Can We Create Large k-Cores by Adding Few Edges?

Rajesh Chitnis

Joint work with Nimrod Talmon (Ben Gurion University)

CSR, Moscow
10 June 2018

THE UNIVERSITY OF
WARWICK

Outline of Talk

Outline of Talk

- What is a k-core?

Outline of Talk

- What is a k-core?
- Finding k-cores

Outline of Talk

- What is a k-core?
- Finding k-cores
- Anchored k-cores

Outline of Talk

- What is a k-core?
- Finding k-cores
- Anchored k-cores
- This work: Obtaining k-cores via edge additions

Outline of Talk

- What is a k-core?
- Finding k-cores
- Anchored k-cores
- This work: Obtaining k-cores via edge additions

Can we create large k-cores by adding few edges?
What is a k-core?

- Let G be an undirected graph

Can we create large k-cores by adding few edges?
What is a k-core?

- Let G be an undirected graph
- Fix any $k \geq 1$

Can we create large k-cores by adding few edges?

What is a k-core?

- Let G be an undirected graph
- Fix any $k \geq 1$
- A maximal subgraph $H \subseteq G$ is called as a k-core if $\operatorname{deg}_{H}(v) \geq k$ for each $v \in H$

Can we create large k-cores by adding few edges?

What is a k-core?

- Let G be an undirected graph
- Fix any $k \geq 1$
- A maximal subgraph $H \subseteq G$ is called as a k-core if $\operatorname{deg}_{H}(v) \geq k$ for each $v \in H$
- Can be shown that such a maximal subgraph is unique

Can we create large k-cores by adding few edges?

What is a k-core?

- Let G be an undirected graph
- Fix any $k \geq 1$
- A maximal subgraph $H \subseteq G$ is called as a k-core if $\operatorname{deg}_{H}(v) \geq k$ for each $v \in H$
- Can be shown that such a maximal subgraph is unique
- Hence, we can talk about the k-core

Can we create large k-cores by adding few edges?
What is a k-core?

- Applications of k-cores [via Wikipedia]

Can we create large k-cores by adding few edges?
What is a k-core?

- Applications of k-cores [via Wikipedia]
- Clustering structure of social networks

Can we create large k-cores by adding few edges?

What is a k-core?

- Applications of k-cores [via Wikipedia]
- Clustering structure of social networks
- Bioinformatics

Can we create large k-cores by adding few edges?

What is a k-core?

- Applications of k-cores [via Wikipedia]
- Clustering structure of social networks
- Bioinformatics
- Internet structure

Can we create large k-cores by adding few edges?

What is a k-core?

- Applications of k-cores [via Wikipedia]
- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization

Can we create large k-cores by adding few edges?

What is a k-core?

- Applications of k-cores [via Wikipedia]
- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization
- Brain cortex structure

Can we create large k-cores by adding few edges?

What is a k-core?

- Applications of k-cores [via Wikipedia]
- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization
- Brain cortex structure
-

Can we create large k-cores by adding few edges?

What is a k-core?

- Applications of k-cores [via Wikipedia]
- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization
- Brain cortex structure
-
- How fast can we find the k-core?

Can we create large k-cores by adding few edges?

What is a k-core?

- Applications of k-cores [via Wikipedia]
- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization
- Brain cortex structure
-
- How fast can we find the k-core?
- Next slide....

Outline of Talk

- What is a k-core?
- Finding k-cores
- Anchored k-cores
- This work: Obtaining k-cores via edge additions

Can we create large k-cores by adding few edges?
Finding k-cores

- Algorithm to find the k-core

Can we create large k-cores by adding few edges?

Finding k-cores

- Algorithm to find the k-core
- Delete a vertex of degree $<k$

Can we create large k-cores by adding few edges?

Finding k-cores

- Algorithm to find the k-core
- Delete a vertex of degree $<k$
- Repeat

Can we create large k-cores by adding few edges?

Finding k-cores

- Algorithm to find the k-core
- Delete a vertex of degree $<k$
- Repeat
- The k-core, i.e, the subgraph obtained at the end, has min-degree $\geq k$

Can we create large k-cores by adding few edges?

Finding k-cores

- Algorithm to find the k-core
- Delete a vertex of degree $<k$
- Repeat
- The k-core, i.e, the subgraph obtained at the end, has min-degree $\geq k$
- This algorithm requires polynomial time!

Can we create large k-cores by adding few edges?

Finding k-cores

- Algorithm to find the k-core
- Delete a vertex of degree $<k$
- Repeat
- The k-core, i.e, the subgraph obtained at the end, has min-degree $\geq k$
- This algorithm requires polynomial time!
- Why do we even want large k-cores?

Can we create large k-cores by adding few edges? k-cores

- We model social networks by undirected graphs.

Can we create large k-cores by adding few edges?

- We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.

Can we create large k-cores by adding few edges?

- We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.
- Motivation: The behavior of users in a social network is often affected by the actions of others.

Can we create large k-cores by adding few edges?

- We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.
- Motivation: The behavior of users in a social network is often affected by the actions of others.
- Observation: An individual would remain engaged in a social network only if he/she has a large enough number of friends who are also engaged in the social network.

Can we create large k-cores by adding few edges?
 k-cores

- We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.
- Motivation: The behavior of users in a social network is often affected by the actions of others.
- Observation: An individual would remain engaged in a social network only if he/she has a large enough number of friends who are also engaged in the social network.
- We quantify "large enough"by a threshold k, i.e., an individual remains engaged if and only if he/she has at least k friends in the social network.

Can we create large k-cores by adding few edges?
 k-cores

- We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.
- Motivation: The behavior of users in a social network is often affected by the actions of others.
- Observation: An individual would remain engaged in a social network only if he/she has a large enough number of friends who are also engaged in the social network.
- We quantify "large enough"by a threshold k, i.e., an individual remains engaged if and only if he/she has at least k friends in the social network.
- The subgraph that remains is exactly the k-core.

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

- Model:

Can we create large k-cores by adding few edges?

Game-theoretic interpretation for k-cores

- Model:
- Cost of k to stay in the network
- Benefit of 1 from each friend in the network

Can we create large k-cores by adding few edges?

Game-theoretic interpretation for k-cores

- Model:
- Cost of k to stay in the network
- Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!

Can we create large k-cores by adding few edges?

Game-theoretic interpretation for k-cores

- Model:
- Cost of k to stay in the network
- Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0

Can we create large k-cores by adding few edges?

Game-theoretic interpretation for k-cores

- Model:
- Cost of k to stay in the network
- Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?

Can we create large k-cores by adding few edges?

Game-theoretic interpretation for k-cores

- Model:
- Cost of k to stay in the network
- Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?
- No engaged played in H wants to drop out, i.e., H has min-degree $\geq k$
- No player who dropped out wants to join, i.e., no $V \backslash H$ has $\geq k$ neighbors in H
- k-core is the unique maximal equilibrium

Can we create large k-cores by adding few edges?

Game-theoretic interpretation for k-cores

- Model:
- Cost of k to stay in the network
- Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?
- No engaged played in H wants to drop out, i.e., H has min-degree $\geq k$
- No player who dropped out wants to join, i.e., no $V \backslash H$ has $\geq k$ neighbors in H
- k-core is the unique maximal equilibrium
- Beneficial for users since they get max payoff
- Beneficial for network since it maximizes the size

Can we create large k-cores by adding few edges?

Game-theoretic interpretation for k-cores

- Model:
- Cost of k to stay in the network
- Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?
- No engaged played in H wants to drop out, i.e., H has min-degree $\geq k$
- No player who dropped out wants to join, i.e., no $V \backslash H$ has $\geq k$ neighbors in H
- k-core is the unique maximal equilibrium
- Beneficial for users since they get max payoff
- Beneficial for network since it maximizes the size
- Some work on why this maximal equilibrium actually occurs in real-life instantiations of this game!

Can we create large k-cores by adding few edges?

Game-theoretic interpretation for k-cores

- Model:
- Cost of k to stay in the network
- Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?
- No engaged played in H wants to drop out, i.e., H has min-degree $\geq k$
- No player who dropped out wants to join, i.e., no $V \backslash H$ has $\geq k$ neighbors in H
- k-core is the unique maximal equilibrium
- Beneficial for users since they get max payoff
- Beneficial for network since it maximizes the size
- Some work on why this maximal equilibrium actually occurs in real-life instantiations of this game!
- Chwe ['99]
- Sääskilahti ['07]

Can we create large k-cores by adding few edges?

Anchored k-cores

- Any individual with less than k friends drops out of the network.

Can we create large k-cores by adding few edges?

Anchored k-cores

- Any individual with less than k friends drops out of the network.
- However, this might lead to iterated withdrawls.

Can we create large k-cores by adding few edges?

Anchored k-cores

- Any individual with less than k friends drops out of the network.
- However, this might lead to iterated withdrawls.
- Consider a path on n vertices with $k=2$

Can we create large k-cores by adding few edges?

Anchored k-cores

- Any individual with less than k friends drops out of the network.
- However, this might lead to iterated withdrawls.
- Consider a path on n vertices with $k=2$

Can we create large k-cores by adding few edges?

Anchored k-cores

- Any individual with less than k friends drops out of the network.
- However, this might lead to iterated withdrawls.
- Consider a path on n vertices with $k=2$

- Since v_{1} has degree 1 , it will drop out.

Can we create large k-cores by adding few edges?

Anchored k-cores

- Any individual with less than k friends drops out of the network.
- However, this might lead to iterated withdrawls.
- Consider a path on n vertices with $k=2$

- Since v_{1} has degree 1 , it will drop out.
- Observe now that v_{2} has degree 1 , and it also drops out.

Can we create large k-cores by adding few edges?

Anchored k-cores

- Any individual with less than k friends drops out of the network.
- However, this might lead to iterated withdrawls.
- Consider a path on n vertices with $k=2$

- Since v_{1} has degree 1 , it will drop out.
- Observe now that v_{2} has degree 1 , and it also drops out.
- Ultimately, the whole social network collapses.

Can we create large k-cores by adding few edges?

Anchored k-cores

- Any individual with less than k friends drops out of the network.
- However, this might lead to iterated withdrawls.
- Consider a path on n vertices with $k=2$

- Since v_{1} has degree 1 , it will drop out.
- Observe now that v_{2} has degree 1 , and it also drops out.
- Ultimately, the whole social network collapses.
- How can we prevent this unraveling?

Can we create large k-cores by adding few edges?

Anchored k-cores

- To prevent the unraveling described in the previous slide, we use the concept of anchors.

Can we create large k-cores by adding few edges?

Anchored k-cores

- To prevent the unraveling described in the previous slide, we use the concept of anchors.
- We motivate some of the users in the social network with "external incentives", so that they remain engaged even if they have less than k friends.

Can we create large k-cores by adding few edges?

Anchored k-cores

- To prevent the unraveling described in the previous slide, we use the concept of anchors.
- We motivate some of the users in the social network with "external incentives", so that they remain engaged even if they have less than k friends.
- The role of the anchors is to augment the degrees of the other vertices.

Can we create large k-cores by adding few edges?

Anchored k-cores

- To prevent the unraveling described in the previous slide, we use the concept of anchors.
- We motivate some of the users in the social network with "external incentives", so that they remain engaged even if they have less than k friends.
- The role of the anchors is to augment the degrees of the other vertices.

Can we create large k-cores by adding few edges?

Anchored k-cores

- To prevent the unraveling described in the previous slide, we use the concept of anchors.
- We motivate some of the users in the social network with "external incentives", so that they remain engaged even if they have less than k friends.
- The role of the anchors is to augment the degrees of the other vertices.

- If we set v_{1} and v_{n} to be the anchors, then the entire social network survives.

Outline of Talk

- What is a k-core?
- Finding k-cores
- Anchored k-cores
- This work: Obtaining k-cores via edge additions

Can we create large k-cores by adding few edges?

Anchored k-cores
The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p

Can we create large k-cores by adding few edges?

Anchored k-cores
The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \backslash B$ satisfies $\operatorname{deg}_{G[H]}(v) \geq k$

Can we create large k-cores by adding few edges?

Anchored k-cores
The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

```
Anchored k-Core
Input: An undirected graph \(G=(V, E)\) and integers \(b, k, p\)
Question: Is there a set of vertices \(H \subseteq V\) of size \(\geq p\) such that
there is a set \(B \subseteq H\) with \(|B| \leq b\), and every \(v \in H \backslash B\) satisfies
\(\operatorname{deg}_{G[H]}(v) \geq k\)
Parameters: \(b, k, p\)
```


Can we create large k-cores by adding few edges?

Anchored k-cores
The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

```
Anchored k-Core
Input: An undirected graph \(G=(V, E)\) and integers \(b, k, p\)
Question: Is there a set of vertices \(H \subseteq V\) of size \(\geq p\) such that
there is a set \(B \subseteq H\) with \(|B| \leq b\), and every \(v \in H \backslash B\) satisfies
\(\operatorname{deg}_{G[H]}(v) \geq k\)
Parameters: \(b, k, p\)
```

Bhawalkar et al. (ICALP '12) showed the following:

Can we create large k-cores by adding few edges?

Anchored k-cores
The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

```
Anchored k-Core
Input: An undirected graph \(G=(V, E)\) and integers \(b, k, p\)
Question: Is there a set of vertices \(H \subseteq V\) of size \(\geq p\) such that
there is a set \(B \subseteq H\) with \(|B| \leq b\), and every \(v \in H \backslash B\) satisfies
\(\operatorname{deg}_{G[H]}(v) \geq k\)
Parameters: \(b, k, p\)
```

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.

Can we create large k-cores by adding few edges?

Anchored k-cores
The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

```
Anchored k-Core
Input: An undirected graph \(G=(V, E)\) and integers \(b, k, p\)
Question: Is there a set of vertices \(H \subseteq V\) of size \(\geq p\) such that
there is a set \(B \subseteq H\) with \(|B| \leq b\), and every \(v \in H \backslash B\) satisfies
\(\operatorname{deg}_{G[H]}(v) \geq k\)
Parameters: \(b, k, p\)
```

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- NP-hard to even approximate within a factor $O\left(n^{1-\epsilon}\right)$ for any $\epsilon>0$.

Can we create large k-cores by adding few edges?

Anchored k-cores
The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \backslash B$ satisfies $\operatorname{deg}_{G[H]}(v) \geq k$ Parameters: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- NP-hard to even approximate within a factor $O\left(n^{1-\epsilon}\right)$ for any $\epsilon>0$.
- W[2]-hardness parameterized by b

Can we create large k-cores by adding few edges?

Anchored k-cores
The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \backslash B$ satisfies $\operatorname{deg}_{G[H]}(v) \geq k$ Parameters: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- NP-hard to even approximate within a factor $O\left(n^{1-\epsilon}\right)$ for any $\epsilon>0$.
- W[2]-hardness parameterized by b

Chitnis et al. (AAAI '13) in a follow-up work showed that:

Can we create large k-cores by adding few edges?

Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \backslash B$ satisfies $\operatorname{deg}_{G[H]}(v) \geq k$ Parameters: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- NP-hard to even approximate within a factor $O\left(n^{1-\epsilon}\right)$ for any $\epsilon>0$.
- W[2]-hardness parameterized by b

Chitnis et al. (AAAI '13) in a follow-up work showed that:

- NP-hard for $k \geq 3$, even on planar graphs

Can we create large k-cores by adding few edges?

Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \backslash B$ satisfies $\operatorname{deg}_{G[H]}(v) \geq k$ Parameters: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- NP-hard to even approximate within a factor $O\left(n^{1-\epsilon}\right)$ for any $\epsilon>0$.
- W[2]-hardness parameterized by b

Chitnis et al. (AAAI '13) in a follow-up work showed that:

- NP-hard for $k \geq 3$, even on planar graphs
- W[1]-hard parameterized by p

Can we create large k-cores by adding few edges?

Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \backslash B$ satisfies $\operatorname{deg}_{G[H]}(v) \geq k$ Parameters: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- NP-hard to even approximate within a factor $O\left(n^{1-\epsilon}\right)$ for any $\epsilon>0$.
- W[2]-hardness parameterized by b

Chitnis et al. (AAAI '13) in a follow-up work showed that:

- NP-hard for $k \geq 3$, even on planar graphs
- W[1]-hard parameterized by p
- FPT on planar graphs parameterized by b

Outline of Talk

- What is a k-core?
- Finding k-cores
- Anchored k-cores
- This work: Obtaining k-cores via edge additions

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions?

- Instead of anchoring v_{1} and v_{n}, we could add an edge between v_{1} and v_{n}

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions?

- Instead of anchoring v_{1} and v_{n}, we could add an edge between v_{1} and v_{n}
- Then we get a cycle of length n, and the whole network survives

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions?

- Instead of anchoring v_{1} and v_{n}, we could add an edge between v_{1} and v_{n}
- Then we get a cycle of length n, and the whole network survives
- Does not really make sense in case of social networks!
- Can't add edges between random people

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions?

- Instead of anchoring v_{1} and v_{n}, we could add an edge between v_{1} and v_{n}
- Then we get a cycle of length n, and the whole network survives
- Does not really make sense in case of social networks!
- Can't add edges between random people
- Consider an existing network of computers, connected by some topology

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions?

- Instead of anchoring v_{1} and v_{n}, we could add an edge between v_{1} and v_{n}
- Then we get a cycle of length n, and the whole network survives
- Does not really make sense in case of social networks!
- Can't add edges between random people
- Consider an existing network of computers, connected by some topology
- Let k be the threshold of how many computers are needed for any task.

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions?

- Instead of anchoring v_{1} and v_{n}, we could add an edge between v_{1} and v_{n}
- Then we get a cycle of length n, and the whole network survives
- Does not really make sense in case of social networks!
- Can't add edges between random people
- Consider an existing network of computers, connected by some topology
- Let k be the threshold of how many computers are needed for any task.
- Then this edge-addition tells us which connections to add!

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions?

- Instead of anchoring v_{1} and v_{n}, we could add an edge between v_{1} and v_{n}
- Then we get a cycle of length n, and the whole network survives
- Does not really make sense in case of social networks!
- Can't add edges between random people
- Consider an existing network of computers, connected by some topology
- Let k be the threshold of how many computers are needed for any task.
- Then this edge-addition tells us which connections to add!
- Next slide: Formal definition of Edge k-Core problem

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{v}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- First we see that there is no relation between Edge k-Core and Anchored k-Core.

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{v}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- First we see that there is no relation between EDGE k-Core and Anchored k-Core.
- Edge Additions > Anchored Vertices:

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- First we see that there is no relation between EDGE k-Core and Anchored k-Core.
- Edge Additions > Anchored Vertices:
- Let G be a disjoint union of two components G_{1} and G_{2}, where $G_{1}=K_{z_{1}}$ and G_{2} is a $z_{\mathbf{2}}$-regular graph on $n_{\mathbf{2}}$ vertices
- Choose $z_{\mathbf{1}} \ll z_{\mathbf{2}} \ll n_{\mathbf{2}}$. If $k=z_{\mathbf{2}}$ and $p=z_{\mathbf{1}}+n_{\mathbf{2}}$,
- Then number of anchors is $b_{v}=z_{\mathbf{1}}$, while number of edge deletions is

$$
b_{e} \geq \frac{z_{\mathbf{1}} \cdot\left(z_{\mathbf{2}}-z_{\mathbf{1}}+1\right)}{2} \gg z_{\mathbf{1}}=b_{v}
$$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- First we see that there is no relation between EDGE k-Core and Anchored k-Core.
- Edge Additions > Anchored Vertices:
- Let G be a disjoint union of two components G_{1} and G_{2}, where $G_{1}=K_{z_{1}}$ and G_{2} is a $z_{\mathbf{2}}$-regular graph on $n_{\mathbf{2}}$ vertices
- Choose $z_{\mathbf{1}} \ll z_{\mathbf{2}} \ll n_{\mathbf{2}}$. If $k=z_{\mathbf{2}}$ and $p=z_{\mathbf{1}}+n_{\mathbf{2}}$,
- Then number of anchors is $b_{v}=z_{\mathbf{1}}$, while number of edge deletions is $b_{e} \geq \frac{z_{\mathbf{1}} \cdot\left(z_{\mathbf{2}}-z_{\mathbf{1}}+1\right)}{2} \gg z_{\mathbf{1}}=b_{v}$
- Edge Additions < Anchored Vertices

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- First we see that there is no relation between EDGE k-Core and Anchored k-Core.

- Edge Additions > Anchored Vertices:

- Let G be a disjoint union of two components G_{1} and G_{2}, where $G_{1}=K_{z_{1}}$ and G_{2} is a $z_{\mathbf{2}}$-regular graph on $n_{\mathbf{2}}$ vertices
- Choose $z_{\mathbf{1}} \ll z_{\mathbf{2}} \ll n_{\mathbf{2}}$. If $k=z_{\mathbf{2}}$ and $p=z_{\mathbf{1}}+n_{\mathbf{2}}$,
- Then number of anchors is $b_{v}=z_{\mathbf{1}}$, while number of edge deletions is $b_{e} \geq \frac{z_{\mathbf{1}} \cdot\left(z_{\mathbf{2}}-z_{\mathbf{1}}+1\right)}{2} \gg z_{\mathbf{1}}=b_{v}$
- Edge Additions $<$ Anchored Vertices
- Let $G_{1}=K_{2 n}$, and G_{2} be $K_{2 n}$ with a perfect matching removed. Add a matching of size $2 n$ between G_{1} and G_{2}.
- Set $k=2 n$ and $p=4 n$
- Then $b_{v}=2 n$, and $b_{e}=n<2 n=b_{v}$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

```
Edge k-Core
Input: An undirected graph G=(V,E) and integers b,k,p
Question: Is there a set of vertices H\subseteqV of size \geqp such that
there is a set B\subseteq((\begin{array}{c}{v}\\{2}\end{array})\E)\mathrm{ with |B| \b and every v}\inH\mathrm{ satisfies}
deg}\mp@subsup{G}{\mp@subsup{G}{}{\prime}[H]}{}(v)\geqk,\mathrm{ where G'}=(V,E\cupB)\mathrm{ ?
Parameters: }b,k,
```

- Our results:

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- Our results:
- Solvable in polynomial time for $2 \geq k$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- Our results:
- Solvable in polynomial time for $2 \geq k$
- NP-hard for $k \geq 3$, even on planar graphs

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- Our results:
- Solvable in polynomial time for $2 \geq k$
- NP-hard for $k \geq 3$, even on planar graphs
- W[1]-hard parameterized by $b+p$, even for $k=3$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- Our results:
- Solvable in polynomial time for $2 \geq k$
- NP-hard for $k \geq 3$, even on planar graphs
- W[1]-hard parameterized by $b+p$, even for $k=3$
- FPT parameterized by $k+b+\mathbf{t w}$, even for $k=3$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{\geq \mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{\geq \mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the maximum size of a 1 -core is $\alpha_{\geq 1}+2 b$.

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{>\mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the maximum size of a 1 -core is $\alpha_{\geq 1}+2 b$.
- Otherwise, if $b>\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the entire vertex set can become a 1 -core by adding a matching between the vertices of degree 0 (and an extra edge if α_{0} is odd).

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{\geq \mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the maximum size of a 1 -core is $\alpha_{\geq 1}+2 b$.
- Otherwise, if $b>\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the entire vertex set can become a 1 -core by adding a matching between the vertices of degree 0 (and an extra edge if α_{0} is odd).
- $k=2$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{\geq \mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the maximum size of a 1 -core is $\alpha_{\geq 1}+2 b$.
- Otherwise, if $b>\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the entire vertex set can become a 1 -core by adding a matching between the vertices of degree 0 (and an extra edge if α_{0} is odd).
- $k=2$
- Simple greedy doesn't work
- Say input graph is three disjoint edges and $b=2=k$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{\geq \mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the maximum size of a 1 -core is $\alpha_{\geq 1}+2 b$.
- Otherwise, if $b>\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the entire vertex set can become a 1 -core by adding a matching between the vertices of degree 0 (and an extra edge if α_{0} is odd).
- $k=2$
- Simple greedy doesn't work
- Say input graph is three disjoint edges and $b=2=k$
- Then greedy might just make it into a path on 6 vertices

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{\geq \mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the maximum size of a 1 -core is $\alpha_{\geq 1}+2 b$.
- Otherwise, if $b>\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the entire vertex set can become a 1 -core by adding a matching between the vertices of degree 0 (and an extra edge if α_{0} is odd).
- $k=2$
- Simple greedy doesn't work
- Say input graph is three disjoint edges and $b=2=k$
- Then greedy might just make it into a path on 6 vertices
- Optimal solution is to make a 4-cycle and get $p=4$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{\geq \mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the maximum size of a 1 -core is $\alpha_{\geq 1}+2 b$.
- Otherwise, if $b>\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the entire vertex set can become a 1 -core by adding a matching between the vertices of degree 0 (and an extra edge if α_{0} is odd).
- $k=2$
- Simple greedy doesn't work
- Say input graph is three disjoint edges and $b=2=k$
- Then greedy might just make it into a path on 6 vertices
- Optimal solution is to make a 4-cycle and get $p=4$
- So, only degree of vertex is not only thing to consider! Degrees of their neighbors are important too

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{\geq \mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the maximum size of a 1 -core is $\alpha_{\geq 1}+2 b$.
- Otherwise, if $b>\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the entire vertex set can become a 1 -core by adding a matching between the vertices of degree 0 (and an extra edge if α_{0} is odd).
- $k=2$
- Simple greedy doesn't work
- Say input graph is three disjoint edges and $b=2=k$
- Then greedy might just make it into a path on 6 vertices
- Optimal solution is to make a 4-cycle and get $p=4$
- So, only degree of vertex is not only thing to consider! Degrees of their neighbors are important too
- Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph $G=(V, E)$ and integers b, k, p
Question: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq\left(\binom{V}{2} \backslash E\right)$ with $|B| \leq b$ and every $v \in H$ satisfies $\operatorname{deg}_{G^{\prime}[H]}(v) \geq k$, where $G^{\prime}=(V, E \cup B)$?
Parameters: b, k, p

- $k=0$: Answer YES if and only if $p \leq n$
- $k=1$
- Let $\alpha_{\mathbf{0}}, \alpha_{>\mathbf{1}}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the maximum size of a 1 -core is $\alpha_{\geq 1}+2 b$.
- Otherwise, if $b>\left\lfloor\frac{\alpha_{0}}{2}\right\rfloor$, then the entire vertex set can become a 1 -core by adding a matching between the vertices of degree 0 (and an extra edge if α_{0} is odd).
- $k=2$
- Simple greedy doesn't work
- Say input graph is three disjoint edges and $b=2=k$
- Then greedy might just make it into a path on 6 vertices
- Optimal solution is to make a 4-cycle and get $p=4$
- So, only degree of vertex is not only thing to consider! Degrees of their neighbors are important too
- Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!
- Next slide: NP-hardness for $k \geq 3$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: NP-hardness for $k=3$ via 3 -SAT

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: NP-hardness for $k=3$ via 3 -SAT

- Each variable is used at most 3 times

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: NP-hardness for $k=3$ via 3 -SAT

- Each variable is used at most 3 times
- Each variable is used at least once in positive, and at least once in negative

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: NP-hardness for $k=3$ via 3-SAT

Variables

- Each variable is used at most 3 times
- Each variable is used at least once in positive, and at least once in negative
- SAT $\Leftrightarrow($ EKC answers YES with $k=3, b=n$ and $p=|G|-3 n)$

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: $\mathrm{W}[1]$-hardness for $k=3$ w.r.t $(b+p)$ via Clique

The graph G^{\prime} when $n=8$ and $\ell=5$.

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: $\mathrm{W}[1]$-hardness for $k=3$ w.r.t $(b+p)$ via Clique

The graph G^{\prime} when $n=8$ and $\ell=5$.

- G has a ℓ-clique \Leftrightarrow EKC answers YES on G^{\prime} with $k=3, b=\binom{\ell}{2}$ and $p=4 b$

Can we create large k-cores by adding few edges? Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k+b+\mathbf{t w}$

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k+b+\mathbf{t w}$

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by $k+b+p$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k+b+$ tw

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by $k+b+p$
- So we seek alternative parameters: tw is a natural choice

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k+b+$ tw

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by $k+b+p$
- So we seek alternative parameters: tw is a natural choice
- We give an FPT algorithm parameterized by tw $+k+b$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k+b+$ tw

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by $k+b+p$
- So we seek alternative parameters: tw is a natural choice
- We give an FPT algorithm parameterized by tw $+k+b$
- Idea: Express the optimization version of EKC in MSO logic

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k+b+$ tw

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by $k+b+p$
- So we seek alternative parameters: tw is a natural choice
- We give an FPT algorithm parameterized by tw $+k+b$
- Idea: Express the optimization version of EKC in MSO logic
$\phi(S)=(\forall x: x \in S \rightarrow I s \operatorname{Vertex}(x)) \wedge \exists u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{b}, v_{b}:(\forall 1 \leq i \leq$
$\left.b: u_{i} \neq v_{i}\right) \wedge\left(\forall x: x \in S \rightarrow \exists y_{1}, y_{2}, \ldots, y_{k}:\left(\bigwedge_{1 \leq i \leq k} y_{i} \in S\right) \wedge\left(\bigwedge_{1 \leq i \neq j \leq k} y_{i} \neq\right.\right.$
$\left.\left.y_{j}\right) \wedge \forall 1 \leq i \leq k:\left(\operatorname{Adjacent}\left(x, y_{i}\right) \vee\left(\bigvee_{\ell=1}^{b}\left(u_{\ell}=x \wedge v_{\ell}=y_{i}\right) \vee\left(v_{\ell}=x \wedge u_{\ell}=y_{i}\right)\right)\right)\right)$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k+b+\mathbf{t w}$

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by $k+b+p$
- So we seek alternative parameters: $\mathbf{t w}$ is a natural choice
- We give an FPT algorithm parameterized by $\mathbf{t w}+k+b$
- Idea: Express the optimization version of EKC in MSO logic
$\phi(S)=(\forall x: x \in S \rightarrow \operatorname{IsVertex}(x)) \wedge \exists u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{b}, v_{b}:(\forall 1 \leq i \leq$ $\left.b: u_{i} \neq v_{i}\right) \wedge\left(\forall x: x \in S \rightarrow \exists y_{1}, y_{2}, \ldots, y_{k}:\left(\bigwedge_{1 \leq i \leq k} y_{i} \in S\right) \wedge\left(\bigwedge_{1 \leq i \neq j \leq k} y_{i} \neq\right.\right.$ $\left.\left.y_{j}\right) \wedge \forall 1 \leq i \leq k:\left(\operatorname{Adjacent}\left(x, y_{i}\right) \vee\left(\bigvee_{\ell=1}^{b}\left(u_{\ell}=x \wedge v_{\ell}=y_{i}\right) \vee\left(v_{\ell}=x \wedge u_{\ell}=y_{i}\right)\right)\right)\right)$
- Note that $|\phi(S)|=\operatorname{poly}(k, b)$
- Arnborg et al. ['91] showed that we can find the largest set S satisfying $\phi(S)$ in time which is FPT w.r.t (tw $+|\phi(S)|)$

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k+b+\mathbf{t w}$

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by $k+b+p$
- So we seek alternative parameters: $\mathbf{t w}$ is a natural choice
- We give an FPT algorithm parameterized by $\mathbf{t w}+k+b$
- Idea: Express the optimization version of EKC in MSO logic
$\phi(S)=(\forall x: x \in S \rightarrow \operatorname{IsVertex}(x)) \wedge \exists u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{b}, v_{b}:(\forall 1 \leq i \leq$
$\left.b: u_{i} \neq v_{i}\right) \wedge\left(\forall x: x \in S \rightarrow \exists y_{1}, y_{2}, \ldots, y_{k}:\left(\bigwedge_{1 \leq i \leq k} y_{i} \in S\right) \wedge\left(\bigwedge_{1 \leq i \neq j \leq k} y_{i} \neq\right.\right.$
$\left.\left.y_{j}\right) \wedge \forall 1 \leq i \leq k:\left(\operatorname{Adjacent}\left(x, y_{i}\right) \vee\left(\bigvee_{\ell=1}^{b}\left(u_{\ell}=x \wedge v_{\ell}=y_{i}\right) \vee\left(v_{\ell}=x \wedge u_{\ell}=y_{i}\right)\right)\right)\right)$
- Note that $|\phi(S)|=\operatorname{poly}(k, b)$
- Arnborg et al. ['91] showed that we can find the largest set S satisfying $\phi(S)$ in time which is FPT w.r.t (tw $+|\phi(S)|)$
- Runtime is astronomical: tower of exponentials

Can we create large k-cores by adding few edges?

Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k+b+\mathbf{t w}$

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by $k+b+p$
- So we seek alternative parameters: $\mathbf{t w}$ is a natural choice
- We give an FPT algorithm parameterized by $\mathbf{t w}+k+b$
- Idea: Express the optimization version of EKC in MSO logic
$\phi(S)=(\forall x: x \in S \rightarrow \operatorname{IsVertex}(x)) \wedge \exists u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{b}, v_{b}:(\forall 1 \leq i \leq$
$\left.b: u_{i} \neq v_{i}\right) \wedge\left(\forall x: x \in S \rightarrow \exists y_{1}, y_{2}, \ldots, y_{k}:\left(\bigwedge_{1 \leq i \leq k} y_{i} \in S\right) \wedge\left(\bigwedge_{1 \leq i \neq j \leq k} y_{i} \neq\right.\right.$
$\left.\left.y_{j}\right) \wedge \forall 1 \leq i \leq k:\left(\operatorname{Adjacent}\left(x, y_{i}\right) \vee\left(\bigvee_{\ell=1}^{b}\left(u_{\ell}=x \wedge v_{\ell}=y_{i}\right) \vee\left(v_{\ell}=x \wedge u_{\ell}=y_{i}\right)\right)\right)\right)$
- Note that $|\phi(S)|=\operatorname{poly}(k, b)$
- Arnborg et al. ['91] showed that we can find the largest set S satisfying $\phi(S)$ in time which is FPT w.r.t (tw $+|\phi(S)|)$
- Runtime is astronomical: tower of exponentials
- Main technical result of our paper: Explicit DP algorithm which runs in time $(k+\mathbf{t w})^{O(\mathbf{t w}+b)} \cdot \operatorname{poly}(n)$.

Thank You Спасибо

Thank You Спасибо

Questions?

