SLOPES OF 3D SUBSHIFTS OF FINITE TYPE

CSR, June 9, 2018

Etienne Moutot, Pascal Vanier
UNDECIDABILITY AND ITS FRIENDS
"Informal" question:

P: "Does $A(x) = B$?"

Set of objects that satisfies a property:

$$P = \{x \mid A(x) = B\}$$
A problem is:

→ **Recursively Enumerable** (RE) if a Turing machine accepts its elements

→ **Decidable** if it is RE and its complement is RE

→ **Undecidable** if not decidable
Δ₀ = Σ₀ = Π₀: recursive problems.

→ Σₙ: recursively enumerable with oracle Πₙ₋₁

→ Πₙ: complement of Σₙ or recursively enumerable with oracle Σₙ₋₁

→ Δₙ = Σₙ ∩ Πₙ

\[\Delta_0 = \Sigma_0 = \Pi_0: \text{recursive problems.} \]

\[\rightarrow \Sigma_n: \text{recursively enumerable with oracle } \Pi_{n-1} \]

\[\rightarrow \Pi_n: \text{complement of } \Sigma_n \text{ or recursively enumerable with oracle } \Sigma_{n-1} \]

\[\rightarrow \Delta_n = \Sigma_n \cap \Pi_n \]
SUBSHIFTS AND PERIODICITY
\[\mathcal{A} = \{\text{■ □ ▢ ▤}\} \text{ a finite alphabet} \]

Configuration \(c \in \mathcal{A}^{\mathbb{Z}^2} \)
SUBSHIFTS OF FINITE TYPE (SFT)

\[\mathcal{A} = \{\text{■■■■} \} \text{ a finite alphabet} \]

\[F = \{\text{■■■■} \} \subset \mathcal{A}^\mathbb{Z}^d \text{ a finite set of finite patterns} \]
SUBSHIFTS OF FINITE TYPE (SFT)

→ $\mathcal{A} = \{\text{■ □ □ □} \}$ a finite alphabet

→ $F = \{\text{■ ■ ■ ■} \} \subset \mathcal{A}^{\mathbb{Z}^d}$ a finite set of finite patterns

$$X_F = \{ c \in \mathcal{A}^{\mathbb{Z}^d} \mid \forall p \in F, c \text{ does not contain } p \}$$

$c \in X_F$
Undecidability and its Friends

Subshifts and Periodicity

Slopes of Periodicity

SUBSHIFTS AND COMPUTABILITY
SUBSHIFTS AND COMPUTABILITY
UNDECIDABLE PROBLEMS

Emptiness Problem:

"Is X_F empty?"
Undecidability and its Friends

Subshifts and Periodicity

Slopes of Periodicity

UNDECIDABLE PROBLEMS

Emptiness Problem:

"Is X_F empty?"

→ **Undecidable** ($\in \Sigma_1$) for $d \geq 2$ [Berger, 1964]
UNDECIDABLE PROBLEMS

Emptiness Problem:

"Is X_F empty?"

→ **Undecidable** $(\in \Sigma_1)$ for $d \geq 2$ [Berger, 1964]
→ **Decidable** for $d = 1$
A configuration c is ν-periodic if

$$\forall x \in \mathbb{Z}^2, c(x) = c(x + \nu)$$

A configuration without periodicity vector is aperiodic.
SLOPES OF PERIODICITY
\(v = (p, q) \).

The **slope** of \(v \) is \(\theta = \frac{p}{q} \).
2D CASE: DEFINITIONS

\(v = (p, q). \)

The **slope** of \(v \) is \(\theta = \frac{p}{q}. \)

\(c \) 1-periodic with slope \(\theta \):

\(c \) has **slope of periodicity** \(\theta \)

\(S_X = \{ \theta \text{ slope of periodicity of } c \mid c \in X \} \) is the **set of slopes** of the SFT \(X \)
2D CASE: DEFINITIONS

\[A = \{\text{red square, blue square}\} \quad F = \{\text{red square, blue square, red square}\} \]

\[X_F = \{\text{pattern 1}, \text{pattern 2}, \text{pattern 3}\} \]

\[S_{X_F} = \{0\} \]
2D CASE: DEFINITIONS

\[\mathbf{v} = (p, q) . \]

The slope of \(\mathbf{v} \) is \(\theta = \frac{p}{q} \).

\(c \) \(\mathbf{1} \)-periodic with slope \(\theta \):

\(c \) has slope of periodicity \(\theta \)

\(S_X = \{ \theta \text{ slope of periodicity of } c \mid c \in X \} \) is the set of slopes of the SFT \(X \)

\(S = \{ S_X \mid X \text{ a 2D SFT} \} \) is the set of all set of slopes
2D CASE: MAIN THEOREM

Theorem [Jeandel, Vanier 2010]

In dimension 2, the problem

"Does SFT X have slope θ?"

is Σ_1-complete.
2D CASE: MAIN THEOREM

Theorem [Jeandel, Vanier 2010]

\[S = \Sigma_1 \cap P(\mathbb{Q} \cup \infty). \]
3D CASE: CONJECTURE

Conjecture [Jeandel, Vanier 2010]

In dimension 3, The problem

"Does SFT X have slope θ?"

is Σ_2-complete.
3D CASE: DEFINITIONS

\[v = (p, q, r). \]

The **slope** of \(v \) is \((\theta_1, \theta_2) = (\frac{p}{q}, \frac{p}{r}).\)
3D CASE: DEFINITIONS

\[v = (p, q, r). \]

The **slope** of \(v \) is \((\theta_1, \theta_2) = \left(\frac{p}{q}, \frac{p}{r} \right) \).

\(c \) 1-periodic with slope \(\theta \):

\[c \text{ has slope of periodicity } \theta \]

\[S_X = \{ \theta \text{ slope of periodicity of } c \mid c \in X \} \text{ is the set of slopes of the SFT } X \]

\[S = \{ S_X \mid X \text{ a 3D SFT} \} \text{ is the set of all set of slopes} \]
3D CASE

Theorem

In dimension 3, $S \supseteq \Sigma_2 \cap P(\mathbb{Q} \cup \infty)$.

Theorem [Grandjean, Hellouin, Vanier 2018]

In dimension 3, $S \subseteq \Sigma_2 \cap P(\mathbb{Q} \cup \infty)$.
COMPLEXITY GAP: INTUITION

→ X a 2D SFT

→ $c \in X$

→ $\theta \in \mathbb{Q} \cup \infty$

$\Rightarrow \exists Y_{c,\theta}$ of dimension 1 such that:

"Is c periodic along θ ?"

\iff

"Is $Y_{c,\theta}$ empty ?"

Decidable
COMPLEXITY GAP: INTUITION

→ \(X \) a 2D SFT
→ \(c \in X \)
→ \(\theta \in \mathbb{Q} \cup \infty \)

\[\Rightarrow \exists Y_{c,\theta} \text{ of dimension 1 such that:} \]

"Is \(\theta \) slope of \(X \)?"
\[\Leftrightarrow \]
"\(\exists c \in X \) such that \(Y_{c,\theta} \) empty?"

\[\in \Sigma_1 \]
COMPLEXITY GAP: INTUITION

→ X a **3D** SFT
→ $c \in X$
→ $\theta \in (\mathbb{Q} \cup \infty)^2$

$\Rightarrow \exists Y_{c,\theta}$ of dimension 2 such that:

"Is c periodic along θ ?"
\Leftrightarrow
"Is $Y_{c,\theta}$ empty ?"

$\in \Sigma_1$
COMPLEXITY GAP: INTUITION

\[\Rightarrow X \text{ a 3D SFT} \]
\[\Rightarrow c \in X \]
\[\Rightarrow \theta \in (\mathbb{Q} \cup \infty)^2 \]
\[\Rightarrow \exists Y_{c,\theta} \text{ of dimension } 2 \text{ such that:} \]

"Is \(\theta \) slope of \(X \)?"
\[\Leftrightarrow \]
"\(\exists c \in X \) such that \(Y_{c,\theta} \) empty?"

\[\in \Sigma_2 \]
PROOF IDEAS

Theorem

Let \(R \in \Sigma_2 \cap P(\mathbb{Q} \cup \infty) \). Then there exists an SFT \(X \) such that \(R = S_X \).

Let \(M \) be a Turing machine \(\Sigma_2 \) such that \(R = \{ \theta \mid M \text{ accepts } \theta \} \).

Goal: Construct \(X \) such that \(S_X = R \).

\[\iff \]

Any 1-periodic configuration of \(X \) has slope \(\theta = \left(\frac{p}{q}, \frac{p}{r} \right) \in R \).
Slopes of Periodicity

The diagram illustrates a cube with arrows indicating the directions of vectors p, q, and r. The cube is aligned with the axes x, y, and z. The vectors p, q, and r are depicted as projections along the respective axes.

- p is the vector along the x-axis.
- q is the vector along the y-axis.
- r is the vector along the z-axis.
\[X = B \times B' \times B'' \times C \times W \times P \times S \times T_O \times T_M \times A \]

\rightarrow B, B' and B'' create cuboids with pieces of aperiodic background in them

\rightarrow C forces cubes to appear

\rightarrow W creates a periodicity vector, and writes the input in the cubes

\rightarrow P reduces the size of the output

\rightarrow S synchronizes aperiodic background between cubes

\rightarrow T_O encodes the oracle \(\Pi_1 \)

\rightarrow T_M encodes the Turing machine \(\Sigma_2 \)

\rightarrow A ensures the existence of configurations with unique periodicity
WHAT NEXT?

→ Σ_2-hardness seems to work for higher dimensions
→ ... But not the proof of $\in \Sigma_2$.
Thank you!