7: There exists another maximum colorful cycle K' whose set of
vertices V(K’) = V(X) @] {Vmin[511]7 Viinfcaals - -+ » Vmi"[‘:lkl]}'
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o (Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that
connects two dominating vertices.

@ For each isolated vertex v, XT(v) and X~ (v): the sets of dominating vertices
added to G after and before v, respectively. Similarly for Y*(v) and Y~ (v).

o Lemma 8: There exists exactly one isolated vertex v* such that
XTI+ ICXT (v = Cn + 1

Moreover, the set of dominating vertices Xk = X (v*) and the number of
isolated vertices |Yx| = | Xt (v*)|.

o Denote {ci1,Cla,... i} = C(Y)\ C(XF(v¥)).
o Lemma 9: There exists another maximum colorful cycle K’ where
V(K’) = X+(V*) U {Vmin[c,’.l]ﬂ Vmi"[Ciz]’ <y Vimin[e! *)‘]}.
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o Lemma 10: For any maximum colorful cycle K, there exists at most one
dominating vertex v such that v ¢ K and c(v) ¢ (K).
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o Lemma 10: For any maximum colorful cycle K, there exists at most one
dominating vertex v such that v ¢ K and c(v) ¢ (K).
e By contradiction, then there exists a matching M with > C,, + 1 colors.
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@ Case 2.1: There exists a maximum colorful cycle K such that there exists
exactly one dominating vertex v** such that v** ¢ K and c(v**) ¢ C(K).
o Lemma 11: There exists another colorful cycle K’ such that
V(K') = V(X)\ V™" }U {Vinin{ef]» Viminicgy] - - - » Vimin[c],,1} Where
(= Cm—|X|+1.

e Case 2.2: For any maximum colorful cycle K, there does not exist any
dominating vertex v such that v ¢ K and c(v) ¢ C(K).
o Lemma 12: There exists another colorful cycle K’ where
V(K/) = Xt(Gc) @] {Vmax[cn]a Vmax[czz]a ey Vmax[c2k2]}
U{Vmin[c“], Vimin[cia]s - - - 5 Vmin[clg]} where ¥ = C,, — |X| and
t=|V(K)|— ke — Cn+ | X].



Case2: C.=(C,, —1

@ Easily construct a cycle with C,, — 1 colors from any maximum colorful
matching based on the order of dominating vertices
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Algorithm for threshold graphs

Algorithm 1 Maximum colorful cycle in vertex-colored threshold graphs.

1: Cy, 4 the number of colors of a maximum colorful matching (using algorithm [5])
2: C :=C(Y)\C(X) ={c11,c12,..., 1%, } and Co := C(X) = {e21, 22, ..., Cono }

3: if 3 a Hamiltonian cycle K of V/(X) U {Vminfc,]; - - - ,vm;n[clk]]} then # Case 1.1

4:  return K as the maximum colorful cycle # Lemma 4

5: else # Case 1.2

6:  v* < the unique vertex satisfying | X " (v*)| + [C(X T (v*))| = Cm + 1

7: X T(v*) + set of dominating vertices added to the graph after v*

8 {churchar s} e CV) \ C(XH(u))

9:  if 3 a Hamiltonian cycle K of X*(v*) U{Umin(e11]s Uminfera]s - - - ) Uminfey, 1} then
10: return K as the maximum colorful cycle # Lemma 6
11:  end if
12: end if
13: for v** € V(G°) do # Case 2.1

14: {ch1, ¢y ... i} + C(Y)\C(X) U {c(v*™)} and £ + Cy, — |C(X)| + 1
15:  if 3 a Hamiltonian cycle K of V(X)\ {v**} U {Vmin(e;, ) Vminfel )5 - - - ,’Umin[(.r[]}

2l 1

then
16: return K as the maximum colorful cycle # Lemma 8
17:  end if
18: end for
19: for 0 <t < |[V(X) \ {Vmax[ea1]s Vmax[eas]s - - - s Vmax[eay, ] }| dO # Case 2.2
20:  Xi(G°) <« t last vertices in V(X)\ {7),,,ax[u2|],11,,,4;[@2], ... ,1),,,ax[c%z]}
21: if 3 a Hamiltonian cycle K of X:(G°) U {/Umax[i‘zl]ﬁvmax[czz]‘r""vmax[52k2]}
U{¥min(c11]> Vminfera]s - - - s Vmin[er,] } Where £ = Cp, — [C(X)| then
22: return K as the maximum colorful cycle # Lemma 9
23:  end if
24: end for

: return K as a maximum colorful cycle constructed from any maximum colorful
matching based on Lemma 1 # Case 3

)
ot
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o Study on sufficient and necessary conditions for
the existence of tropical structures.
o Parameters: the number of colors, degrees of
vertices, the number of vertices and edges, etc.

o Work on others unsolved maximum colorful
problems such as maximum colorful

independent set/cliques, or for edge-colored
graphs.



Thank you for your attention!



