Facility Location on Planar Graphs with Unreliable Links

N. S. Narayanaswamy
Meghana Nasre
R. Vijayaragunathan

Computer Science and Engineering
Indian Institute of Technology Madras

Sunday 10th June, 2018
The 13th International Computer Science Symposium in Russia
Facility Networks

Expected Coverage

Problem Formulation

Facility Networks

Graph representation of facility network with vertices v_1, v_2, v_3, and v_4. Weights $w(v_1) = 10$, $w(v_2) = 4$, $w(v_3) = 6$, and $w(v_4) = 5$. Budget $B_p: E \rightarrow [0, 1]$. Budget constraints: 0.6, 0.3, 0.7, 0.5, 0.4. The graph shows the connections and weights between the vertices.
Facility Networks

\[w(v_1) = 10 \]
\[w(v_2) = 4 \]
\[w(v_3) = 6 \]
\[w(v_4) = 5 \]

\[w : V \rightarrow \mathbb{R}^+ \]
Facility Networks

\[w : V \rightarrow \mathbb{R}^+ \]

\[w(v_1) = 10 \]
\[w(v_2) = 4 \]
\[w(v_3) = 6 \]
\[w(v_4) = 5 \]

\[w(v_1) = 10 \]
\[w(v_2) = 4 \]
\[w(v_3) = 6 \]
\[w(v_4) = 5 \]
Facility Networks

\[w(v_1) = 10 \]
\[w(v_2) = 4 \]
\[w(v_3) = 6 \]
\[w(v_4) = 5 \]

\[w : V \rightarrow \mathbb{R}^+ \]

Budget \(\mathcal{B} \)
Facility Networks

\[w : V \rightarrow \mathbb{R}^+ \]

\[p : E \rightarrow [0, 1] \]

\[w(v_1) = 10 \]
\[w(v_2) = 4 \]
\[w(v_3) = 6 \]
\[w(v_4) = 5 \]

\[\mathcal{C} \]

Budget \[\mathcal{B} \]
Sub-graph Realizations

\[Q_1, P(Q_1) \]

\[Q_2, P(Q_2) \]
Sub-graph Realizations

\[Q_1, P(Q_1) \]
Sub-graph Realizations

$Q_1, P(Q_1)$

$Q_2, P(Q_2)$
The **Max-Exp-Cover** Problem

Input:

A graph $G = (V, E)$

Demand w: $V \to \mathbb{R}^+$

Survival probability p: $E \to [0, 1]$

Budget B:

Assume: $Q \subseteq 2^E$ with $P: Q \to [0, 1]$

Compute:

$$\max_{F \subseteq V, |F| \leq B} \sum_{Q \in Q} P(Q) \sum_{v \in V} w(v) \cdot I(Q, F, v)$$

$I(Q, F, v) = \begin{cases}
1 & \text{if } v \in N_Q[F] \\
0 & \text{otherwise}
\end{cases}$
The \textbf{Max-Exp-Cover} Problem

Input: A graph $G = (V, E)$
Demand $w : V \rightarrow \mathbb{R}^+$
Survival probability $p : E \rightarrow [0, 1]$
Budget \mathcal{B}
The **Max-Exp-Cover** Problem

Input:
A graph $G = (V, E)$
Demand $w : V \to \mathbb{R}^+$
Survival probability $p : E \to [0, 1]$
Budget \mathcal{B}

Assume:
$\mathcal{Q} \subseteq 2^E$ with $P : \mathcal{Q} \to [0, 1]$
The **Max-Exp-Cover** Problem

Input:
- A graph \(G = (V, E) \)
- Demand \(w : V \rightarrow \mathbb{R}^+ \)
- Survival probability \(p : E \rightarrow [0, 1] \)
- Budget \(\mathcal{B} \)

Assume:
- \(\mathcal{Q} \subseteq 2^E \) with \(P : \mathcal{Q} \rightarrow [0, 1] \)

Compute:
\[
\max_{F \subseteq V, |F| \leq \mathcal{B}} \sum_{Q \in \mathcal{Q}} P(Q) \sum_{v \in V} w(v) \cdot I(Q, F, v)
\]
The **Max-Exp-Cover** Problem

Input:
A graph $G = (V, E)$
Demand $w : V \rightarrow \mathbb{R}^+$
Survival probability $p : E \rightarrow [0, 1]$
Budget \mathcal{B}

Assume:
$Q \subseteq 2^E$ with $P : Q \rightarrow [0, 1]$

Compute:
$$\max_{F \subseteq V, |F| \leq \mathcal{B}} \sum_{Q \in Q} P(Q) \sum_{v \in V} w(v) \cdot I(Q, F, v)$$

$I(Q, F, v) = \begin{cases} 1 & \text{if } v \in N_Q[F] \\ 0 & \text{otherwise} \end{cases}$
Coverage Function

\[C(v, F) = \sum_{Q \in Q} \sum_{v \in V} w(v) \cdot I(Q, F, v) \]

\[= \sum_{v \in V} w(v) \sum_{Q \in Q} P(Q) \cdot I(Q, F, v) \]

\[= \sum_{v \in V} w(v) \sum_{Q \in Q} P(Q) \cdot I(Q, F, v) |_{v \in N(Q)[F]} \]

\[= C(V, F) \]
The coverage function C

Given a set $F \subseteq V$ and a vertex $v \in V$, the function $C(v, F)$ is the expected coverage of v by F.

$$C(v, F) = w(v) \cdot \sum_{Q \in \mathcal{Q}} P(Q) \cdot I(Q, F, v)$$
The coverage function C

Given a set $F \subseteq V$ and a vertex $v \in V$, the function $C(v, F)$ is the expected coverage of v by F.

$$C(v, F) = w(v) \cdot \sum_{Q \in Q} P(Q) \cdot I(Q, F, v)$$

$$\sum_{Q \in Q} P(Q) \sum_{v \in V} w(v) \cdot I(Q, F, v) = \sum_{v \in V} w(v) \sum_{Q \in Q} P(Q) \cdot I(Q, F, v)$$
Coverage Function

The coverage function C

Given a set $F \subseteq V$ and a vertex $v \in V$, the function $C(v, F)$ is the expected coverage of v by F.

$$C(v, F) = w(v) \cdot \sum_{Q \in Q} P(Q) \cdot I(Q, F, v)$$
Coverage Function

The coverage function C

Given a set $F \subseteq V$ and a vertex $v \in V$, the function $C(v, F)$ is the expected coverage of v by F.

$$C(v, F) = w(v) \cdot \sum_{Q \in Q} P(Q) \cdot I(Q, F, v)$$

$$\sum_{Q \in Q} P(Q) \sum_{v \in V} w(v) \cdot I(Q, F, v) = \sum_{v \in V} w(v) \sum_{Q \in Q} P(Q) \cdot I(Q, F, v)$$

$$= \sum_{v \in V} w(v) \sum_{Q \in Q : v \in N_Q[F]} P(Q)$$

$$= \sum_{v \in V} C(v, F) = C(V, F)$$
LRO Model

Failure Model

LRO Model

Vulnerability-Based Dependency [Hassin et al., 2009]

Given e_i and e_j such that $p(e_i) > p(e_j)$

$$\Pr[e_j \text{ fails} \mid e_i \text{ fails}] = 1$$

If an edge e_i fails then the weaker edges than e_i surely fails.

Linear Reliable Ordering [Hassin et al., 2017]

Every pair of edges are following VB-dependency.

$m + 1$ realizations are possible.

Let G_0, G_1, \ldots, G_m be all the possible realizations.
LRO Model

Vulnerability-Based Dependency [Hassin et al., 2009]

- Given e_i and e_j such that $p(e_i) > p(e_j)$
- $\Pr[e_j \text{ fails} | e_i \text{ fails}] = 1$

If an edge e_i fails then the weaker edges than e_i surely fails.
LRO Model

Vulnerability-Based Dependency [Hassin et al., 2009]

- Given e_i and e_j such that $p(e_i) > p(e_j)$
- $\Pr[e_j \text{ fails | } e_i \text{ fails}] = 1$

If an edge e_i fails then the weaker edges than e_i surely fails.

Linear Reliable Ordering [Hassin et al., 2017]

- Every pair of edges are following VB-dependency.
- $m + 1$ realizations are possible.
- Let G_0, G_1, \ldots, G_m be all the possible realizations.
LRO Model

- Order the edges \(e_1, e_2, \ldots, e_m \) in descending order of survival probability.
- \(G_0 \) - Empty graph. When \(e_1 \) fails.
- \(G_i \) occurs when \(e_i \) is the weakest link that survives.

![Diagram of LRO Model]
Failure Model

LRO Instance

\[p_1 \rightarrow \cdots \rightarrow p_7 \]

\[a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f \]
LRO Instance

G, G_7, P_7
LRO Instance

\[G, G_7, p_7 \quad \text{and} \quad G_6, p_6 - p_7 \]
LRO Instance

\(G, G_7, p_7 \)
\(G_6, p_6 - p_7 \)
\(G_5, p_5 - p_6 \)
\(G_4, p_4 - p_5 \)

\(G_3, p_3 - p_4 \)
\(G_3, p_2 - p_3 \)
\(G_1, p_1 - p_2 \)
\(G_0, 1 - p_1 \)
Results
The \textbf{Max-Exp-Cover} problem with LRO Model - \textbf{Existing}

- When $R = 1$, NP-Hard [Hassin et al., 2009]
- When $R = \infty$, $O(m+n)$ [Hassin et al., 2009]
The **Max-Exp-Cover** problem with LRO Model - **Existing**

- When $R = 1$, NP-Hard [Hassin et al., 2009]
- When $R = \infty$, $O(m+n)$ [Hassin et al., 2009]

The **Max-Exp-Cover** problem with LRO Model - **In this work**

- When $R = 1$, FPT on bounded treewidth graph,
Results

The **Max-Exp-Cover** problem with LRO Model - **Existing**

- When $R = 1$, NP-Hard [Hassin et al., 2009]
- When $R = \infty$, $O(m+n)$ [Hassin et al., 2009]

The **Max-Exp-Cover** problem with LRO Model - **In this work**

- When $R = 1$, FPT on bounded treewidth graph, and PTAS on planar graph
Results

The \textbf{Max-Exp-Cover} problem with LRO Model - \textit{Existing}

- When $R = 1$, NP-Hard [Hassin et al., 2009]
- When $R = \infty$, $O(m+n)$ [Hassin et al., 2009]

The \textbf{Max-Exp-Cover} problem with LRO Model - \textit{In this work}

- When $R = 1$, FPT on bounded treewidth graph, and PTAS on planar graph
- Observed that, the problem has greedy approximation algorithm $(1 - \frac{1}{e})$.
Tree Decomposition

H - Tree, $X = \{X_i \subseteq V \mid i \in H\}$ - Bag
A pair (H, X) satisfy the following conditions.

1. $\forall v \in V, \exists i \in H \mid v \in X_i$.
2. $\forall uv \in E, \exists i \in H \mid u, v \in X_i$.
3. $\forall v \in V$, let $T_v = \{i \in H \mid v \in X_i\}$, then $H[T_v]$ is connected.
Tree Decomposition

H - Tree, $\mathcal{X} = \{X_i \subseteq V \mid i \in H\}$ - Bag

A pair (H, \mathcal{X}) satisfy the following conditions.

1. $\forall v \in V, \exists i \in H \mid v \in X_i$.
2. $\forall uv \in E, \exists i \in H \mid u, v \in X_i$.
3. $\forall v \in V$, let $T_v = \{i \in H \mid v \in X_i\}$, then $H[T_v]$ is connected.

- $width = \max_{i \in H} |X_i| - 1$.
Nice Tree Decomposition
Nice Tree Decomposition

- **Leaf:** i has no child and $X_i = \{\}$.

\[i \]
Nice Tree Decomposition

- **Leaf**: i has no child and $X_i = \{\}$.
- **Introduce**: i has a child j : $X_i = X_j \cup \{v\}$ for some $v \notin X_j$.

![Diagram showing a tree decomposition with nodes labeled i, j, u, v, and w.]
Nice Tree Decomposition

- **Leaf:** i has no child and $X_i = \{\}$.
- **Introduce:** i has a child $j : X_i = X_j \cup \{v\}$ for some $v \notin X_j$.
- **Forget:** i has a child $j : X_i = X_j \setminus \{v\}$ for some $v \in X_j$.

![Diagram](image)
Nice Tree Decomposition

- **Leaf:** i has no child and $X_i = \{\}$.
- **Introduce:** i has a child $j : X_i = X_j \cup \{v\}$ for some $v \notin X_j$.
- **Forget:** i has a child $j : X_i = X_j \setminus \{v\}$ for some $v \in X_j$.
- **Join:** i has two children j and $k : X_i = X_j = X_k$.

![Diagram](attachment:image.png)
Best Neighbour

Given a vertex \(u \in V \) and a set \(S \subseteq V \),

\[
bn(u, S) = \begin{cases}
 u & \text{if } u \in S \\
 v = \max_{v' \in N(u) \cap S} \quad \left(\text{if } u \not\in S \land N(u) \cap S \neq \emptyset \right) \\
 p(u, v) & \text{otherwise}
\end{cases}
\]
Best Neighbour

Given a vertex \(u \in V \) and a set \(S \subseteq V \),

\[
bn(u, S) = \begin{cases}
 u & \text{if } u \in S \\
 \max_{v' \in N(v) \cap S} p(uv') & \text{if } u \notin S \land N(u) \cap S \neq \emptyset \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]
Best Neighbour

Given a vertex $u \in V$ and a set $S \subseteq V$,

$$bn(u, S) = \begin{cases}
 u & \text{if } u \in S \\
 v = \max_{v' \in N(v) \cap S} p(uv') & \text{if } u \notin S \land N(u) \cap S \neq \emptyset \\
 \text{undefined} & \text{otherwise}
\end{cases}$$
Given a vertex $u \in V$ and a set $S \subseteq V$,

$$bn(u, S) = \begin{cases}
 u & \text{if } u \in S \\
 \max_{v' \in N(v) \cap S} p(uv') & \text{if } u \not\in S \land N(u) \cap S \neq \emptyset \\
 \text{undefined} & \text{otherwise}
\end{cases}$$
Best Neighbour

Given a vertex \(u \in V \) and a set \(S \subseteq V \),

\[
bn(u, S) = \begin{cases}
 u & \text{if } u \in S \\
 v = \max_{v' \in N(v) \cap S} p(uv') & \text{if } u \notin S \land N(u) \cap S \neq \emptyset \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]
Best Neighbour

Given a vertex $u \in V$ and a set $S \subseteq V$,

$$bn(u, S) = \begin{cases}
 u & \text{if } u \in S \\
 v = \max_{v' \in N(v) \cap S} p(uv') & \text{if } u \notin S \land N(u) \cap S \neq \emptyset \\
 \text{undefined} & \text{otherwise}
\end{cases}$$
Best Neighbour - In LRO

G, G_7, p_7

$G_6, p_6 - p_7$

$G_5, p_5 - p_6$

$G_4, p_4 - p_5$

$G_3, p_3 - p_4$

$G_3, p_2 - p_3$

$G_1, p_1 - p_2$

$G_0, 1 - p_1$
Best Neighbour - In LRO

\[G, G_7, p_7 \]
\[G_6, p_6 - p_7 \]
\[G_5, p_5 - p_6 \]
\[G_4, p_4 - p_5 \]

\[G_3, p_3 - p_4 \]
\[G_3, p_2 - p_3 \]
\[G_1, p_1 - p_2 \]
\[G_0, 1 - p_1 \]
Coverage using Best Neighbour

Lemma

Let \(u \in V \) *be a vertex and* \(S \subseteq V \) *be a set. If the coverage* \(C(u, S) > 0 \), *then there is a vertex* \(v \in S \) *such that* \(C(u, S) = C(u, v) \).*
Coverage using Best Neighbour

Lemma

Let \(u \in V \) be a vertex and \(S \subseteq V \) be a set. If the coverage \(C(u, S) > 0 \), then there is a vertex \(v \in S \) such that \(C(u, S) = C(u, v) \).

Proof.

- Since \(C(u, S) > 0 \), \(N[v] \cap S \neq \emptyset \). Then \(S' = N[v] \cap S \).
Coverage using Best Neighbour

Lemma

Let $u \in V$ be a vertex and $S \subseteq V$ be a set. If the coverage $C(u, S) > 0$, then there is a vertex $v \in S$ such that $C(u, S) = C(u, v)$.

Proof.

- Since $C(u, S) > 0$, $N[v] \cap S \neq \emptyset$. Then $S' = N[v] \cap S$.
- When $u \in S$, then $C(u, S) = C(u, u) = w(u)$.
Coverage using Best Neighbour

Lemma

Let $u \in V$ be a vertex and $S \subseteq V$ be a set. If the coverage $C(u, S) > 0$, then there is a vertex $v \in S$ such that $C(u, S) = C(u, v)$.

Proof.

- Since $C(u, S) > 0$, $N[v] \cap S \neq \emptyset$. Then $S' = N[v] \cap S$.
- When $u \in S$, then $C(u, S) = C(u, u) = w(u)$.
- Suppose $u \notin S$, then $S' = \{v_1, v_2, \ldots, v_\ell\}$ for some $0 < \ell \leq d_u$.
Coverage using Best Neighbour

Lemma

Let $u \in V$ be a vertex and $S \subseteq V$ be a set. If the coverage $C(u, S) > 0$, then there is a vertex $v \in S$ such that $C(u, S) = C(u, v)$.

Proof.

- Since $C(u, S) > 0$, $N[v] \cap S \neq \emptyset$. Then $S' = N[v] \cap S$.
- When $u \in S$, then $C(u, S) = C(u, u) = w(u)$.
- Suppose $u \notin S$, then $S' = \{v_1, v_2, \ldots, v_\ell\}$ for some $0 < \ell \leq d_u$.
- Assume $p(uv_1) > p(uv_2) > \cdots > p(uv_\ell)$.
Proof. (Cont)

\[C(u, S) = C(u, S') \]

\[S' = N(v) \cap S \]

Hence the proof. \(\square \)
Proof. (Cont)

\[C(u, S) = C(u, S') \]
\[= w(u) \cdot \sum_{G_i | u \in N_{G_i} [S']} p(G_i) \]

Hence the proof. □
Proof. (Cont)

\[C(u, S) = C(u, S') \]
\[= w(u) \cdot \sum_{G_i | u \in N_{G_i}[S']} p(G_i) \]
\[= w(u) \cdot \sum_{i=j}^{m} p(G_i) \]

\[G_j \mid (u, v_1) \text{ survives} \]
Proof. (Cont)

\[C(u, S) = C(u, S') \]
\[= w(u) \cdot \sum_{G_i \mid u \in N_{G_i}[S']} p(G_i) \]
\[= w(u) \cdot \sum_{i=j}^m p(G_i) \]

"G_j \mid (u, v_1) \text{ survives}\]
\[= w(u) \cdot p(uv_1) \]
Proof. (Cont)

\[C(u, S) = C(u, S') \]
\[= w(u) \cdot \sum_{G_i \mid u \in N_{G_i}[S']} p(G_i) \]
\[= w(u) \cdot \sum_{i=j}^m p(G_i) \]
\[= w(u) \cdot p(uv_1) \]
\[= C(u, v_1) \]
Proof. (Cont)

\[C(u, S) = C(u, S') \]
\[= w(u) \cdot \sum_{G_i | u \in N_{G_i}[S']} p(G_i) \]
\[= w(u) \cdot \sum_{i=j}^m p(G_i) \]
\[G_j \mid (u, v_1) \text{ survives} \]
\[= w(u) \cdot p(uv_1) \]
\[= C(u, v_1) \]
\[= C(u, bn(u, S)) \]

Hence the proof. \(\Box\)
Structure of a Solution

Let i be a node in H with bag X_i and vertex set V_i. Let $S = A \cup Z$ be a solution such that $A = S \cap X_i$ and $Z = S \setminus A$.

$C_A = \{ u \in X_i | bn(u, S) \in A \}$ and $C_Z = \{ u \in X_i | bn(u, S) \in Z \}$.

$U = X_i \setminus (A \cup C_A \cup C_Z)$.
Structure of a Solution

- Let i be a node in H with bag X_i and vertex set V_i.
Structure of a Solution

- Let i be a node in H with bag X_i and vertex set V_i.
- Let $S = A \cup Z$ be a solution such that $A = S \cap X_i$ and $Z = S \setminus A$.

\[C_A = \{ u \in X_i \mid bn(u, S) \in A \} \]
\[C_Z = \{ u \in X_i \mid bn(u, S) \in Z \} \]

\[U = X_i \setminus (A \cup C_A \cup C_Z) \]
Structure of a Solution

- Let i be a node in H with bag X_i and vertex set V_i.
- Let $S = A \cup Z$ be a solution such that $A = S \cap X_i$ and $Z = S \setminus A$.
- $C_A = \{ u \in X_i \mid bn(u, S) \in A \}$ and $C_Z = \{ u \in X_i \mid bn(u, S) \in Z \}$.
Structure of a Solution

- Let i be a node in H with bag X_i and vertex set V_i.
- Let $S = A \cup Z$ be a solution such that $A = S \cap X_i$ and $Z = S \setminus A$.
- $C_A = \{u \in X_i \mid bn(u, S) \in A\}$ and $C_Z = \{u \in X_i \mid bn(u, S) \in Z\}$.
- $U = X_i \setminus (A \cup C_A \cup C_Z)$.
Solution Structure

\[C(V_i, S) = C((V_i \setminus X_i) \cup X_i, S) \]
Solution Structure

\[C(V_i, S) = C((V_i \setminus X_i) \cup X_i, S) \]
\[= C(V_i \setminus X_i, S) + C(C_A, S) + C(C_Z, S) + C(A, S) \]
Solution Structure

\[C(V_i, S) = C((V_i \setminus X_i) \cup X_i, S) \]
\[= C(V_i \setminus X_i, S) + C(C_A, S) + C(C_Z, S) + C(A, S) \]
\[= C(V_i \setminus X_i, S) + C(C_A, A) + C(C_Z, Z) + C(A, A) \]
Solution Structure

\[C(V_i, S) = C((V_i \setminus X_i) \cup X_i, S) \]
\[= C(V_i \setminus X_i, S) + C(C_A, S) + C(C_Z, S) + C(A, S) \]
\[= C(V_i \setminus X_i, S) + C(C_A, A) + C(C_Z, Z) + C(A, A) \]
\[= C(V_i \setminus X_i, S) + C(A \cup C_A, A) + C(C_Z, Z) \]
Solution Structure

\[C(V_i, S) = C((V_i \setminus X_i) \cup X_i, S) \]
\[= C(V_i \setminus X_i, S) + C(C_A, S) + C(C_Z, S) + C(A, S) \]
\[= C(V_i \setminus X_i, S) + C(C_A, A) + C(C_Z, Z) + C(A, A) \]
\[= C(V_i \setminus X_i, S) + C(A \cup C_A, A) + C(C_Z, Z) \]

Partition

For every feasible solution \(S \subseteq V_i \), there is a four-way partition \(P = (A, C_A, C_Z, U) \) of \(X_i \) such that

\[C(V_i, S) = C(V_i \setminus X_i, S) + C(A \cup C_A, A) + C(C_Z, Z) \]
For each feasible solution, there exists a unique partition P such that the coverage of S can be expressed using P.

Maintains a table of size $(B+1)^4$. For each $0 \leq b \leq B$ and each four-way partition $P = (A, C_A, C_Z, U)$ of X_i, $T_i[b, P]$ is a tuple $(\text{solution}, \text{value})$ such that $T_i[b, P].\text{solution} = S \subseteq V_i \mid |S| = b$ and $S \cap X_i = A$.

$C(A \cup C_A, A) + C(C_Z, Z) + C(V_i \setminus X_i, S)$ is maximized over all possible such $S \subseteq V_i$.

Dynamic Programming
Dynamic Programming

- For each feasible solution, there exists an unique partition P such that the coverage of S can be expressed using P.
- We explore all four way partitions, and find the optimal solution $w.r.t$ the partition.
Dynamic Programming

- For each feasible solution, there exists an unique partition P such that the coverage of S can be expressed using P.
- We explore all four way partitions, and find the optimal solution \(w.r.t \) the partition.
- Maintains a table of size \((B + 1)4^{|X_i|} \).
Dynamic Programming

- For each feasible solution, there exists an unique partition P such that the coverage of S can be expressed using P.
- We explore all four way partitions, and find the optimal solution $w.r.t$ the partition.
- Maintains a table of size $(B + 1)4^{X_i}$.
- For each $0 \leq b \leq B$ and each four-way partition $P = (A, C_A, C_Z, U)$ of X_i, $T_i[b, P]$ is a tuple $(\text{solution}, \text{value})$ such that
Dynamic Programming

- For each feasible solution, there exists an unique partition P such that the coverage of S can be expressed using P.
- We explore all four way partitions, and find the optimal solution \textit{w.r.t} the partition.
- Maintains a table of size $(B + 1)4^{|X_i|}$.
- For each $0 \leq b \leq B$ and each four-way partition $P = (A, C_A, C_Z, U)$ of X_i, $T_i[b, P]$ is a tuple (solution, value) such that
 - $T_i[b, P].\text{solution} = S \subseteq V_i$.
Dynamic Programming

- For each feasible solution, there exists an unique partition P such that the coverage of S can be expressed using P.
- We explore all four way partitions, and find the optimal solution w.r.t the partition.
- Maintains a table of size $(B + 1)4^{|X_i|}$.
- For each $0 \leq b \leq B$ and each four-way partition $P = (A, C_A, C_Z, U)$ of X_i, $T_i[b, P]$ is a tuple (solution, value) such that
 - $T_i[b, P].\text{solution} = S \subseteq V_i$.
 - $|S| = b$ and $S \cap X_i = A$.

$C(A \cup C_A, A) + C(C_Z, Z) + C(V_i \setminus X_i, S)$ is maximized over all possible such $S \subseteq V_i$.
Dynamic Programming

- For each feasible solution, there exists an unique partition P such that the coverage of S can be expressed using P.
- We explore all four way partitions, and find the optimal solution w.r.t the partition.
- Maintains a table of size $(B + 1)4^{|X_i|}$.
- For each $0 \leq b \leq B$ and each four-way partition $P = (A, C_A, C_Z, U)$ of X_i, $T_i[b, P]$ is a tuple $(\text{solution}, \text{value})$ such that
 - $T_i[b, P].\text{solution} = S \subseteq V_i$.
 - $|S| = b$ and $S \cap X_i = A$.
 - $C(A \cup C_A, A) + C(C_Z, Z) + C(V_i \setminus X_i, S)$ is maximized over all possible such $S \subseteq V_i$.
Introduce Node

- Let i be an introduce node with child j such that $X_i = X_j \cup \{v\}$ for some $v \notin X_j$.

![Diagram]

Let $0 \leq b \leq B$ be a budget and $P = (A, C_A, C_Z, U)$ be a four way partitioning of X_i. We consider two cases that

(i) $-v \in A$

(ii) $-v \in A$
Introduce Node

Let i be an introduce node with child j such that $X_i = X_j \cup \{v\}$ for some $v \notin X_j$.

Let $0 \leq b \leq B$ be a budget and $P = (A, C_A, C_Z, U)$ be a four way partitioning of X_i.

![Diagram](attachment:image.png)
Introduce Node

- Let i be an introduce node with child j such that $X_i = X_j \cup \{v\}$ for some $v \notin X_j$.
- Let $0 \leq b \leq B$ be a budget and $P = (A, C_A, C_Z, U)$ be a four way partitioning of X_i.
- We consider two cases that (i) $v \notin A$ and (ii) $v \in A$.

\[i \quad \frac{X_j \cup \{v\}}{\downarrow v} \quad \frac{X_j}{j} \quad \frac{V_j \setminus X_j}{\downarrow v} \]

\[i \quad \frac{X_i}{\quad \begin{array}{cccc} A & C_A & C_Z & U \\ v & \vrule & \vrule & \vrule \\ \vrule & \vrule & \vrule & \vrule \\ \vrule & \vrule & \vrule & v \end{array} \quad \frac{\vrule}{\vrule} \quad \frac{\vrule}{\vrule} \quad \frac{\vrule}{\vrule} \]

\[j \quad \frac{X_j}{\downarrow v} \quad \frac{V_j \setminus X_j}{\Downarrow v} \]
Introduce Node (Cont...)

\[P_i = (A_i, C_A, C_Z, U) \]

\[P_j = (A_i, C_{A\{v\}}, C_{Z\{v\}}, U\{v\}) \]

\[T_i[b, P] = \text{solution} = T_j[b, P_j] \]

\[T_j[b, P_j].\text{value} = \begin{cases} T_j[b, P_j].\text{value} & \text{if } v / \in C_A \\ T_j[b, P_j].\text{value} + C(v, A) & \text{if } v \in C_A \end{cases} \]
Introduce Node (Cont...)

Case: \(v \notin A \)
Case: \(v \notin A \)

\[
P = (A, C_A, C_Z, U) \rightarrow P_j = (A, C_A \setminus \{v\}, C_Z \setminus \{v\}, U \setminus \{v\})
\]
Introduce Node (Cont...)

Case: $v \notin A$

$$P = (A, C_A, C_Z, U) \rightarrow P_j = (A, C_A \setminus \{v\}, C_Z \setminus \{v\}, U \setminus \{v\})$$

$$T_i[b, P].solution = T_j[b, P_j].solution$$

$$T_i[b, P].value = \begin{cases}
T_j[b, P_j].value & \text{if } v \notin C_A \\
T_j[b, P_j].value + C(v, A) & \text{if } v \in C_A
\end{cases}$$
Introduce Node (Cont...)

Case: $v \in A$

- Let $C_{Av} = \{ u \in C_A \mid bn(u, A) = v \}$.
Case: \(v \in A \)

- Let \(C_{Av} = \{ u \in C_A | bn(u, A) = v \} \).
- Let \(P_j = (A \setminus \{ v \}, C_A \setminus C_{Av}, C_Z, U \cup C_{Av}) \).
Case: $v \in A$

- Let $C_{AV} = \{u \in C_A \mid bn(u, A) = v\}$.
- Let $P_j = (A \setminus \{v\}, C_A \setminus C_{AV}, C_Z, U \cup C_{AV})$.

\[
T_i[b, P].solution = T_j[b - 1, P_j].solution \cup \{v\}
\]
\[
T_i[b, P].value = T_j[b - 1, P_j].value + C(\{v\} \cup C_{AV}, v)
\]
Correctness – case $v \notin A$

- Assume $v \in C_A$.
- Let $T_i[b, P].solution = T_j[b, P'].solution = A \cup Z$ where $P' = (A, C_A \setminus \{v\}, C_Z, U)$.
- By contradiction, assume $S' = A \cup Z'$ optimal than S. That is $T_i[b, P].value < C(V_i \setminus X_i, S') + C(A \cup C_A, A) + C(C_Z, Z')$.

\[
T_j[b, P'].value = T_i[b, P].value - C(v, A) < C(V_i \setminus X_i, S') + C(A \cup C_A, A) + C(C_Z, Z') - C(v, A) < C(V_j \setminus X_j, S') + C(A \cup C_A \setminus \{v\}, A) + C(C_Z, Z')
\]

- Contradicts optimality of $T_j[b, P']$ by S'.
Correctness – case $\nu \in A$

- Let $C_{Av} = \{u \in C_A \mid bn(u, A) = \nu\}$.
- Let $T_i[b, P].solution = T_j[b - 1, P'].solution \cup \{\nu\} = A \cup Z$ where $P' = (A \setminus \{\nu\}, C_A \setminus C_{Av}, C_Z, U \cup C_{Av})$.
- By contradiction, assume $S' = A \cup Z'$ optimal than S. That is $T_i[b, P].value < C(V_i \setminus X_i, S') + C(A \cup C_A, A) + C(C_Z, Z')$.

$$T_j[b, P'].value = T_i[b, P].value - C(\{\nu\} \cup C_{Av}, \nu)$$
$$< C(V_i \setminus X_i, S') + C(A \cup C_A, A) + C(C_Z, Z') - C(\{\nu\} \cup C_{Av}, \nu)$$
$$< C(V_j \setminus X_j, S') + C((A \cup C_A) \setminus (\{\nu\}), A \setminus \{\nu\}) + C(C_Z, Z')$$

- Contradicts optimality of $T_j[b, P']$ by S'.
Let $0 \leq b \leq B$ be a budget and $P = (A, C_A, C_Z, U)$ be a four way partitioning of X_i.
Let $0 \leq b \leq B$ be a budget and $P = (A, C_A, C_Z, U)$ be a four way partitioning of X_i.

- $P_1 = (A \cup \{v\}, C_A, C_Z, U)$
- $P_2 = (A, C_A \cup \{v\}, C_Z, U)$
- $P_3 = (A, C_A, C_Z \cup \{v\}, U)$
- $P_4 = (A, C_A, C_Z, U \cup \{v\})$
Let \(0 \leq b \leq B \) be a budget and \(P = (A, C_A, C_Z, U) \) be a four way partitioning of \(X_i \).

\[
\begin{align*}
P_1 &= (A \cup \{v\}, C_A, C_Z, U) \\
P_2 &= (A, C_A \cup \{v\}, C_Z, U) \\
P_3 &= (A, C_A, C_Z \cup \{v\}, U) \\
P_4 &= (A, C_A, C_Z, U \cup \{v\})
\end{align*}
\]

Let \(P_j = \max_{P' \in \{P_1, P_2, P_3, P_4\}} T_j[b, P'].value \)
Let $0 \leq b \leq B$ be a budget and $P = (A, C_A, C_Z, U)$ be a four way partitioning of X_i.

- $P_1 = (A \cup \{v\}, C_A, C_Z, U)$
- $P_2 = (A, C_A \cup \{v\}, C_Z, U)$
- $P_3 = (A, C_A, C_Z \cup \{v\}, U)$
- $P_4 = (A, C_A, C_Z, U \cup \{v\})$

Let $P_j = \max_{P' \in \{P_1, P_2, P_3, P_4\}} T_j[b, P'].value$

$$T_i[b, P].solution = T_j[b, P_j].solution$$
$$T_i[b, P].value = T_j[b, P_j].value$$
Join Node

- Let $C_{Zj} = \{ u \in C_Z | bn(u, S) \in Z_j \}$
Join Node

- Let $C_{Zj} = \{u \in C_Z \mid bn(u, S) \in Z_j\}$
- Let $C_{Zk} = \{u \in C_Z \mid bn(u, S) \in Z_k\}$
Join Node

- Let $C_{Zj} = \{ u \in C_Z \mid bn(u, S) \in Z_j \}$
- Let $C_{Zk} = \{ u \in C_Z \mid bn(u, S) \in Z_k \}$
- Let $b_j = |Z_j|$ and $b_k = |Z_k|$.

$\left(b', C_{Zj}, C_{Zk}\right) = \max_{0 \leq b_1 \leq b - |A|, \ C_{Z1} \cup C_{Z2} = C_Z} T_j[b_1 + |A|, P'_j].value + T_k[b - b_1, P'_k].value$
Join Node

- Let $C_{Zj} = \{u \in C_Z \mid bn(u, S) \in Z_j\}$
- Let $C_{Zk} = \{u \in C_Z \mid bn(u, S) \in Z_k\}$
- Let $b_j = |Z_j|$ and $b_k = |Z_k|$.

$$(b', C_{Zj}, C_{Zk}) = \max_{0 \leq b_1 \leq b - |A|, \quad C_{Z1} \cup C_{Z2} = C_Z} T_j[b_1 + |A|, P'_j].\text{value} + T_k[b - b_1, P'_k].\text{value}$$

where $P'_j = (A, C_A, C_{Z1}, U \cup C_{Z2})$ and $P'_j = (A, C_A, C_{Z2}, U \cup C_{Z1})$
Join Node

- Let $C_{Zj} = \{ u \in C_Z \mid bn(u, S) \in Z_j \}$
- Let $C_{Zk} = \{ u \in C_Z \mid bn(u, S) \in Z_k \}$
- Let $b_j = |Z_j|$ and $b_k = |Z_k|$.

$$(b', C_{Zj}, C_{Zk}) = \max_{0 \leq b_1 \leq b - |A|, \quad C_{Z1} \cup C_{Z2} = C_Z} T_j[b_1 + |A|, P'_j].\text{value} + T_k[b - b_1, P'_k].\text{value}$$

where $P'_j = (A, C_A, C_{Z1}, U \cup C_{Z2})$ and $P'_j = (A, C_A, C_{Z2}, U \cup C_{Z1})$

$T_i[b, P].\text{solution} = T_j[b' + |A|, P_j].\text{solution} \cup T_k[b - b', P_k].\text{solution}$

$T_i[b, P].\text{value} = T_j[b' + |A|, P_j].\text{value} + T_k[b - b', P_k].\text{value} - C(A \cup C_A, A)$
PTAS in planar graphs

- We are given with an instance of \textsc{Max-Exp-Cover-1} problem and an $\epsilon > 0$.

For a k-outerplanar graph G, a tree decomposition with width at most $3k + 1$ can be computed in linear time using [Shmoys and Williamson, 2011].
We are given with an instance of \textsc{Max-Exp-Cover-1} problem and an $\epsilon > 0$.

Compute an l-outerplanar embedding of G, for a minimum l. Level ordering such that $V = \bigcup_{i=1}^{l} L_i$.

\[k = \frac{1}{\epsilon} \]

For $i = 1$ to k:

Let $G_i = (V, E_i)$ where $E_i = E \setminus \{ (u, v) \in E | \text{level}(u) \equiv i \mod k, \text{level}(v) \equiv (i+1) \mod k \}$

G_i is a collection of k-outerplanar graphs.

For a k-outerplanar graph G, a tree decomposition with width at most $3k+1$ can be computed in linear time using [Shmoys and Williamson, 2011].
PTAS in planar graphs

- We are given with an instance of Max-Exp-Cover-1 problem and an $\epsilon > 0$.
- Compute an l-outerplanar embedding of G, for a minimum l. Level ordering such that $V = \bigcup_{i=1}^{l} L_i$.
- Let $k = \frac{1}{\epsilon}$.
We are given with an instance of $\textsc{Max-Exp-Cover-1}$ problem and an $\epsilon > 0$.

Compute an l-outerplanar embedding of G, for a minimum l. Level ordering such that $V = \bigcup_{i=1}^{l} L_i$.

Let $k = \frac{1}{\epsilon}$.

For $i = 1$ to k:
PTAS in planar graphs

We are given with an instance of \textsc{Max-Exp-Cover-1} problem and an $\epsilon > 0$.

Compute an l-outerplanar embedding of G, for a minimum l. Level ordering such that $V = \bigcup_{i=1}^{l} L_i$.

Let $k = \frac{1}{\epsilon}$.

For $i = 1$ to k:

- Let $G_i = (V, E_i)$ where
 \[E_i = E \setminus \{(u, v) \in E \mid \text{level}(u) \equiv i \mod k, \text{level}(v) \equiv (i + 1) \mod k\} \]
We are given with an instance of Max-Exp-Cover-1 problem and an $\epsilon > 0$.

Compute an l-outerplanar embedding of G, for a minimum l. Level ordering such that $V = \bigcup_{i=1}^{l} L_i$.

Let $k = \frac{1}{\epsilon}$.

For $i = 1$ to k:

- Let $G_i = (V, E_i)$ where $E_i = E \setminus \{(u, v) \in E \mid \text{level}(u) \equiv i \mod k, \text{level}(v) \equiv (i + 1) \mod k\}$

G_i is a collection of k-outerplanar graphs.
We are given with an instance of \textsc{Max-Exp-Cover-1} problem and an $\epsilon > 0$.

Compute an l-outerplanar embedding of G, for a minimum l. Level ordering such that $V = \bigcup_{i=1}^{l} L_i$.

Let $k = \frac{1}{\epsilon}$.

For $i = 1$ to k:

- Let $G_i = (V, E_i)$ where $E_i = E \setminus \{(u, v) \in E \mid \text{level}(u) \equiv i \mod k, \text{level}(v) \equiv (i + 1) \mod k\}$

- G_i is a collection of k-outerplanar graphs.

For a k-outerplanar graph G, a tree decomposition with width at most $3k + 1$ can be computed in linear time using [Shmoys and Williamson, 2011].
Subgraph construction
Subgraph construction
Subgraph construction
Subgraph construction

L_1, L_2, L_3

L_4, L_5, L_6

L_7, L_8, L_9
Subgraph construction

G_3

L_1
L_2
L_3

L_4
L_5
L_6

L_7
L_8
L_9
Solution Construction

- We have \(k \) many \(k \)-outerplanar graphs \((G_1, G_2, \ldots, G_k)\).
We have k many k-outerplanar graphs (G_1, G_2, \ldots, G_k).

Compute the optimal solution S_i in each graph G_i.

Let S be the set achieving maximum expected coverage.

$S = \max \{ S_1, S_2, \ldots, S_k \}$

Output S such that $C(V, S)$ is at least $1 - \frac{1}{\epsilon}$ times of optimum expected coverage.
Solution Construction

- We have \(k \) many \(k \)-outerplanar graphs (\(G_1, G_2, \ldots, G_k \)).
- Compute the optimal solution \(S_i \) in each graph \(G_i \).
- Let \(S \) be the set achieving maximum expected coverage.
Solution Construction

- We have \(k \) many \(k \)-outerplanar graphs \((G_1, G_2, \ldots, G_k)\).
- Compute the optimal solution \(S_i \) in each graph \(G_i \).
- Let \(S \) be the set achieving maximum expected coverage.

\[
S = \max_{S' \in \{S_1, S_2, \ldots, S_k\}} C(V, S')
\]

- Output \(S \) such that \(C(V, S) \) is at least \(1 - \frac{1}{\epsilon} \) times of optimum expected coverage.
Approximation Analysis

Theorem

The set S is $(1 - \frac{1}{k})$-approximate solution for the Max-Exp-Cover-1 problem.
Theorem

The set S is $(1 - \frac{1}{k})$-approximate solution for the Max-Exp-Cover-1 problem.

Proof.

- Let $OPT = \{v_1, v_2, \ldots, v_B\}$.
Approximation Analysis

Theorem

The set S is $(1 - \frac{1}{k})$-approximate solution for the Max-Exp-Cover-1 problem.

Proof.

- Let $OPT = \{v_1, v_2, \ldots, v_B\}$.
- Let $L_i = \{v \in V \mid \text{level}(v) \equiv i \mod k\}$.
Approximation Analysis

Theorem

The set S is $(1 - \frac{1}{k})$-approximate solution for the Max-Exp-Cover-1 problem.

Proof.

- Let $OPT = \{v_1, v_2, \ldots, v_B\}$.
- Let $L_i = \{v \in V | \text{level}(v) \equiv i \mod k\}$.
- Also, L_i is the collection of level-k vertices of G_i.
Approximation Analysis

Theorem

The set S is $(1 - \frac{1}{k})$-approximate solution for the Max-Exp-Cover-1 problem.

Proof.

- Let $OPT = \{v_1, v_2, \ldots, v_B\}$.
- Let $L_i = \{v \in V \mid level(v) \equiv i \mod k\}$.
- Also, L_i is the collection of level-k vertices of G_i.
- Since $L_1, L_2, \ldots L_k$ is a partition of V,
The set S is $(1 - \frac{1}{k})$-approximate solution for the Max-Exp-Cover-1 problem.

Proof.

- Let $OPT = \{v_1, v_2, \ldots, v_B\}$.
- Let $L_i = \{v \in V \mid level(v) \equiv i \mod k\}$.
- Also, L_i is the collection of level-k vertices of G_i.
- Since $L_1, L_2, \ldots L_k$ is a partition of V, $C(V, OPT) = \sum_{i=1}^{k} C(L_i, OPT)$.
Proof.

- $\exists j$ such that $C(L_j, OPT) \leq \frac{1}{k} \cdot C(V, OPT)$.
Approximation Analysis

Proof.

- \(\exists j \) such that \(C(L_j, OPT) \leq \frac{1}{k} \cdot C(V, OPT) \).
- Then, \(C(V \setminus L_j, OPT) \geq (1 - \frac{1}{k}) \cdot C(V, OPT) \).
Proof.

- ∃ j such that $C(L_j, \text{OPT}) \leq \frac{1}{k} \cdot C(V, \text{OPT})$.
- Then, $C(V \setminus L_j, \text{OPT}) \geq (1 - \frac{1}{k}) \cdot C(V, \text{OPT})$.
- Let G_j be the graph corresponding to j.
Approximation Analysis

Proof.

- ∃ j such that \(C(L_j, OPT) \leq \frac{1}{k} \cdot C(V, OPT) \).
- Then, \(C(V \setminus L_j, OPT) \geq (1 - \frac{1}{k}) \cdot C(V, OPT) \).
- Let \(G_j \) be the graph corresponding to \(j \).
- Since \(C(V, S) \geq C(V, S_j) \).
Approximation Analysis

Proof.

- \(\exists \ j \) such that \(C(L_j, OPT) \leq \frac{1}{k} \cdot C(V, OPT) \).
- Then, \(C(V \setminus L_j, OPT) \geq (1 - \frac{1}{k}) \cdot C(V, OPT) \).
- Let \(G_j \) be the graph corresponding to \(j \).
- Since \(C(V, S) \geq C(V, S_j) \).

\[
C(V, S) \quad \leq \quad \frac{1}{k} \cdot C(V, OPT)
\]

Approximation Analysis

Proof.

- \exists j \text{ such that } C(L_j, OPT) \leq \frac{1}{k} \cdot C(V, OPT).
- Then, \(C(V \setminus L_j, OPT) \geq (1 - \frac{1}{k}) \cdot C(V, OPT). \)
- Let \(G_j \) be the graph corresponding to \(j \).
- Since \(C(V, S) \geq C(V, S_j) \).

\[
C(V, S) \geq C(V, S_j)
\]
Approximation Analysis

Proof.

- ∃ j such that $C(L_j, OPT) \leq \frac{1}{k} \cdot C(V, OPT)$.
- Then, $C(V \setminus L_j, OPT) \geq (1 - \frac{1}{k}) \cdot C(V, OPT)$.
- Let G_j be the graph corresponding to j.
- Since $C(V, S) \geq C(V, S_j)$.

\[
C(V, S) \geq C(V, S_j) \geq C(G_j, V, S_j)
\]
Approximation Analysis

Proof.

- \(\exists j \) such that \(C(L_j, OPT) \leq \frac{1}{k} \cdot C(V, OPT) \).
- Then, \(C(V \setminus L_j, OPT) \geq (1 - \frac{1}{k}) \cdot C(V, OPT) \).
- Let \(G_j \) be the graph corresponding to \(j \).
- Since \(C(V, S) \geq C(V, S_j) \).

\[
C(V, S) \geq C(V, S_j) \geq C(G_j, V, S_j) \geq C(G_j, V, OPT)
\]
Approximation Analysis

Proof.

- \(\exists j \) such that \(C(L_j, OPT) \leq \frac{1}{k} \cdot C(V, OPT) \).
- Then, \(C(V \setminus L_j, OPT) \geq (1 - \frac{1}{k}) \cdot C(V, OPT) \).
- Let \(G_j \) be the graph corresponding to \(j \).
- Since \(C(V, S) \geq C(V, S_j) \).

\[
C(V, S) \geq C(V, S_j) \geq C(G_j, V, S_j) \geq C(G_j, V, OPT) \\
\geq C(G_j, V \setminus L_j, OPT)
\]
Approximation Analysis

Proof.

- ∃ j such that $C(L_j, \text{OPT}) \leq \frac{1}{k} \cdot C(V, \text{OPT})$.
- Then, $C(V \setminus L_j, \text{OPT}) \geq (1 - \frac{1}{k}) \cdot C(V, \text{OPT})$.
- Let G_j be the graph corresponding to j.
- Since $C(V, S) \geq C(V, S_j)$.

\[
C(V, S) \geq C(V, S_j) \geq C(G_j, V, S_j) \geq C(G_j, V, \text{OPT}) \\
\geq C(G_j, V \setminus L_j, \text{OPT}) = C(G, V \setminus L_j, \text{OPT})
\]
Approximation Analysis

Proof.

- There exists \(j \) such that \(C(L_j, \text{OPT}) \leq \frac{1}{k} \cdot C(V, \text{OPT}) \).
- Then, \(C(V \setminus L_j, \text{OPT}) \geq (1 - \frac{1}{k}) \cdot C(V, \text{OPT}) \).
- Let \(G_j \) be the graph corresponding to \(j \).
- Since \(C(V, S) \geq C(V, S_j) \).

\[
C(V, S) \geq C(V, S_j) \geq C(G_j, V, S_j) \geq C(G_j, V, \text{OPT}) \\
\geq C(G_j, V \setminus L_j, \text{OPT}) = C(G, V \setminus L_j, \text{OPT}) \\
\leq (1 - \frac{1}{k}) \cdot C(V, \text{OPT})
\]

\(\square \)
