# Recognizing read-once functions from depth-3 formulas 

## Alexander Kozachinskiy

National Research University Higher School of Economics
CSR 2018, June 8, 2018

## Main Problem

Problem: given a monotone Boolean formula $\Phi$, is it possible to come up with a formula equivalent to $\Phi$, in which every variable appears at most once?

## Main Problem

Problem: given a monotone Boolean formula $\Phi$, is it possible to come up with a formula equivalent to $\Phi$, in which every variable appears at most once?

## Examples

## Main Problem

Problem: given a monotone Boolean formula $\Phi$, is it possible to come up with a formula equivalent to $\Phi$, in which every variable appears at most once?

## Examples

- $\Phi=\left(x_{1} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{4}\right) \vee\left(x_{2} \wedge x_{4}\right)$


## Main Problem

Problem: given a monotone Boolean formula $\Phi$, is it possible to come up with a formula equivalent to $\Phi$, in which every variable appears at most once?

## Examples

- $\Phi=\left(x_{1} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{4}\right) \vee\left(x_{2} \wedge x_{4}\right)$

$$
\text { YES: }\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)
$$

## Main Problem

Problem: given a monotone Boolean formula $\Phi$, is it possible to come up with a formula equivalent to $\Phi$, in which every variable appears at most once?

## Examples

- $\Phi=\left(x_{1} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{4}\right) \vee\left(x_{2} \wedge x_{4}\right)$

$$
\text { YES: }\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)
$$

$-\Phi=x_{2} x_{3} x_{4} \vee x_{1} x_{3} x_{4} \vee x_{1} x_{2} x_{4} \vee x_{2} x_{3} x_{4}$.

## Main Problem

Problem: given a monotone Boolean formula $\Phi$, is it possible to come up with a formula equivalent to $\Phi$, in which every variable appears at most once?

## Examples

- $\Phi=\left(x_{1} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{4}\right) \vee\left(x_{2} \wedge x_{4}\right)$

$$
\text { YES: }\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)
$$

- $\Phi=x_{2} x_{3} x_{4} \vee x_{1} x_{3} x_{4} \vee x_{1} x_{2} x_{4} \vee x_{2} x_{3} x_{4}$.

NO: check all formulas.

## Definitions

## Definition

A monotone Boolean formula is called read- $k$, if every variable appears in it at most $k$ times

Special case: read-once (read-1) formulas.
Definition
A monotone Boolean function is called read-once, if there is a monotone read-once formula, computing it.

## Definitions

## Definition

A monotone Boolean formula is called read- $k$, if every variable appears in it at most $k$ times

Special case: read-once (read-1) formulas.
Definition
A monotone Boolean function is called read-once, if there is a monotone read-once formula, computing it.

## Read-once recognition

Definition
ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

- depth-2 ROR (the input is a monotone DNF or CNF);
- read-2 ROR (the input is read-2 monotone formula);
- depth-3 read-2 ROR.


## Read-once recognition

Definition
ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

- depth-2 ROR (the input is a monotone DNF or CNF);
- read-2 ROR (the input is read-2 monotone formula);
- depth-3 read-2 ROR.


## Read-once recognition

Definition
ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

- depth-2 ROR (the input is a monotone DNF or CNF);
$\rightarrow$ read-2 ROR (the input is read-2 monotone formula);
- depth-3 read-2 ROR.


## Read-once recognition

## Definition

ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

- depth-2 ROR (the input is a monotone DNF or CNF);
- read-2 ROR (the input is read-2 monotone formula);
- depth-3 read-2 ROR.


## Read-once recognition

## Definition

ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

- depth-2 ROR (the input is a monotone DNF or CNF);
- read-2 ROR (the input is read-2 monotone formula);
- depth-3 read-2 ROR.


## Complexity of ROR

$R O R \in \sum_{2}^{P}$ (observation).
ROR $\in$ coNP (follows from [Gur77]).
More detalied complexity of ROR:

- depth-2 ROR $\in \mathrm{P}, \mathrm{O}(\mathrm{n} /$ )-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
d depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].


## Complexity of ROR

$R O R \in \sum_{2}^{P}$ (observation).
ROR $\in$ coNP (follows from [Gur77]).
More detalied complexity of ROR:

- depth-2 ROR $\in \mathrm{P}, \mathrm{O}(\mathrm{nl})$-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].


## Complexity of ROR

$R O R \in \sum_{2}^{P}$ (observation).
ROR $\in$ coNP (follows from [Gur77]).
More detalied complexity of ROR:


## Complexity of ROR

$R O R \in \sum_{2}^{P}$ (observation).
ROR $\in$ coNP (follows from [Gur77]).
More detalied complexity of ROR:

- depth-2 ROR $\in \mathrm{P}, O(n /)$-time algorithm [GMR08].
$\Rightarrow$ depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].


## Complexity of ROR

$R O R \in \Sigma_{2}^{P}$ (observation).
ROR $\in$ coNP (follows from [Gur77]).
More detalied complexity of ROR:

- depth-2 ROR $\in \mathrm{P}, O(n /)$-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].


## Complexity of ROR

ROR $\in \Sigma_{2}^{P}$ (observation).
$R O R \in \operatorname{coNP}$ (follows from [Gur77]).
More detalied complexity of ROR:

- depth-2 ROR $\in \mathrm{P}, O(n /)$-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].


## Complexity of ROR

ROR $\in \Sigma_{2}^{P}$ (observation).
ROR $\in$ coNP (follows from [Gur77]).
More detalied complexity of ROR:

- depth-2 ROR $\in \mathrm{P}, O(n /)$-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].


## Structure of hard depth-3 read-2 formulas



Here $D_{1}^{\prime}, \ldots, D_{k}^{\prime}$ are read-once disjoint DNF's over $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$.


## Structure of hard depth-3 read-2 formulas



Here $D_{1}^{\prime}, \ldots, D_{k}^{\prime}$ are read-once disjoint DNF's over
$x_{1}, y_{1}, \ldots, x_{n}, y_{n}$.
Corollary
ROR is coNP-complete even for inputs of the form $A \wedge D_{n}$, where $A$ is a monotone read-once $\bigwedge-\bigvee-\bigwedge$ formula and $D=\bigvee_{i=1} x_{i} \wedge y_{i}$.

## Gurvich's hardness result in more detail.



Theorem (Gur10)
ROR is coNP-complete for inputs of the form $C \vee D$, where $C$ is a monotone read-2 CNF and $D=\bigvee_{i=1}^{n} x_{i} \wedge y_{i}$

## Gurvich's hardness result in more detail.



Theorem (Gur10) ROR is coNP-complete for inputs of the form $C \vee D$, where $C$ is a monotone read-2 CNF and $D=\bigvee_{i=1}^{n} x_{i} \wedge y_{i}$.

## Tractable subclass of depth-3 formulas



Theorem (this work)
ROR is solvable in polynomial time for inputs of the form $C \vee D$, where $C$ is a monotone read- 1 CNF, $D$ is a monotone read- 1 DNF and every variable of $C$ occurs also in $D$.

## Reduction

Reduction from
CO-CLIQUE $=\{(G, k)$ : there is no clique of size $k$ in $G\}$.
$(G=(V, E), k) \Longleftarrow$ (Alice $\wedge$ Bob $)$ vs Merlin game $\Longleftarrow$ depth-3 read-2 $\Phi$.

## Reduction

Reduction from
CO-CLIQUE $=\{(G, k)$ : there is no clique of size $k$ in $G\}$.

$$
\begin{aligned}
(G=(V, E), k) & \Longleftarrow(\text { Alice } \wedge \text { Bob }) \text { vs Merlin game } \\
& \Longleftarrow \text { depth }-3 \text { read- } 2 \Phi .
\end{aligned}
$$

## Reduction

Reduction from
CO-CLIQUE $=\{(G, k)$ : there is no clique of size $k$ in $G\}$.

$$
\begin{aligned}
(G=(V, E), k) & \Longleftarrow(\text { Alice } \wedge \text { Bob }) \text { vs Merlin game } \\
& \Longleftarrow \text { depth }-3 \text { read- } 2 \Phi .
\end{aligned}
$$

## Game

$$
(G=(V, E), k) \Longleftarrow \text { (Alice and Bob) vs Merlin game }
$$



## Game



1. Merlin chooses $i \in[k]$;

## Game

$$
(G=(V, E), k) \Longleftarrow \text { (Alice and Bob) vs Merlin game }
$$



1. Merlin chooses $i \in[k]$;
2. Alice chooses $u \in V$;

## Game

$$
(G=(V, E), k) \Longleftarrow \text { (Alice and Bob) vs Merlin game }
$$



1. Merlin chooses $i \in[k]$;
2. Alice chooses $u \in V$;
3. Merlin chooses $j \in[k], v \in V$ s.t $j \neq i$ and $\{u, v\} \notin E$.

## Game

$$
(G=(V, E), k) \Longleftarrow \text { (Alice and Bob) vs Merlin game }
$$



1. Merlin chooses $i \in[k]$;
2. Alice chooses $u \in V$;
3. Merlin chooses $j \in[k], v \in V$ s.t $j \neq i$ and $\{u, v\} \notin E$.
4. Bob comes in and tries to guess a cell which was touched first.

There is a $k$-clique in $G \Longleftrightarrow$ Alice and Bob have a winning strategy

## The first direction

There is a $k$-clique in $G \Longrightarrow$ Alice and Bob have a winning strategy


## The first direction

There is a $k$-clique in $G \Longrightarrow$ Alice and Bob have a winning strategy

Assume $w_{1}, \ldots, w_{k}$ form a clique.


## The first direction

There is a $k$-clique in $G \Longrightarrow$ Alice and Bob have a winning strategy

Assume $w_{1}, \ldots, w_{k}$ form a clique.


## The first direction

There is a $k$-clique in $G \Longrightarrow$ Alice and Bob have a winning strategy

Assume $w_{1}, \ldots, w_{k}$ form a clique.


## The first direction

There is a $k$-clique in $G \Longrightarrow$ Alice and Bob have a winning strategy

Assume $w_{1}, \ldots, w_{k}$ form a clique.


Bob outputs a cell with a corresponding vertex of a clique in it.

## The second direction

Alice and Bob have a winning strategy $\Longrightarrow$ there is a $k$-clique in $G$.

## The second direction

Alice and Bob have a winning strategy $\Longrightarrow$ there is a $k$-clique in $G$.

Assume that $v_{i}$ is the vertex which Alice puts in the $i^{\text {th }}$ cell at Merlin request.

## The second direction

Alice and Bob have a winning strategy $\Longrightarrow$ there is a $k$-clique in $G$.

Assume that $v_{i}$ is the vertex which Alice puts in the $i^{\text {th }}$ cell at Merlin request.
Observe that $v_{1}, \ldots, v_{k}$ form a clique.

## The second direction

Alice and Bob have a winning strategy $\Longrightarrow$ there is a $k$-clique in $G$.

Assume that $v_{i}$ is the vertex which Alice puts in the $i^{\text {th }}$ cell at Merlin request.
Observe that $v_{1}, \ldots, v_{k}$ form a clique.
Indeed, if $v_{i}$ and $v_{j}$ are not connected by an edge, then:


## The second direction

Alice and Bob have a winning strategy $\Longrightarrow$ there is a $k$-clique in $G$.

Assume that $v_{i}$ is the vertex which Alice puts in the $i^{\text {th }}$ cell at Merlin request.
Observe that $v_{1}, \ldots, v_{k}$ form a clique.
Indeed, if $v_{i}$ and $v_{j}$ are not connected by an edge, then:


## From game to a formula

Constructing a formula:

- Variables correspond to possible outcomes of Alice-Merlin interaction:

$$
x_{j, v}^{i, u} \quad \text { over all } i \neq j,\{u, v\} \notin E .
$$

- Assignments of variables encode Bob's possible strategies.

$$
x_{j, v}^{i, u}=1 \longleftrightarrow \text { Bob picks } i^{\text {th }} \text { cell when he sees }\{(i, u),(j, v)\}
$$

- Bob's strategy is correct iff

$$
B=V /\left(x_{j, v}^{i, u} \wedge x_{i, u}^{j, v}\right)=0
$$

- Alice can always reach a variable set to 1 iff

$$
A=\bigwedge_{i} V_{u(j, v)} x_{j, v}^{i, u}=1
$$

## From game to a formula

Constructing a formula:

- Variables correspond to possible outcomes of Alice-Merlin interaction:

$$
x_{j, v}^{i, u} \quad \text { over all } i \neq j,\{u, v\} \notin E .
$$

- Assignments of variables encode Bob's possible strategies. $x_{j}^{i, u}=1 \Longleftrightarrow$ Bob nicks $i^{\text {th }}$ cell when he sees $\{(i, u),(j, v)\}$.
- Bob's strategy is correct iff

$$
B=\ /\left(x_{j, v}^{i, u} \wedge x_{i, u}^{j, v}\right)=0
$$

- Alice can always reach a variable set to 1 iff



## From game to a formula

Constructing a formula:

- Variables correspond to possible outcomes of Alice-Merlin interaction:

$$
x_{j, v}^{i, u} \quad \text { over all } i \neq j,\{u, v\} \notin E .
$$

- Assignments of variables encode Bob's possible strategies.

$$
x_{j, v}^{i, u}=1 \Longleftrightarrow \text { Bob picks } i^{\text {th }} \text { cell when he sees }\{(i, u),(j, v)\} .
$$

- Bob's strategy is correct iff

$$
B=\backslash /\left(x_{j, v}^{i, u} \wedge x_{i, u}^{j, v}\right)=0
$$

$\square$


## From game to a formula

Constructing a formula:

- Variables correspond to possible outcomes of Alice-Merlin interaction:

$$
x_{j, v}^{i, u} \quad \text { over all } i \neq j,\{u, v\} \notin E .
$$

- Assignments of variables encode Bob's possible strategies.

$$
x_{j, v}^{i, u}=1 \Longleftrightarrow \text { Bob picks } i^{\text {th }} \text { cell when he sees }\{(i, u),(j, v)\} .
$$

- Bob's strategy is correct iff

$$
B=\bigvee\left(x_{j, v}^{i, u} \wedge x_{i, u}^{j, v}\right)=0
$$

- Alice can always reach a variable set to 1 iff



## From game to a formula

Constructing a formula:

- Variables correspond to possible outcomes of Alice-Merlin interaction:

$$
x_{j, v}^{i, u} \quad \text { over all } i \neq j,\{u, v\} \notin E .
$$

- Assignments of variables encode Bob's possible strategies.

$$
x_{j, v}^{i, u}=1 \Longleftrightarrow \text { Bob picks } i^{\text {th }} \text { cell when he sees }\{(i, u),(j, v)\} .
$$

- Bob's strategy is correct iff

$$
B=\bigvee\left(x_{j, v}^{i, u} \wedge x_{i, u}^{j, v}\right)=0
$$

- Alice can always reach a variable set to 1 iff

$$
A=\bigwedge_{i} \bigvee_{u} \bigwedge_{(j, v)} x_{j, v}^{i, u}=1
$$

## Final remarks

$G$ has $k$-clique $\Longleftrightarrow$ Alice and Bob have a winning strategy $\Longleftrightarrow A \rightarrow B$ is not a tautology $\Longleftrightarrow A \wedge\left(w_{1} w_{3} \vee w_{2} w_{4}\right) \wedge\left(B \vee w_{1} w_{2} \vee w_{3} w_{4}\right) \notin \mathrm{ROR}$

Thank you! Any questions?

