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Can we create large k-cores by adding few edges?
What is a k-core?

I Let G be an undirected graph

I Fix any k ≥ 1
I A maximal subgraph H ⊆ G is called as a k-core if degH(v) ≥ k for

each v ∈ H

I Can be shown that such a maximal subgraph is unique
I Hence, we can talk about the k-core
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Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]

I Clustering structure of social networks
I Bioinformatics
I Internet structure
I Network visualization
I Brain cortex structure
I . . . . . .

I How fast can we find the k-core?
I Next slide....
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Can we create large k-cores by adding few edges?
Finding k-cores

I Algorithm to find the k-core

I Delete a vertex of degree < k
I Repeat

I The k-core, i.e, the subgraph obtained at the end, has min-degree
≥ k

I This algorithm requires polynomial time!

I Why do we even want large k-cores?
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Can we create large k-cores by adding few edges?
k-cores

I We model social networks by undirected graphs.

I Introduce a vertex for each user, and add edges between users who
are friends in the social network.

I Motivation: The behavior of users in a social network is often
affected by the actions of others.

I Observation: An individual would remain engaged in a social network
only if he/she has a large enough number of friends who are also
engaged in the social network.

I We quantify "large enough"by a threshold k , i.e., an individual
remains engaged if and only if he/she has at least k friends in the
social network.

I The subgraph that remains is exactly the k-core.
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Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:

I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!
I An individual remains engaged if and only if payoff is ≥ 0
I How does a pure Nash equilibrium H look like?

I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium
I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]
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Can we create large k-cores by adding few edges?
Anchored k-cores

I Any individual with less than k friends drops out of the network.

I However, this might lead to iterated withdrawls.
I Consider a path on n vertices with k = 2

I Since v1 has degree 1, it will drop out.
I Observe now that v2 has degree 1, and it also drops out.
I Ultimately, the whole social network collapses.

I How can we prevent this unraveling?
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Can we create large k-cores by adding few edges?
Anchored k-cores

I To prevent the unraveling described in the previous slide, we use the
concept of anchors.

I We motivate some of the users in the social network with “external
incentives”, so that they remain engaged even if they have less than
k friends.

I The role of the anchors is to augment the degrees of the other
vertices.

I If we set v1 and vn to be the anchors, then the entire social network
survives.
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Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E ) and integers b, k, p

Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b
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Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.
I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem
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Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E ) and integers b, k, p

Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E ) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I First we see that there is no relation between Edge k-Core and
Anchored k-Core.

I Edge Additions > Anchored Vertices:
I Let G be a disjoint union of two components G1 and G2, where G1 = Kz1 and G2

is a z2-regular graph on n2 vertices
I Choose z1 � z2 � n2. If k = z2 and p = z1 + n2,
I Then number of anchors is bv = z1, while number of edge deletions is

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv

I Edge Additions < Anchored Vertices
I Let G1 = K2n, and G2 be K2n with a perfect matching removed. Add a matching

of size 2n between G1 and G2.
I Set k = 2n and p = 4n
I Then bv = 2n, and be = n < 2n = bv
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Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: NP-hardness for k = 3 via 3-SAT
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Variables

Clauses

I Each variable is used at most 3 times
I Each variable is used at least once in positive, and at least once in negative
I SAT ⇔ (EKC answers YES with k = 3, b = n and p = |G | − 3n)
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Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: W[1]-hardness for k = 3 w.r.t (b + p) via Clique
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Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice
I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi ) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi )∨(
∨b

`=1(u` = x∧v` = yi )∨(v` = x∧u` = yi ))))

I Note that |φ(S)| = poly(k, b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
I Runtime is astronomical: tower of exponentials
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