Recognizing read-once functions from depth-3 formulas

Alexander Kozachinskiy

National Research University Higher School of Economics

CSR 2018, June 8, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Problem: given a monotone Boolean formula Φ , is it possible to come up with a formula equivalent to Φ , in which every variable appears at most once?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Problem: given a monotone Boolean formula Φ , is it possible to come up with a formula equivalent to Φ , in which every variable appears at most once?

Examples

Problem: given a monotone Boolean formula Φ , is it possible to come up with a formula equivalent to Φ , in which every variable appears at most once?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Examples

$$\blacktriangleright \ \Phi = (x_1 \land x_3) \lor (x_2 \land x_3) \lor (x_1 \land x_4) \lor (x_2 \land x_4)$$

Problem: given a monotone Boolean formula Φ , is it possible to come up with a formula equivalent to Φ , in which every variable appears at most once?

Examples

$$\blacktriangleright \ \Phi = (x_1 \land x_3) \lor (x_2 \land x_3) \lor (x_1 \land x_4) \lor (x_2 \land x_4)$$

 $\mathsf{YES:} (x_1 \lor x_2) \land (x_3 \lor x_4).$

Problem: given a monotone Boolean formula Φ , is it possible to come up with a formula equivalent to Φ , in which every variable appears at most once?

Examples

$$\blacktriangleright \ \Phi = (x_1 \land x_3) \lor (x_2 \land x_3) \lor (x_1 \land x_4) \lor (x_2 \land x_4)$$

$$\mathsf{YES:} (x_1 \lor x_2) \land (x_3 \lor x_4).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

•
$$\Phi = x_2 x_3 x_4 \lor x_1 x_3 x_4 \lor x_1 x_2 x_4 \lor x_2 x_3 x_4.$$

Problem: given a monotone Boolean formula Φ , is it possible to come up with a formula equivalent to Φ , in which every variable appears at most once?

Examples

$$\blacktriangleright \ \Phi = (x_1 \wedge x_3) \lor (x_2 \wedge x_3) \lor (x_1 \wedge x_4) \lor (x_2 \wedge x_4)$$

$$\mathsf{YES:} (x_1 \lor x_2) \land (x_3 \lor x_4).$$

• $\Phi = x_2 x_3 x_4 \lor x_1 x_3 x_4 \lor x_1 x_2 x_4 \lor x_2 x_3 x_4.$

NO: check all formulas.

Definitions

Definition

A monotone Boolean formula is called *read-k*, if every variable appears in it at most k times

Special case: read-once (read-1) formulas.

Definition

A monotone Boolean function is called *read-once*, if there is a monotone read-once formula, computing it.

Definitions

Definition

A monotone Boolean formula is called *read-k*, if every variable appears in it at most k times

Special case: read-once (read-1) formulas.

Definition

A monotone Boolean function is called *read-once*, if there is a monotone read-once formula, computing it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

depth-2 ROR (the input is a monotone DNF or CNF);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- read-2 ROR (the input is read-2 monotone formula);
- depth-3 read-2 ROR.

Definition

ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

depth-2 ROR (the input is a monotone DNF or CNF);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

read-2 ROR (the input is read-2 monotone formula);

depth-3 read-2 ROR.

Definition

ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

depth-2 ROR (the input is a monotone DNF or CNF);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

read-2 ROR (the input is read-2 monotone formula);

depth-3 read-2 ROR.

Definition

ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

depth-2 ROR (the input is a monotone DNF or CNF);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

read-2 ROR (the input is read-2 monotone formula);

depth-3 read-2 ROR.

Definition

ROR is the problem of deciding whether a given monotone Boolean formula computes read-once function.

Special cases of ROR:

depth-2 ROR (the input is a monotone DNF or CNF);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- read-2 ROR (the input is read-2 monotone formula);
- depth-3 read-2 ROR.

$\mathsf{ROR} \in \Sigma_2^P$ (observation).

 $ROR \in coNP$ (follows from [Gur77]).

More detailed complexity of ROR:

- ▶ depth-2 ROR \in P, O(nl)-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$\mathsf{ROR} \in \Sigma_2^P$ (observation).

$ROR \in coNP$ (follows from [Gur77]).

More detailed complexity of ROR:

- ▶ depth-2 ROR \in P, O(nl)-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$\mathsf{ROR} \in \Sigma_2^P$ (observation).

 $ROR \in coNP$ (follows from [Gur77]).

More detailed complexity of ROR:

- ▶ depth-2 ROR \in P, O(nl)-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].

 $\mathsf{ROR} \in \Sigma_2^P$ (observation).

 $ROR \in coNP$ (follows from [Gur77]).

More detailed complexity of ROR:

- ▶ depth-2 ROR \in P, O(nl)-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\mathsf{ROR} \in \Sigma_2^P$ (observation).

 $ROR \in coNP$ (follows from [Gur77]).

More detailed complexity of ROR:

- ▶ depth-2 ROR \in P, O(nl)-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\mathsf{ROR} \in \Sigma_2^P$ (observation).

 $ROR \in coNP$ (follows from [Gur77]).

More detailed complexity of ROR:

- ▶ depth-2 ROR \in P, O(nl)-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].

depth-3 read-2 ROR is coNP-complete [this work].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\mathsf{ROR} \in \Sigma_2^P$ (observation).

 $ROR \in coNP$ (follows from [Gur77]).

More detailed complexity of ROR:

- ▶ depth-2 ROR \in P, O(nl)-time algorithm [GMR08].
- depth-4 read-2 ROR is coNP-complete [EMR11]
- depth-3 read-3 ROR is coNP-complete [Gur10].
- depth-3 read-2 ROR is coNP-complete [this work].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Structure of hard depth-3 read-2 formulas

Here D'_1, \ldots, D'_k are read-once disjoint DNF's over $x_1, y_1, \ldots, x_n, y_n$.

Corollary

ROR is coNP-complete even for inputs of the form $A \wedge D$, where A is a monotone read-once $\bigwedge - \bigvee - \bigwedge$ formula and $D = \bigvee_{i=1}^{n} x_i \wedge y_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Structure of hard depth-3 read-2 formulas

Here D'_1, \ldots, D'_k are read-once disjoint DNF's over $x_1, y_1, \ldots, x_n, y_n$.

Corollary

ROR is coNP-complete even for inputs of the form $A \wedge D$, where A is a monotone read-once $\bigwedge - \bigvee - \bigwedge$ formula and $D = \bigvee_{i=1}^{n} x_i \wedge y_i$.

Gurvich's hardness result in more detail.

Theorem (Gur10)

ROR is coNP-complete for inputs of the form $C \lor D$, where C is a monotone read-2 CNF and $D = \bigvee_{i=1}^{n} x_i \land y_i$.

・ロト・西・・田・・田・・日・

Gurvich's hardness result in more detail.

Theorem (Gur10)

ROR is coNP-complete for inputs of the form $C \lor D$, where C is a monotone read-2 CNF and $D = \bigvee_{i=1}^{n} x_i \land y_i$.

Tractable subclass of depth-3 formulas

Theorem (this work)

ROR is solvable in polynomial time for inputs of the form $C \lor D$, where C is a monotone read-1 CNF, D is a monotone read-1 DNF and every variable of C occurs also in D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Reduction

Reduction from CO-CLIQUE= {(G, k) : there is no clique of size k in G}.

$(G = (V, E), k) \iff$ (Alice \land Bob) vs Merlin game \iff depth-3 read-2 Φ .

Reduction

Reduction from CO-CLIQUE= {(G, k) : there is no clique of size k in G}.

$$(G = (V, E), k) \iff$$
 (Alice \land Bob) vs Merlin game
 \iff depth-3 read-2 Φ .

Reduction

Reduction from CO-CLIQUE= {(G, k) : there is no clique of size k in G}.

$$(G = (V, E), k) \iff$$
 (Alice \land Bob) vs Merlin game
 \iff depth-3 read-2 Φ .

 $(G = (V, E), k) \iff$ (Alice and Bob) vs Merlin game

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

 $(G = (V, E), k) \iff$ (Alice and Bob) vs Merlin game

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1. Merlin chooses $i \in [k]$;

 $(G = (V, E), k) \iff$ (Alice and Bob) vs Merlin game

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. Merlin chooses $i \in [k]$;
- 2. Alice chooses $u \in V$;

 $(G = (V, E), k) \iff$ (Alice and Bob) vs Merlin game

- 1. Merlin chooses $i \in [k]$;
- 2. Alice chooses $u \in V$;
- 3. Merlin chooses $j \in [k], v \in V$ s.t $j \neq i$ and $\{u, v\} \notin E$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. Merlin chooses $i \in [k]$;
- 2. Alice chooses $u \in V$;
- 3. Merlin chooses $j \in [k], v \in V$ s.t $j \neq i$ and $\{u, v\} \notin E$.
- 4. Bob comes in and tries to guess a cell which was touched first.

There is a k-clique in $G \iff$ Alice and Bob have a winning strategy

There is a k-clique in $G \implies$ Alice and Bob have a winning strategy

There is a k-clique in $G \implies$ Alice and Bob have a winning strategy

Assume w_1, \ldots, w_k form a clique.

There is a k-clique in $G \implies$ Alice and Bob have a winning strategy

Assume w_1, \ldots, w_k form a clique.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

There is a k-clique in $G \implies$ Alice and Bob have a winning strategy

Assume w_1, \ldots, w_k form a clique.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

There is a *k*-clique in $G \implies$ Alice and Bob have a winning strategy

Assume w_1, \ldots, w_k form a clique.

Bob outputs a cell with a corresponding vertex of a clique in it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Alice and Bob have a winning strategy \implies there is a *k*-clique in *G*.

Alice and Bob have a winning strategy \implies there is a *k*-clique in *G*.

Assume that v_i is the vertex which Alice puts in the i^{th} cell at Merlin request.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alice and Bob have a winning strategy \implies there is a *k*-clique in *G*.

Assume that v_i is the vertex which Alice puts in the i^{th} cell at Merlin request.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observe that v_1, \ldots, v_k form a clique.

Alice and Bob have a winning strategy \implies there is a *k*-clique in *G*.

Assume that v_i is the vertex which Alice puts in the i^{th} cell at Merlin request.

Observe that v_1, \ldots, v_k form a clique.

Indeed, if v_i and v_j are not connected by an edge, then:

Alice and Bob have a winning strategy \implies there is a *k*-clique in *G*.

Assume that v_i is the vertex which Alice puts in the i^{th} cell at Merlin request.

Observe that v_1, \ldots, v_k form a clique.

Indeed, if v_i and v_j are not connected by an edge, then:

Constructing a formula:

Variables correspond to possible outcomes of Alice-Merlin interaction:

$$i,u_{i,v}$$
 over all $i \neq j$, $\{u,v\} \notin E$.

Assignments of variables encode Bob's possible strategies.

 $x_{j,v}^{i,u} = 1 \iff$ Bob picks i^{th} cell when he sees $\{(i, u), (j, v)\}$.

Bob's strategy is correct iff

$$B = \bigvee (x_{j,v}^{i,u} \wedge x_{i,u}^{j,v}) = 0.$$

Alice can always reach a variable set to 1 iff

$$A = \bigwedge_{i} \bigvee_{u} \bigwedge_{(j,v)} x_{j,v}^{i,u} = 1$$

Constructing a formula:

Variables correspond to possible outcomes of Alice-Merlin interaction:

$$x_{j,v}^{i,u}$$
 over all $i \neq j$, $\{u, v\} \notin E$.

Assignments of variables encode Bob's possible strategies.

 $x_{j,v}^{i,u} = 1 \iff$ Bob picks i^{th} cell when he sees $\{(i, u), (j, v)\}$.

Bob's strategy is correct iff

$$B = \bigvee (x_{j,v}^{i,u} \wedge x_{i,u}^{j,v}) = 0.$$

$$A = \bigwedge_{i} \bigvee_{u} \bigwedge_{(j,v)} x_{j,v}^{i,u} = 1.$$

Constructing a formula:

Variables correspond to possible outcomes of Alice-Merlin interaction:

$$x_{j,v}^{i,u}$$
 over all $i \neq j$, $\{u, v\} \notin E$.

Assignments of variables encode Bob's possible strategies.

 $x_{j,v}^{i,u} = 1 \iff$ Bob picks i^{th} cell when he sees $\{(i, u), (j, v)\}$.

Bob's strategy is correct iff

$$B = \bigvee (x_{j,v}^{i,u} \wedge x_{i,u}^{j,v}) = 0.$$

$$A = \bigwedge_{i} \bigvee_{u} \bigwedge_{(j,v)} x_{j,v}^{i,u} = 1.$$

Constructing a formula:

Variables correspond to possible outcomes of Alice-Merlin interaction:

$$x_{j,v}^{i,u}$$
 over all $i \neq j$, $\{u, v\} \notin E$.

Assignments of variables encode Bob's possible strategies.

 $x_{j,v}^{i,u} = 1 \iff$ Bob picks i^{th} cell when he sees $\{(i, u), (j, v)\}$.

• Bob's strategy is correct iff $B = \bigvee (x_{i,v}^{i,u} \wedge x_{i,v}^{j,v}) = 0.$

$$A = \bigwedge_{i} \bigvee_{u} \bigwedge_{(j,v)} x_{j,v}^{i,u} = 1.$$

Constructing a formula:

Variables correspond to possible outcomes of Alice-Merlin interaction:

$$x_{j,v}^{i,u}$$
 over all $i \neq j$, $\{u, v\} \notin E$.

Assignments of variables encode Bob's possible strategies.

 $x_{i,v}^{i,u} = 1 \iff$ Bob picks i^{th} cell when he sees $\{(i, u), (j, v)\}$.

Bob's strategy is correct iff

$$B = \bigvee (x_{j,v}^{i,u} \wedge x_{i,u}^{j,v}) = 0.$$

$$A = \bigwedge_{i} \bigvee_{u} \bigwedge_{(j,v)} x_{j,v}^{i,u} = 1.$$

Final remarks

$\begin{array}{l} G \text{ has } k\text{-clique} \iff \text{Alice and Bob have a winning strategy} \\ \iff A \rightarrow B \text{ is not a tautology} \\ \iff A \wedge (w_1w_3 \lor w_2w_4) \wedge (B \lor w_1w_2 \lor w_3w_4) \notin \text{ROR} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you! Any questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ