SLOPES OF 3D SUBSHIFTS OF FINITE TYPE

CSR, June 9, 2018

Etienne Moutot, Pascal Vanier

UNDECIDABILITY AND ITS FRIENDS

DECISION PROBLEMS

"Informal" question:

P: "Does
$$A(x) = B$$
?"

Set of objects that satisfies a property:

$$P = \{x \mid A(x) = B\}$$

A problem is:

- → Recursively Enumerable (RE) if a Turing machine accepts its elements
- → **Decidable** if it is RE and its complement is RE
- → Undecidable if not decidable

ARITHMETICAL HIERARCHY

$$\Delta_0 = \Sigma_0 = \Pi_0$$
: **recursive** problems.

- $\rightarrow \Sigma_n$: recursively enumerable with oracle Π_{n-1}
- $\rightarrow \prod_n$: **complement** of Σ_n or recursively enumerable with oracle Σ_{n-1}
- $\rightarrow \Delta_n = \Sigma_n \cap \Pi_n$

SUBSHIFTS AND PERIODICITY

SUBSHIFTS OF FINITE TYPE (SFT)

$$\rightarrow \mathcal{A} = \{\blacksquare \blacksquare \blacksquare \blacksquare \}$$
 a finite alphabet

Configuration $c \in \mathcal{A}^{\mathbb{Z}^2}$

SUBSHIFTS OF FINITE TYPE (SFT)

$$\rightarrow \mathcal{A} = \{\blacksquare \blacksquare \blacksquare \Box\}$$
 a finite alphabet

→ $F = \{$ \blacksquare \blacksquare \blacksquare $\} \subset \mathcal{A}^{\mathbb{Z}^d}$ a finite set of finite patterns

Valid configuration

SUBSHIFTS OF FINITE TYPE (SFT)

→
$$\mathcal{A} = \{\blacksquare \blacksquare \blacksquare \Box\}$$
 a finite alphabet
→ $F = \{\blacksquare \blacksquare \blacksquare\} \subset \mathcal{A}^{\mathbb{Z}^d}$ a finite set of finite patterns

 $X_F = \{ c \in \mathcal{A}^{\mathbb{Z}^d} \mid \forall p \in F, c \text{ does not contain } p \}$

 $c \in X_F$

SUBSHIFTS AND COMPUTABILITY

Subshifts and Periodicity

Slopes of Periodicity

SUBSHIFTS AND COMPUTABILITY

Emptiness Problem :

"Is X_F empty ?"

Emptiness Problem :

"Is X_F empty ?"

→ **Undecidable** ($\in \Sigma_1$) for $d \ge 2$ [Berger, 1964]

Emptiness Problem :

"Is X_F empty ?"

- → **Undecidable** ($\in \Sigma_1$) for $d \ge 2$ [Berger, 1964]
- \rightarrow **Decidable** for d = 1

(A)PERIODICITY

A configuration c is v-**periodic** if

$$\forall x \in \mathbb{Z}^2, \, c(x) = c(x+v)$$

A configuration without periodicity vector is **aperiodic**.

SLOPES OF PERIODICITY

Subshifts and Periodicity

Slopes of Periodicity

2D CASE: DEFINITIONS

$$v = (p, q).$$

The **slope** of v is $\theta = \frac{p}{q}$.

2D CASE: DEFINITIONS

v = (p, q).The **slope** of v is $\theta = \frac{p}{q}$.

c 1-periodic with slope θ :

c has slope of periodicity θ

 $S_X = \{\theta \text{ slope of periodicity of } c \mid c \in X\} \text{ is the set of slopes of the SFT } X$

Subshifts and Periodicity

Slopes of Periodicity

2D CASE: DEFINITIONS

$$S_{X_F} = \{0\}$$

2D CASE: DEFINITIONS

v = (p, q).

The **slope** of v is $\theta = \frac{p}{q}$.

c 1-periodic with slope θ :

c has slope of periodicity θ

 $S_X = \{ \theta \text{ slope of periodicity of } c \mid c \in X \} \text{ is the } \textbf{set of slopes } of \\ \textbf{the SFT } X$

 $S = \{S_X \mid X \text{ a 2D SFT}\}$ is the set of all set of slopes

Subshifts and Periodicity

Slopes of Periodicity

2D CASE: MAIN THEOREM

Theorem [Jeandel, Vanier 2010]

In dimension 2, The problem

"Does SFT X have slope θ ?"

is Σ_1 -complete.

Subshifts and Periodicity

Slopes of Periodicity

2D CASE: MAIN THEOREM

Theorem [Jeandel, Vanier 2010]

In dimension 2, $S = \Sigma_1 \cap P(\mathbb{Q} \cup \infty)$.

Subshifts and Periodicity

Slopes of Periodicity

3D CASE: CONJECTURE

Conjecture [Jeandel, Vanier 2010]

In dimension 3, The problem

"Does SFT X have slope θ ?"

is Σ_2 -complete.

3D CASE: DEFINITIONS

$$v = (p, q, r).$$

The **slope** of v is $(\theta_1, \theta_2) = (\frac{p}{q}, \frac{p}{r}).$

3D CASE: DEFINITIONS

$$v = (p, q, r).$$

The **slope** of v is $(\theta_1, \theta_2) = (\frac{p}{q}, \frac{p}{r})$.

c 1-periodic with slope θ :

c has slope of periodicity θ

 $S_X = \{\theta \text{ slope of periodicity of } c \mid c \in X\} \text{ is the } \textbf{set of slopes of the SFT } X$

 $S = \{S_X \mid X \text{ a 3D SFT}\}$ is the set of all set of slopes

3D CASE

Theorem

In dimension 3, $S \supseteq \Sigma_2 \cap P(\mathbb{Q} \cup \infty)$.

Theorem [Grandjean, Hellouin, Vanier 2018]

In dimension 3, $S \subseteq \Sigma_2 \cap P(\mathbb{Q} \cup \infty)$.

COMPLEXITY GAP: INTUITION

- $\rightarrow X a 2D SFT$
- $\rightarrow \ c \in X$
- $\rightarrow \ \theta \in \mathbb{Q} \cup \infty$
- $\Rightarrow \exists Y_{c,\theta}$ of dimension 1 such that:

"Is
$$c$$
 periodic along θ ?"
 \Leftrightarrow
"Is $Y_{c,\theta}$ empty ?"

Decidable

COMPLEXITY GAP: INTUITION

- $\rightarrow X a 2D SFT$
- $\rightarrow \ c \in X$
- $\rightarrow \ \theta \in \mathbb{Q} \cup \infty$
- $\Rightarrow \exists Y_{c,\theta}$ of dimension 1 such that:

$$\label{eq:stable} \begin{array}{l} \text{"Is } \theta \text{ slope of } X \, ?" \\ \Leftrightarrow \\ \text{"} \exists c \in X \, \text{such that } Y_{c,\theta} \, \text{empty } ?" \end{array}$$

 $\in \Sigma_1$

COMPLEXITY GAP: INTUITION

- → X a **3D** SFT
- $\rightarrow \ c \in X$
- $\rightarrow \ \theta \in (\mathbb{Q} \cup \infty)^2$
- $\Rightarrow \exists Y_{c,\theta}$ of dimension **2** such that:

,

$$\begin{tabular}{ll} $$ c$ periodic along $$ \theta $?" \\$ \Leftrightarrow $$ $$ Is $$ Y_{c, \theta}$ empty $?" $$ \end{tabular}$$

$$\in \Sigma_1$$

COMPLEXITY GAP: INTUITION

- → X a **3D** SFT
- $\rightarrow \ c \in X$
- $\rightarrow \ \theta \in (\mathbb{Q} \cup \infty)^2$
- $\Rightarrow \exists Y_{c,\theta}$ of dimension **2** such that:

$$\label{eq:stable} \begin{array}{l} \text{"Is } \theta \text{ slope of } X \, ?" \\ \Leftrightarrow \\ \text{"} \exists c \in X \, \text{such that } Y_{c,\theta} \, \text{empty } ?" \end{array}$$

 $\in \Sigma_2$

PROOF IDEAS

Theorem

Let $R \in \Sigma_2 \cap P(\mathbb{Q} \cup \infty)$. Then there exists an SFT X such that $R = S_X$.

Let *M* be a Turing machine Σ_2 such that $R = \{\theta \mid M \text{ accepts } \theta\}$.

Goal: Construct X such that $S_X = R$.

\Leftrightarrow

Any 1-periodic configuration of X has slope $\theta = (\frac{p}{a}, \frac{p}{r}) \in R$.

$X = B \times B' \times B'' \times C \times W \times P \times S \times T_O \times T_M \times A$

- → B, B' and B'' create cuboids with pieces of aperiodic background in them
- \rightarrow C forces cubes to appear
- → W creates a periodicity vector, and writes the input in the cubes
- \rightarrow *P* reduces the size of the output
- $\rightarrow S$ synchronizes aperiodic background between cubes
- $\rightarrow T_O$ encodes the oracle Π_1
- $\rightarrow T_M$ encodes the Turing machine Σ_2
- → A ensures the existence of configurations with unique periodicity

WHAT NEXT ?

- $\rightarrow \Sigma_2$ -hardness seems to work for higher dimensions
- → ... But not the proof of $\in \Sigma_2$.

Thank you !