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Main Problem

Problem: given a monotone Boolean formula Φ, is it possible to
come up with a formula equivalent to Φ, in which every variable
appears at most once?

Examples

I Φ = (x1 ∧ x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x4)

YES: (x1 ∨ x2) ∧ (x3 ∨ x4).

I Φ = x2x3x4 ∨ x1x3x4 ∨ x1x2x4 ∨ x2x3x4.

NO: check all formulas.
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Definitions

Definition
A monotone Boolean formula is called read-k , if every variable
appears in it at most k times

Special case: read-once (read-1) formulas.

Definition
A monotone Boolean function is called read-once, if there is a
monotone read-once formula, computing it.
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Complexity of ROR

ROR ∈ ΣP
2 (observation).

ROR ∈ coNP (follows from [Gur77]).

More detalied complexity of ROR:

I depth-2 ROR ∈ P, O(nl)-time algorithm [GMR08].
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Tractable subclass of depth-3 formulas

∨

read-1 CNF C read-1 DNF D

Theorem (this work)

ROR is solvable in polynomial time for inputs of the form C ∨ D,
where C is a monotone read-1 CNF, D is a monotone read-1 DNF
and every variable of C occurs also in D.
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Reduction from
CO-CLIQUE= {(G , k) : there is no clique of size k in G}.

(G = (V ,E ), k) ⇐= (Alice ∧ Bob) vs Merlin game

⇐= depth-3 read-2 Φ.
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3. Merlin chooses j ∈ [k], v ∈ V s.t j 6= i and {u, v} /∈ E .

4. Bob comes in and tries to guess a cell which was touched first.
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The first direction

There is a k-clique in G =⇒ Alice and Bob have a winning
strategy

Assume w1, . . . ,wk form a clique.
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The second direction

Alice and Bob have a winning strategy =⇒ there is a
k-clique in G .

Assume that vi is the vertex which Alice puts in the i th cell at
Merlin request.

Observe that v1, . . . , vk form a clique.

Indeed, if vi and vj are not connected by an edge, then:
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From game to a formula
Constructing a formula:

I Variables correspond to possible outcomes of Alice-Merlin
interaction:

x i ,uj ,v over all i 6= j , {u, v} /∈ E .

I Assignments of variables encode Bob’s possible strategies.

x i ,uj ,v = 1 ⇐⇒ Bob picks i th cell when he sees {(i , u), (j , v)}.

I Bob’s strategy is correct iff

B =
∨

(x i ,uj ,v ∧ x j ,vi ,u ) = 0.

I Alice can always reach a variable set to 1 iff

A =
∧
i

∨
u

∧
(j ,v)

x i ,uj ,v = 1.
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Final remarks

G has k-clique ⇐⇒ Alice and Bob have a winning strategy

⇐⇒ A→ B is not a tautology

⇐⇒ A ∧ (w1w3 ∨ w2w4) ∧ (B ∨ w1w2 ∨ w3w4) /∈ ROR



Thank you! Any questions?


