Maximum colorful cycles in vertex-colored graphs

Yannis Manoussakis, Giuseppe F. Italiano, Nguyen Kim Thang, HongPhong PHAM

The 13th International Computer Science Symposium in Russia, Moscow 2018

9th June, 2018

- Introduction
- e Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

Introduction

- e Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

• A great interest on problems in vertex-colored graphs.

Introduction

- A great interest on problems in vertex-colored graphs.
- Definition: given a vertex-colored graph G^c , a maximum colorful subgraph is one with the maximum number of colors possible.

- A great interest on problems in vertex-colored graphs.
- Definition: given a vertex-colored graph G^c , a maximum colorful subgraph is one with *the maximum number of colors possible*.
- May not be properly colored.

Introduction

- A great interest on problems in vertex-colored graphs.
- Definition: given a vertex-colored graph G^c , a maximum colorful subgraph is one with *the maximum number of colors possible*.
- May not be properly colored.
- Some past works: tropical dominating sets[JA Angles,2015], tropical connected components[JA Angles, 2016], maximum colorful matchings[J Cohen,2017] and maximum colorful paths[J Cohen, 2017].

- A great interest on problems in vertex-colored graphs.
- Definition: given a vertex-colored graph G^c , a maximum colorful subgraph is one with the maximum number of colors possible.
- May not be properly colored.
- Some past works: tropical dominating sets[JA Angles,2015], tropical connected components[JA Angles, 2016], maximum colorful matchings[J Cohen,2017] and maximum colorful paths[J Cohen, 2017].
- This work: Maximum Colorful Cycle Problem (MCCP): look for a cycle with the maximum number of colors possible in a vertex-colored graph.

- Introduction
- e Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

• Observation: MCCP is even harder than the longest cycle problem (coloring each vertex by a distinct color).

- Observation: MCCP is even harder than the longest cycle problem (coloring each vertex by a distinct color).
- There is no exact algorithms for specific graphs on the longest cycle problem.

- Observation: MCCP is even harder than the longest cycle problem (coloring each vertex by a distinct color).
- There is no exact algorithms for specific graphs on the longest cycle problem.
- The Hamilton cycle problem: remain NP-complete on undirected planar graphs of maximum degree three [Garey,1974], for 3-connected 3-regular bipartite graphs [Akiyama,1979] and easy for proper interval graphs [Ibarra,2009].

- Observation: MCCP is even harder than the longest cycle problem (coloring each vertex by a distinct color).
- There is no exact algorithms for specific graphs on the longest cycle problem.
- The Hamilton cycle problem: remain NP-complete on undirected planar graphs of maximum degree three [Garey,1974], for 3-connected 3-regular bipartite graphs [Akiyama,1979] and easy for proper interval graphs [Ibarra,2009].
- The longest path problem is easy for threshold graphs [Mahadev,1994] and bipartite chain graphs [Uehara, 2007]

• Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:
 - Reduce from the MAX-SAT problem
 - Variables: x_1, x_2, \ldots, x_s
 - x_i appears in clauses $b_{i1}, b_{i2}, \ldots, b_{i\alpha_i}, \overline{x_i}$ appears in clauses $b'_{i1}, b'_{i2}, \ldots, b'_{i\beta_i}$

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:
 - Reduce from the MAX-SAT problem
 - Variables: x_1, x_2, \ldots, x_s
 - x_i appears in clauses $b_{i1}, b_{i2}, \ldots, b_{i\alpha_i}, \overline{x_i}$ appears in clauses $b'_{i1}, b'_{i2}, \ldots, b'_{i\beta_i}$
 - Construct an intersection model and its interval graph G^c , each clause by a distinct color.

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:
 - Reduce from the MAX-SAT problem
 - Variables: x_1, x_2, \ldots, x_s
 - x_i appears in clauses $b_{i1}, b_{i2}, \ldots, b_{i\alpha_i}, \overline{x_i}$ appears in clauses $b'_{i1}, b'_{i2}, \ldots, b'_{i\beta_i}$
 - Construct an intersection model and its interval graph G^c , each clause by a distinct color.

- Lemma 1: MCCP is NP-hard for interval graphs and biconnected graphs.
- Proof:
 - Reduce from the MAX-SAT problem
 - Variables: x_1, x_2, \ldots, x_s
 - x_i appears in clauses $b_{i1}, b_{i2}, \ldots, b_{i\alpha_i}, \overline{x_i}$ appears in clauses $b'_{i1}, b'_{i2}, \ldots, b'_{i\beta_i}$
 - Construct an intersection model and its interval graph G^c , each clause by a distinct color.
 - Assign true/false values for x's to obtain the maximum number of satisfied clauses ≡ a cycle with the maximum number of colors in G^c.

Figure: Reduction of the MAX SAT problem to MCCP for interval graphs.

• Lemma 1: MCCP is NP-hard for split graphs.

- Lemma 1: MCCP is NP-hard for split graphs.
 - Use the fact: the longest path problem is NP-hard for split graphs.

- Introduction
- e Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

• A bipartite chain graph $G^c = (X, Y, E)$ if: $N(x_1) \supseteq N(x_2) \supseteq \ldots \supseteq N(x_{|X|})$. Similarly, we have $N(y_1) \supseteq N(y_2) \supseteq \ldots \supseteq N(y_{|Y|})$.

- A bipartite chain graph $G^c = (X, Y, E)$ if: $N(x_1) \supseteq N(x_2) \supseteq \ldots \supseteq N(x_{|X|})$. Similarly, we have $N(y_1) \supseteq N(y_2) \supseteq \ldots \supseteq N(y_{|Y|})$.
- C_c and C_m : the maximum number colors of cycles and matchings of G^c , respectively.

- A bipartite chain graph $G^c = (X, Y, E)$ if: $N(x_1) \supseteq N(x_2) \supseteq \ldots \supseteq N(x_{|X|})$. Similarly, we have $N(y_1) \supseteq N(y_2) \supseteq \ldots \supseteq N(y_{|Y|})$.
- C_c and C_m : the maximum number colors of cycles and matchings of G^c , respectively.
- Lemma 2: $C_m 2 \le C_c \le C_m$

• Denote v(H, c): the number of vertices of color c in a subgraph H of G^c .

- Denote v(H, c): the number of vertices of color c in a subgraph H of G^c .
- Let $X_{m,n} = \{x_i \in X | c(x_i) \notin \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}\}$

- Denote v(H, c): the number of vertices of color c in a subgraph H of G^c .
- Let $X_{m,n} = \{x_i \in X | c(x_i) \notin \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}\}$
 - Similarly for $Y_{m,n} = \{y_j \in Y | c(y_j) \notin \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}\}.$

- Denote v(H, c): the number of vertices of color c in a subgraph H of G^c .
- Let $X_{m,n} = \{x_i \in X | c(x_i) \notin \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}\}$
 - Similarly for $Y_{m,n} = \{y_j \in Y | c(y_j) \notin \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}\}.$
- Define X^ℓ_{m,n} = {x_{min[c11]}, x_{min[c12]},..., x_{min[c1ℓ]}}: ℓ first vertices with distinct colors in X_{m,n}.

- Denote v(H, c): the number of vertices of color c in a subgraph H of G^c .
- Let $X_{m,n} = \{x_i \in X | c(x_i) \notin \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}\}$
 - Similarly for $Y_{m,n} = \{y_j \in Y | c(y_j) \notin \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}\}.$
- Define X^ℓ_{m,n} = {x_{min[c11]}, x_{min[c12]},..., x_{min[c1ℓ]}}: ℓ first vertices with distinct colors in X_{m,n}.
 - Similarly for $Y_{m,n}^{\ell} = \{y_{\min[c_{21}]}, y_{\min[c_{22}]}, \dots, y_{\min[c_{2\ell}]}\}$.

- Denote v(H, c): the number of vertices of color c in a subgraph H of G^c .
- Let $X_{m,n} = \{x_i \in X | c(x_i) \notin \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}\}$
 - Similarly for $Y_{m,n} = \{y_j \in Y | c(y_j) \notin \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}\}.$
- Define X^ℓ_{m,n} = {x_{min[c11]}, x_{min[c12]},..., x_{min[c1ℓ]}}: ℓ first vertices with distinct colors in X_{m,n}.
 - Similarly for $Y_{m,n}^{\ell} = \{y_{\min[c_{21}]}, y_{\min[c_{22}]}, \dots, y_{\min[c_{2\ell}]}\}.$
- Key lemma: Let K be a maximum colorful cycle of G^c , then there exists another maximum colorful cycle K' where $V(K') = \{x_1, x_2, \ldots, x_m\} \cup X_{m,n}^{\ell} \cup \{y_1, y_2, \ldots, y_n\} \cup Y_{m,n}^{\ell'}$, with $1 \le m \le |X|, 1 \le n \le |Y|$ and $0 \le \ell = |X_K| - m, 0 \le \ell' = |Y_K| - n$.

 Main ideas for key lemma: Replace x_j by x_i if: i < j and x_i ∉ K and x_j ∈ K and v(K, c(x_j)) ≥ 2 => obtain x₁, x₂,..., x_m.

- Main ideas for key lemma: Replace x_j by x_i if: i < j and x_i ∉ K and x_j ∈ K and v(K, c(x_j)) ≥ 2 => obtain x₁, x₂,..., x_m.
 - Replace $\ell = |X_K| m$ remaining vertices of X_K by vertices $X_{m,n}^{\ell} = \{x_{\min[c_{11}]}, x_{\min[c_{12}]}, \dots, x_{\min[c_{1\ell}]}\}.$

- Main ideas for key lemma: Replace x_j by x_i if: i < j and x_i ∉ K and x_j ∈ K and v(K, c(x_j)) ≥ 2 => obtain x₁, x₂,..., x_m.
 - Replace $\ell = |X_K| m$ remaining vertices of X_K by vertices $X_{m,n}^{\ell} = \{x_{\min[c_{11}]}, x_{\min[c_{12}]}, \dots, x_{\min[c_{1\ell}]}\}.$

• Similarly for Y ...

Algorithm 2 Maximum colorful cycle in vertex-colored bipartite chain graphs. 1: $C_m \leftarrow$ the number of colors of a maximum colorful matching (using algorithm [5]) 2: for $C_m > C_c > C_m - 2$ do for 1 < m < |X|, 1 < n < |Y| do 3: $X_{m,n} \leftarrow \{x_i \in X | c(x_i) \notin \mathcal{C}(\{x_1, x_2, \dots, x_m\}) \cup \mathcal{C}(\{y_1, y_2, \dots, y_n\})\}$ 4: $Y_{m,n} \leftarrow \{y_j \in Y | c(y_j) \notin \mathcal{C}(\{x_1, x_2, \dots, x_m\}) \cup \mathcal{C}(\{y_1, y_2, \dots, y_n\})\}$ $5 \cdot$ Denote $\mathcal{C}(X_{m,n}) := \{c_{11}, c_{12}, \dots, c_{1k_1}\}$ and $\mathcal{C}(Y_{m,n}) := \{c_{21}, c_{22}, \dots, c_{2k_2}\}.$ 6: 7: for $0 \le \ell \le C_c$ do $\ell' \leftarrow \max\{C_c - \ell - |\mathcal{C}(x_1, x_2, ..., x_m)| - |\mathcal{C}(y_1, y_2, ..., y_n)|, 0\}$ 8: $X_{m,n}^{\ell} \leftarrow \{x_{\min[c_{11}]}, x_{\min[c_{12}]}, \dots, x_{\min[c_{1\ell}]}\}$ the set of ℓ first vertices (in the 9: ordering of x-vertices) with distinct colors in $X_{m,n}$. $Y_{m,n}^{\ell'} \leftarrow \{y_{\min[c_{21}]}, y_{\min[c_{22}]}, \dots, y_{\min[c_{2\ell'}]}\}$ the set of ℓ' first vertices (in the 10:ordering of y-vertices) with distinct colors in $Y_{m,n}$ if \exists a Hamiltonian cycle K of $\{x_1, x_2, \ldots, x_m\} \cup X_{m,n}^{\ell} \cup \{y_1, y_2, \ldots, y_n\} \cup$ 11: $Y_m^{\ell'}$, then **return** K as the maximum colorful cycle 12:13:end if 14: end for 15:end for 16: end for

- Introduction
- e Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

• G is a threshold graph with the repetition of: (1) adding an isolated vertex, or (2) adding a dominating vertex, to G.

- G is a threshold graph with the repetition of: (1) adding an isolated vertex, or (2) adding a dominating vertex, to G.
- *G^c*: a vertex-colored threshold graph.
 - X: the set of dominating vertices, Y: the set of isolated vertices.
 - The set of vertices $V(G^c)$: $\{v_1, v_2, \ldots, v_m\}$

- G is a threshold graph with the repetition of: (1) adding an isolated vertex, or (2) adding a dominating vertex, to G.
- G^c: a vertex-colored threshold graph.
 - X: the set of dominating vertices, Y: the set of isolated vertices.
 - The set of vertices $V(G^c)$: $\{v_1, v_2, \ldots, v_m\}$
 - Lemma 4: $C_m 1 \le C_c \le C_m + 1$

- $C_1 := C(Y) \setminus C(X) = \{c_{11}, c_{12}, \dots, c_{1k_1}\}$
 - For each c_{1i} in C_1 , min $[c_{1i}]$: the index of the first vertex in Y with color c_{1i} .

•
$$C_1 := C(Y) \setminus C(X) = \{c_{11}, c_{12}, \dots, c_{1k_1}\}$$

• For each c_{1i} in C_1 , min $[c_{1i}]$: the index of the first vertex in Y with color c_{1i} .

•
$$C_2 := C(X) = \{c_{21}, c_{22}, \dots, c_{2k_2}\}$$

• For each c_{2i} in C_2 , max $[c_{2i}]$: the index of the last vertex in X with color c_{2i} .

•
$$C_1 := C(Y) \setminus C(X) = \{c_{11}, c_{12}, \dots, c_{1k_1}\}$$

• For each c_{1i} in C_1 , min $[c_{1i}]$: the index of the first vertex in Y with color c_{1i} .

•
$$C_2 := C(X) = \{c_{21}, c_{22}, \dots, c_{2k_2}\}$$

• For each c_{2i} in C_2 , max $[c_{2i}]$: the index of the last vertex in X with color c_{2i} .

- K: a maximum colorful cycle
 - X_K and Y_K be the sets of dominating vertices and isolated vertices in K, respectively.

- $C_1 := C(Y) \setminus C(X) = \{c_{11}, c_{12}, \dots, c_{1k_1}\}$
 - For each c_{1i} in C_1 , min $[c_{1i}]$: the index of the first vertex in Y with color c_{1i} .

•
$$C_2 := C(X) = \{c_{21}, c_{22}, \dots, c_{2k_2}\}$$

- For each c_{2i} in C_2 , max $[c_{2i}]$: the index of the last vertex in X with color c_{2i} .
- K: a maximum colorful cycle
 - X_K and Y_K be the sets of dominating vertices and isolated vertices in K, respectively.
- Main observation:
 - w and t: isolated vertices such that w was added earlier than t, then $N(w) \supseteq N(t)$
 - w and t: dominating vertices such that w was added earlier than t, then $N(w) \subseteq N(t)$

•
$$C_1 := C(Y) \setminus C(X) = \{c_{11}, c_{12}, \dots, c_{1k_1}\}$$

• For each c_{1i} in C_1 , min $[c_{1i}]$: the index of the first vertex in Y with color c_{1i} .

•
$$C_2 := C(X) = \{c_{21}, c_{22}, \dots, c_{2k_2}\}$$

• For each c_{2i} in C_2 , max $[c_{2i}]$: the index of the last vertex in X with color c_{2i} .

- K: a maximum colorful cycle
 - X_K and Y_K be the sets of dominating vertices and isolated vertices in K, respectively.
- Main observation:
 - w and t: isolated vertices such that w was added earlier than t, then $N(w) \supseteq N(t)$
 - w and t: dominating vertices such that w was added earlier than t, then $N(w) \subseteq N(t)$
- Lemma 5: Any maximum colorful cycle can be reduced to another maximum colorful cycle in which any isolated vertex has a distinct color.

• Lemma 6: If $C_c = C_m + 1$, then any maximum colorful cycle must contain all colors of G^c .

- Lemma 6: If $C_c = C_m + 1$, then any maximum colorful cycle must contain all colors of G^c .
 - By contradiction, then there exists a matching M with $\geq C_m+1$ colors.

- Lemma 6: If $C_c = C_m + 1$, then any maximum colorful cycle must contain all colors of G^c .
 - By contradiction, then there exists a matching M with $\geq C_m + 1$ colors.
 - Consider $P' = P \cup K \setminus (u, w)$, then P' has $|P'| \ge C_m + 2$ colors and $M \in P'$.

• Case 1.1: There exists a maximum colorful cycle K with some edge connecting two dominating vertices u and v.

- Case 1.1: There exists a maximum colorful cycle K with some edge connecting two dominating vertices u and v.
 - Lemma 7: There exists another maximum colorful cycle K' whose set of vertices V(K') = V(X) ∪ {v_{min[c11]}, v_{min[c12]},..., v_{min[c1k1]}}.

• Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.

- Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.
- For each isolated vertex v, $X^+(v)$ and $X^-(v)$: the sets of dominating vertices added to G^c after and before v, respectively. Similarly for $Y^+(v)$ and $Y^-(v)$.

- Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.
- For each isolated vertex v, $X^+(v)$ and $X^-(v)$: the sets of dominating vertices added to G^c after and before v, respectively. Similarly for $Y^+(v)$ and $Y^-(v)$.
 - Lemma 8: There exists exactly one isolated vertex v* such that

$$|X^+(v^*)| + |C(X^+(v^*))| = C_m + 1$$

Moreover, the set of dominating vertices $X_K = X^+(v^*)$ and the number of isolated vertices $|Y_K| = |X^+(v^*)|$.

- Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.
- For each isolated vertex v, $X^+(v)$ and $X^-(v)$: the sets of dominating vertices added to G^c after and before v, respectively. Similarly for $Y^+(v)$ and $Y^-(v)$.
 - Lemma 8: There exists exactly one isolated vertex v* such that

$$|X^{+}(v^{*})| + |C(X^{+}(v^{*}))| = C_{m} + 1$$

Moreover, the set of dominating vertices $X_K = X^+(v^*)$ and the number of isolated vertices $|Y_K| = |X^+(v^*)|$.

• Denote $\{c'_{11}, c'_{12}, \ldots, c'_{1k'}\} = C(Y) \setminus C(X^+(v^*)).$

- Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that connects two dominating vertices.
- For each isolated vertex v, $X^+(v)$ and $X^-(v)$: the sets of dominating vertices added to G^c after and before v, respectively. Similarly for $Y^+(v)$ and $Y^-(v)$.
 - Lemma 8: There exists exactly one isolated vertex v* such that

$$|X^{+}(v^{*})| + |C(X^{+}(v^{*}))| = C_{m} + 1$$

Moreover, the set of dominating vertices $X_K = X^+(v^*)$ and the number of isolated vertices $|Y_K| = |X^+(v^*)|$.

- Denote $\{c'_{11}, c'_{12}, \dots, c'_{1k'}\} = C(Y) \setminus C(X^+(v^*)).$
- Lemma 9: There exists another maximum colorful cycle K' where $V(K') = X^+(v^*) \cup \{v_{\min[c'_{11}]}, v_{\min[c'_{12}]}, \dots, v_{\min[c'_{1|X^+(v^*)}]}\}$.

 Lemma 10: For any maximum colorful cycle K, there exists at most one dominating vertex v such that v ∉ K and c(v) ∉ (K).

- Lemma 10: For any maximum colorful cycle K, there exists at most one dominating vertex v such that $v \notin K$ and $c(v) \notin (K)$.
 - By contradiction, then there exists a matching M with $\geq C_m + 1$ colors.

 Case 2.1: There exists a maximum colorful cycle K such that there exists exactly one dominating vertex v^{**} such that v^{**} ∉ K and c(v^{**}) ∉ C(K).

- Case 2.1: There exists a maximum colorful cycle K such that there exists exactly one dominating vertex v^{**} such that v^{**} ∉ K and c(v^{**}) ∉ C(K).
 - Lemma 11: There exists another colorful cycle K' such that $V(K') = V(X) \setminus \{v^{**}\} \cup \{v_{\min[c'_{11}]}, v_{\min[c'_{12}]}, \dots, v_{\min[c'_{1\ell}]}\}$ where $\ell = C_m |X| + 1$.

- Case 2.1: There exists a maximum colorful cycle K such that there exists exactly one dominating vertex v^{**} such that v^{**} ∉ K and c(v^{**}) ∉ C(K).
 - Lemma 11: There exists another colorful cycle K' such that $V(K') = V(X) \setminus \{v^{**}\} \cup \{v_{\min[c'_{11}]}, v_{\min[c'_{12}]}, \dots, v_{\min[c'_{1\ell}]}\}$ where $\ell = C_m |X| + 1$.
- Case 2.2: For any maximum colorful cycle K, there does not exist any dominating vertex v such that v ∉ K and c(v) ∉ C(K).

- Case 2.1: There exists a maximum colorful cycle K such that there exists exactly one dominating vertex v^{**} such that v^{**} ∉ K and c(v^{**}) ∉ C(K).
 - Lemma 11: There exists another colorful cycle K' such that $V(K') = V(X) \setminus \{v^{**}\} \cup \{v_{\min[c'_{11}]}, v_{\min[c'_{12}]}, \dots, v_{\min[c'_{1\ell}]}\}$ where $\ell = C_m |X| + 1$.
- Case 2.2: For any maximum colorful cycle K, there does not exist any dominating vertex v such that v ∉ K and c(v) ∉ C(K).
 - Lemma 12: There exists another colorful cycle K' where $V(K') = X_t(G^c) \cup \{v_{\max[c_{21}]}, v_{\max[c_{22}]}, \dots, v_{\max[c_{2k_2}]}\}$ $\cup \{v_{\min[c_{11}]}, v_{\min[c_{12}]}, \dots, v_{\min[c_{1\ell}]}\}$ where $\ell = C_m - |X|$ and $t = |V(K)| - k_2 - C_m + |X|$.

• Easily construct a cycle with $C_m - 1$ colors from any maximum colorful matching based on the order of dominating vertices

$$M_{i_1} \stackrel{\text{\tiny $\mathbb{N}(x_{i_1}) \supseteq \mathbb{N}(x_{i_2}) \supseteq \widehat{}}}{\int \mathcal{N}(x_{i_2}) \stackrel{\text{\tiny $\mathbb{N}(x_{i_2}) \supseteq \widehat{}}}{\int \mathcal{N}(x_{i_k})}} \\ M_{j_1} \stackrel{\text{\tiny $\mathbb{N}(x_{i_2}) \supseteq \mathbb{N}(x_{i_k}) \cap \widehat{}}}{\int \mathcal{N}(x_{i_k}) \stackrel{\text{\tiny $\mathbb{N}(x_{i_k}) \cap \widehat{}}}{\int \mathcal{N}(x_{i_k}) \cap \widehat{}}} \\ g_{i_1} \stackrel{\text{\tiny $\mathbb{N}(x_{i_1}) \supseteq \mathbb{N}(x_{i_1}) \cap \widehat{}}}{\int \mathcal{N}(x_{i_1}) \cap \widehat{}}} \\ G_m - 1 = C_c$$

Algorithm 1 Maximum colorful cycle in vertex-colored threshold graphs.

1: $C_m \leftarrow$ the number of colors of a maximum colorful matching (using algorithm [5]) 2: $C_1 := C(Y) \setminus C(X) = \{c_{11}, c_{12}, \dots, c_{1k_1}\}$ and $C_2 := C(X) = \{c_{21}, c_{22}, \dots, c_{2k_2}\}$ 3: if \exists a Hamiltonian cycle K of $V(X) \cup \{v_{\min[c_{11}]}, \ldots, v_{\min[c_{1k}]}\}$ then # Case 1.1 **return** K as the maximum colorful cycle # Lemma 4 4:# Case 1.2 5: else $v^* \leftarrow$ the unique vertex satisfying $|X^+(v^*)| + |C(X^+(v^*))| = C_m + 1$ 6: 7: $X^+(v^*) \leftarrow$ set of dominating vertices added to the graph after v^* 8: $\{c'_{11}, c'_{12}, \ldots, c'_{1k'}\} \leftarrow \mathcal{C}(Y) \setminus \mathcal{C}(X^+(v^*))$ 9: if \exists a Hamiltonian cycle K of $X^+(v^*) \cup \{v_{\min[c_{11}]}, v_{\min[c_{12}]}, \ldots, v_{\min[c_{1k_1}]}\}$ then 10: **return** K as the maximum colorful cycle # Lemma 6 11: end if 12: end if 13: for $v^{**} \in V(G^c)$ do # Case 2.1 $\{c'_{11}, c'_{12}, \ldots, c'_{1k'}\} \leftarrow \mathcal{C}(Y) \setminus \mathcal{C}(X) \cup \{c(v^{**})\} \text{ and } \ell \leftarrow C_m - |\mathcal{C}(X)| + 1$ 14:if \exists a Hamiltonian cycle K of $V(X) \setminus \{v^{**}\} \cup \{v_{\min[c'_{1,2}]}, v_{\min[c'_{1,2}]}, \dots, v_{\min[c'_{1,n}]}\}$ 15:then **return** K as the maximum colorful cycle 16:# Lemma 8 17:end if 18: end for 19: for $0 \le t \le |V(X) \setminus \{v_{\max[c_{21}]}, v_{\max[c_{22}]}, \dots, v_{\max[c_{2k_2}]}\}|$ do # Case 2.2 $X_t(G^c) \leftarrow t$ last vertices in $V(X) \setminus \{v_{\max[c_{21}]}, v_{\max[c_{22}]}, \dots, v_{\max[c_{2k_n}]}\}$ 20:if \exists a Hamiltonian cycle K of $X_t(G^c) \cup \{v_{\max[c_{21}]}, v_{\max[c_{22}]}, \dots, v_{\max[c_{2k_2}]}\}$ 21: $\cup \{v_{\min[c_{11}]}, v_{\min[c_{12}]}, \ldots, v_{\min[c_{1\ell}]}\}$ where $\ell = C_m - |\mathcal{C}(X)|$ then 22:return K as the maximum colorful cycle # Lemma 9 23: end if 24: end for 25: return K as a maximum colorful cycle constructed from any maximum colorful

matching based on Lemma 1 # Case 3

- Introduction
- e Hardness results
- Algorithm for bipartite chain graphs
- Algorithm for threshold graphs
- Future works

Future works

- Study on sufficient and necessary conditions for the existence of tropical structures.
 - Parameters: the number of colors, degrees of vertices, the number of vertices and edges, etc.

Future works

- Study on sufficient and necessary conditions for the existence of tropical structures.
 - Parameters: the number of colors, degrees of vertices, the number of vertices and edges, etc.
- Work on others unsolved maximum colorful problems such as maximum colorful independent set/cliques, or for edge-colored graphs.

Thank you for your attention!