Can We Create Large *k*-Cores by Adding Few Edges?

Rajesh Chitnis

Joint work with Nimrod Talmon (Ben Gurion University)

CSR, Moscow 10 June 2018

▶ What is a *k*-core?

▶ What is a *k*-core?

► Finding *k*-cores

▶ What is a *k*-core?

► Finding *k*-cores

► Anchored *k*-cores

- ▶ What is a *k*-core?
- ► Finding *k*-cores
- ► Anchored *k*-cores
- This work: Obtaining k-cores via edge additions

- ▶ What is a *k*-core?
- ► Finding *k*-cores
- ► Anchored *k*-cores
- This work: Obtaining k-cores via edge additions

▶ Let G be an undirected graph

- ▶ Let G be an undirected graph
- Fix any $k \ge 1$

- ▶ Let G be an undirected graph
- Fix any $k \ge 1$
- A maximal subgraph H ⊆ G is called as a k-core if deg_H(v) ≥ k for each v ∈ H

- ▶ Let G be an undirected graph
- Fix any $k \ge 1$
- A maximal subgraph H ⊆ G is called as a k-core if deg_H(v) ≥ k for each v ∈ H
- Can be shown that such a maximal subgraph is unique

- Let G be an undirected graph
- Fix any $k \ge 1$
- A maximal subgraph H ⊆ G is called as a k-core if deg_H(v) ≥ k for each v ∈ H
- Can be shown that such a maximal subgraph is unique
- ▶ Hence, we can talk about **the** *k*-core

- Applications of k-cores [via Wikipedia]
 - Clustering structure of social networks

- Clustering structure of social networks
- Bioinformatics

- Clustering structure of social networks
- Bioinformatics
- Internet structure

- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization

- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization
- Brain cortex structure

- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization
- Brain cortex structure
- ▶

Applications of k-cores [via Wikipedia]

- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization
- Brain cortex structure
- ▶

▶ How fast can we find the *k*-core?

- Clustering structure of social networks
- Bioinformatics
- Internet structure
- Network visualization
- Brain cortex structure
- ▶
- ▶ How fast can we find the *k*-core?
 - Next slide....

- ▶ What is a *k*-core?
- ► Finding *k*-cores
- ► Anchored *k*-cores
- This work: Obtaining k-cores via edge additions

Algorithm to find the k-core

Algorithm to find the k-core

Delete a vertex of degree < k</p>

Algorithm to find the k-core

- Delete a vertex of degree < k</p>
- Repeat

- Algorithm to find the k-core
 - Delete a vertex of degree < k</p>
 - Repeat
- ▶ The *k*-core, i.e, the subgraph obtained at the end, has min-degree $\geq k$

- Algorithm to find the k-core
 - Delete a vertex of degree < k</p>
 - Repeat
- ▶ The *k*-core, i.e, the subgraph obtained at the end, has min-degree $\geq k$
- This algorithm requires polynomial time!

- Algorithm to find the k-core
 - Delete a vertex of degree < k</p>
 - Repeat
- ▶ The *k*-core, i.e, the subgraph obtained at the end, has min-degree $\geq k$
- This algorithm requires polynomial time!
- ▶ Why do we even want large *k*-cores?

• We model social networks by undirected graphs.

- We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.

- ▶ We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.
- <u>Motivation</u>: The behavior of users in a social network is often affected by the actions of others.

- ▶ We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.
- <u>Motivation</u>: The behavior of users in a social network is often affected by the actions of others.
- Observation: An individual would remain engaged in a social network only if he/she has a large enough number of friends who are also engaged in the social network.

- ▶ We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.
- <u>Motivation</u>: The behavior of users in a social network is often affected by the actions of others.
- Observation: An individual would remain engaged in a social network only if he/she has a large enough number of friends who are also engaged in the social network.
- ▶ We quantify "large enough"by a threshold k, i.e., an individual remains engaged if and only if he/she has at least k friends in the social network.

- We model social networks by undirected graphs.
- Introduce a vertex for each user, and add edges between users who are friends in the social network.
- <u>Motivation</u>: The behavior of users in a social network is often affected by the actions of others.
- <u>Observation</u>: An individual would remain engaged in a social network only if he/she has a large enough number of friends who are also engaged in the social network.
- ▶ We quantify "large enough"by a threshold k, i.e., an individual remains engaged if and only if he/she has at least k friends in the social network.
- ▶ The subgraph that remains is exactly the *k*-core.

Game-theoretic interpretation for k-cores

Game-theoretic interpretation for k-cores

- ► <u>Model</u>:
 - Cost of k to stay in the network
 - Benefit of 1 from each friend in the network
- ► <u>Model</u>:
 - Cost of k to stay in the network
 - Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!

Can we create large *k*-cores by adding few edges? Game-theoretic interpretation for *k*-cores

- ► <u>Model</u>:
 - Cost of k to stay in the network
 - Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0

Can we create large *k*-cores by adding few edges? Game-theoretic interpretation for *k*-cores

- ► <u>Model</u>:
 - Cost of k to stay in the network
 - Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?

- ► <u>Model</u>:
 - Cost of k to stay in the network
 - Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?
 - ▶ No engaged played in *H* wants to drop out, i.e., *H* has min-degree $\geq k$
 - No player who dropped out wants to join, i.e., no V \ H has ≥ k neighbors in H
- k-core is the unique maximal equilibrium

- ► <u>Model</u>:
 - Cost of k to stay in the network
 - Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?
 - ▶ No engaged played in *H* wants to drop out, i.e., *H* has min-degree $\geq k$
 - No player who dropped out wants to join, i.e., no V \ H has ≥ k neighbors in H
- k-core is the unique maximal equilibrium
 - Beneficial for users since they get max payoff
 - Beneficial for network since it maximizes the size

- ► <u>Model</u>:
 - Cost of k to stay in the network
 - Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?
 - ▶ No engaged played in *H* wants to drop out, i.e., *H* has min-degree $\geq k$
 - No player who dropped out wants to join, i.e., no V \ H has ≥ k neighbors in H
- k-core is the unique maximal equilibrium
 - Beneficial for users since they get max payoff
 - Beneficial for network since it maximizes the size
- Some work on why this maximal equilibrium actually occurs in real-life instantiations of this game!

- ► <u>Model</u>:
 - Cost of k to stay in the network
 - Benefit of 1 from each friend in the network
- Two options: remain engaged, or leave!
- \blacktriangleright An individual remains engaged if and only if payoff is ≥ 0
- How does a pure Nash equilibrium H look like?
 - ▶ No engaged played in *H* wants to drop out, i.e., *H* has min-degree $\geq k$
 - No player who dropped out wants to join, i.e., no V \ H has ≥ k neighbors in H
- k-core is the unique maximal equilibrium
 - Beneficial for users since they get max payoff
 - Beneficial for network since it maximizes the size
- Some work on why this maximal equilibrium actually occurs in real-life instantiations of this game!
 - Chwe ['99]
 - Sääskilahti ['07]

▶ Any individual with less than *k* friends drops out of the network.

- ► Any individual with less than *k* friends drops out of the network.
- ► However, this might lead to iterated withdrawls.

- ► Any individual with less than *k* friends drops out of the network.
- ► However, this might lead to iterated withdrawls.
- Consider a path on *n* vertices with k = 2

- ▶ Any individual with less than *k* friends drops out of the network.
- ► However, this might lead to iterated withdrawls.
- Consider a path on *n* vertices with k = 2

- Any individual with less than k friends drops out of the network.
- ► However, this might lead to iterated withdrawls.
- Consider a path on *n* vertices with k = 2

Since v_1 has degree 1, it will drop out.

- Any individual with less than k friends drops out of the network.
- ► However, this might lead to iterated withdrawls.
- Consider a path on *n* vertices with k = 2

▶ Since v₁ has degree 1, it will drop out.

• Observe now that v_2 has degree 1, and it also drops out.

- Any individual with less than k friends drops out of the network.
- ► However, this might lead to iterated withdrawls.
- Consider a path on *n* vertices with k = 2

- Since v_1 has degree 1, it will drop out.
- Observe now that v_2 has degree 1, and it also drops out.
- Ultimately, the whole social network collapses.

- Any individual with less than k friends drops out of the network.
- ► However, this might lead to iterated withdrawls.
- Consider a path on *n* vertices with k = 2

- ▶ Since v₁ has degree 1, it will drop out.
- Observe now that v_2 has degree 1, and it also drops out.
- Ultimately, the whole social network collapses.
- How can we prevent this unraveling?

To prevent the unraveling described in the previous slide, we use the concept of anchors.

- To prevent the unraveling described in the previous slide, we use the concept of anchors.
- ▶ We motivate some of the users in the social network with "external incentives", so that they remain engaged even if they have less than *k* friends.

- To prevent the unraveling described in the previous slide, we use the concept of anchors.
- ▶ We motivate some of the users in the social network with "external incentives", so that they remain engaged even if they have less than *k* friends.
- The role of the anchors is to augment the degrees of the other vertices.

- To prevent the unraveling described in the previous slide, we use the concept of anchors.
- ▶ We motivate some of the users in the social network with "external incentives", so that they remain engaged even if they have less than *k* friends.
- The role of the anchors is to augment the degrees of the other vertices.

- To prevent the unraveling described in the previous slide, we use the concept of anchors.
- ▶ We motivate some of the users in the social network with "external incentives", so that they remain engaged even if they have less than *k* friends.
- The role of the anchors is to augment the degrees of the other vertices.

If we set v₁ and v_n to be the anchors, then the entire social network survives.

Outline of Talk

- ▶ What is a *k*-core?
- ► Finding *k*-cores
- ► Anchored *k*-cores
- This work: Obtaining k-cores via edge additions

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored *k*-Core

Input: An undirected graph G = (V, E) and integers b, k, p

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored *k*-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$ <u>Parameters</u>: b, k, p

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$ <u>Parameters</u>: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored *k*-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$ <u>Parameters</u>: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$ <u>Parameters</u>: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- ▶ NP-hard to even approximate within a factor $O(n^{1-\epsilon})$ for any $\epsilon > 0$.

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$ <u>Parameters</u>: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- ▶ NP-hard to even approximate within a factor $O(n^{1-\epsilon})$ for any $\epsilon > 0$.
- W[2]-hardness parameterized by b

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$ <u>Parameters</u>: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- ▶ NP-hard to even approximate within a factor $O(n^{1-\epsilon})$ for any $\epsilon > 0$.
- W[2]-hardness parameterized by b

Chitnis et al. (AAAI '13) in a follow-up work showed that:

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$ <u>Parameters</u>: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- ▶ NP-hard to even approximate within a factor $O(n^{1-\epsilon})$ for any $\epsilon > 0$.
- W[2]-hardness parameterized by b

Chitnis et al. (AAAI '13) in a follow-up work showed that:

NP-hard for $k \ge 3$, even on planar graphs

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$ <u>Parameters</u>: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- ▶ NP-hard to even approximate within a factor $O(n^{1-\epsilon})$ for any $\epsilon > 0$.
- W[2]-hardness parameterized by b

Chitnis et al. (AAAI '13) in a follow-up work showed that:

- NP-hard for $k \ge 3$, even on planar graphs
- W[1]-hard parameterized by p

Anchored k-cores

The ANCHORED k-CORE problem: Bhawalkar et al. [ICALP '12]

Anchored k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq H$ with $|B| \leq b$, and every $v \in H \setminus B$ satisfies $\deg_{G[H]}(v) \geq k$ <u>Parameters</u>: b, k, p

Bhawalkar et al. (ICALP '12) showed the following:

- The AKC problem is polytime solvable for $k \leq 2$, and NP-hard for $k \geq 3$.
- ▶ NP-hard to even approximate within a factor $O(n^{1-\epsilon})$ for any $\epsilon > 0$.
- W[2]-hardness parameterized by b

Chitnis et al. (AAAI '13) in a follow-up work showed that:

- NP-hard for $k \ge 3$, even on planar graphs
- W[1]-hard parameterized by p
- FPT on planar graphs parameterized by b

Outline of Talk

- ▶ What is a *k*-core?
- ► Finding *k*-cores
- ► Anchored *k*-cores
- This work: Obtaining k-cores via edge additions

Can we create large *k*-cores by adding few edges? Obtaining *k*-cores via edge-additions?

Can we create large *k*-cores by adding few edges? Obtaining *k*-cores via edge-additions?

Can we create large *k*-cores by adding few edges? Obtaining *k*-cores via edge-additions?

Instead of anchoring v₁ and v_n, we could add an edge between v₁ and v_n

- Instead of anchoring v₁ and v_n, we could add an edge between v₁ and v_n
- ▶ Then we get a cycle of length *n*, and the whole network survives

- Instead of anchoring v₁ and v_n, we could add an edge between v₁ and v_n
- ▶ Then we get a cycle of length *n*, and the whole network survives
- Does not really make sense in case of social networks!
 - Can't add edges between random people

- Instead of anchoring v₁ and v_n, we could add an edge between v₁ and v_n
- ▶ Then we get a cycle of length *n*, and the whole network survives
- Does not really make sense in case of social networks!
 - Can't add edges between random people
- Consider an existing network of computers, connected by some topology

- Instead of anchoring v₁ and v_n, we could add an edge between v₁ and v_n
- ▶ Then we get a cycle of length *n*, and the whole network survives
- Does not really make sense in case of social networks!
 - Can't add edges between random people
- Consider an existing network of computers, connected by some topology
 - Let k be the threshold of how many computers are needed for any task.

- Instead of anchoring v₁ and v_n, we could add an edge between v₁ and v_n
- ▶ Then we get a cycle of length *n*, and the whole network survives
- Does not really make sense in case of social networks!
 - Can't add edges between random people
- Consider an existing network of computers, connected by some topology
 - Let k be the threshold of how many computers are needed for any task.
 - Then this edge-addition tells us which connections to add!

- Instead of anchoring v₁ and v_n, we could add an edge between v₁ and v_n
- ▶ Then we get a cycle of length *n*, and the whole network survives
- Does not really make sense in case of social networks!
 - Can't add edges between random people
- Consider an existing network of computers, connected by some topology
 - Let k be the threshold of how many computers are needed for any task.
 - Then this edge-addition tells us which connections to add!
- ▶ <u>Next slide</u>: Formal definition of EDGE *k*-CORE problem

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p

Obtaining k-cores via edge-additions

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$?

Obtaining *k*-cores via edge-additions

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? Parameters: b, k, p

Obtaining *k*-cores via edge-additions

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

► First we see that there is no relation between EDGE *k*-CORE and ANCHORED *k*-CORE.

Obtaining *k*-cores via edge-additions

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

- ► First we see that there is no relation between EDGE *k*-CORE and ANCHORED *k*-CORE.
- Edge Additions > Anchored Vertices:

Obtaining *k*-cores via edge-additions

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

► First we see that there is no relation between EDGE *k*-CORE and ANCHORED *k*-CORE.

Edge Additions > Anchored Vertices:

- Let G be a disjoint union of two components G_1 and G_2 , where $G_1 = K_{z_1}$ and G_2 is a z_2 -regular graph on n_2 vertices
- Choose $z_1 \ll z_2 \ll n_2$. If $k = z_2$ and $p = z_1 + n_2$,
- Then number of anchors is $b_v = z_1$, while number of edge deletions is $b_e \ge \frac{z_1 \cdot (z_2 - z_1 + 1)}{2} \gg z_1 = b_v$

Obtaining *k*-cores via edge-additions

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

► First we see that there is no relation between EDGE *k*-CORE and ANCHORED *k*-CORE.

Edge Additions > Anchored Vertices:

- Let G be a disjoint union of two components G_1 and G_2 , where $G_1 = K_{z_1}$ and G_2 is a z_2 -regular graph on n_2 vertices
- Choose $z_1 \ll z_2 \ll n_2$. If $k = z_2$ and $p = z_1 + n_2$,
- ▶ Then number of anchors is $b_v = z_1$, while number of edge deletions is $b_e \ge \frac{z_1 \cdot (z_2 - z_1 + 1)}{2} \gg z_1 = b_v$

Edge Additions < Anchored Vertices</p>

Obtaining *k*-cores via edge-additions

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

► First we see that there is no relation between EDGE *k*-CORE and ANCHORED *k*-CORE.

Edge Additions > Anchored Vertices:

- Let G be a disjoint union of two components G_1 and G_2 , where $G_1 = K_{z_1}$ and G_2 is a z_2 -regular graph on n_2 vertices
- Choose $z_1 \ll z_2 \ll n_2$. If $k = z_2$ and $p = z_1 + n_2$,
- ▶ Then number of anchors is $b_v = z_1$, while number of edge deletions is $b_e \ge \frac{z_1 \cdot (z_2 z_1 + 1)}{2} \gg z_1 = b_v$

Edge Additions < Anchored Vertices</p>

- Let $G_1 = K_{2n}$, and G_2 be K_{2n} with a perfect matching removed. Add a matching of size 2n between G_1 and G_2 .
- Set k = 2n and p = 4n
- Then $b_v = 2n$, and $b_e = n < 2n = b_v$

Obtaining k-cores via edge-additions

Edge k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

Obtaining k-cores via edge-additions

Edge k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

Our results:

Obtaining k-cores via edge-additions

Edge *k*-**Core** Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

Our results:

• Solvable in polynomial time for $2 \ge k$

Obtaining k-cores via edge-additions

Edge k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

Our results:

- Solvable in polynomial time for $2 \ge k$
- NP-hard for $k \ge 3$, even on planar graphs

Obtaining k-cores via edge-additions

Edge k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

- Our results:
- Solvable in polynomial time for $2 \ge k$
- NP-hard for $k \ge 3$, even on planar graphs
- W[1]-hard parameterized by b + p, even for k = 3

Obtaining k-cores via edge-additions

Edge k-Core Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

- Our results:
- Solvable in polynomial time for $2 \ge k$
- NP-hard for $k \ge 3$, even on planar graphs
- W[1]-hard parameterized by b + p, even for k = 3
- FPT parameterized by $k + b + \mathbf{tw}$, even for k = 3

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, pQuestion: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? Parameters: b, k, p

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, pQuestion: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? Parameters: b, k, p

• k = 0: Answer YES if and only if $p \le n$

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, pQuestion: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? Parameters: b, k, p

•
$$k = 0$$
: Answer YES if and only if $p \le n$
• $k=1$

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

•
$$k = 0$$
: Answer YES if and only if $p \le n$

▶ k=1

Let α₀, α≥₁ be the number of vertices of degree 0, ≥ 1 respectively

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

•
$$k = 0$$
: Answer YES if and only if $p \le n$

- ▶ k=1
 - ▶ Let $\alpha_0, \alpha_{\geq 1}$ be the number of vertices of degree $0, \geq 1$ respectively
 - If $b \leq \lfloor \frac{\alpha_0}{2} \rfloor$, then the maximum size of a 1-core is $\alpha_{\geq 1} + 2b$.

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

•
$$k = 0$$
: Answer YES if and only if $p \le n$

- ▶ Let $\alpha_0, \alpha_{\geq 1}$ be the number of vertices of degree $0, \geq 1$ respectively
- If $b \leq \lfloor \frac{\alpha_0}{2} \rfloor$, then the maximum size of a 1-core is $\alpha_{\geq 1} + 2b$.
- Otherwise, if b > L^α2/2 J, then the entire vertex set can become a 1-core by adding a matching between the vertices of degree 0 (and an extra edge if α₀ is odd).

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

•
$$k = 0$$
: Answer YES if and only if $p \le n$

▶ k=1

- ▶ Let $\alpha_0, \alpha_{\geq 1}$ be the number of vertices of degree 0, ≥ 1 respectively
- If $b \leq \lfloor \frac{\alpha_0}{2} \rfloor$, then the maximum size of a 1-core is $\alpha_{\geq 1} + 2b$.
- Otherwise, if $b > \lfloor \frac{\alpha_0}{2} \rfloor$, then the entire vertex set can become a 1-core by adding a matching between the vertices of degree 0 (and an extra edge if α_0 is odd).

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

•
$$k = 0$$
: Answer YES if and only if $p \le n$

▶ k=1

- ▶ Let $\alpha_0, \alpha_{\geq 1}$ be the number of vertices of degree 0, ≥ 1 respectively
- If $b \leq \lfloor \frac{\alpha_0}{2} \rfloor$, then the maximum size of a 1-core is $\alpha_{\geq 1} + 2b$.
- Otherwise, if $b > \lfloor \frac{\alpha_0}{2} \rfloor$, then the entire vertex set can become a 1-core by adding a matching between the vertices of degree 0 (and an extra edge if α_0 is odd).

- Simple greedy doesn't work
- Say input graph is three disjoint edges and b = 2 = k

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

•
$$k = 0$$
: Answer YES if and only if $p \le n$

▶ k=1

- ▶ Let $\alpha_0, \alpha_{\geq 1}$ be the number of vertices of degree 0, ≥ 1 respectively
- If $b \leq \lfloor \frac{\alpha_0}{2} \rfloor$, then the maximum size of a 1-core is $\alpha_{\geq 1} + 2b$.
- Otherwise, if $b > \lfloor \frac{\alpha_0}{2} \rfloor$, then the entire vertex set can become a 1-core by adding a matching between the vertices of degree 0 (and an extra edge if α_0 is odd).

- Simple greedy doesn't work
- Say input graph is three disjoint edges and b = 2 = k
- Then greedy might just make it into a path on 6 vertices

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

- k = 0: Answer YES if and only if $p \le n$
- ▶ k=1
 - Let $\alpha_0, \alpha_{>1}$ be the number of vertices of degree $0, \geq 1$ respectively
 - If $b \leq \lfloor \frac{\alpha_0}{2} \rfloor$, then the maximum size of a 1-core is $\alpha_{\geq 1} + 2b$.
 - Otherwise, if $b > \lfloor \frac{\alpha_0}{2} \rfloor$, then the entire vertex set can become a 1-core by adding a matching between the vertices of degree 0 (and an extra edge if α_0 is odd).

- Simple greedy doesn't work
- Say input graph is three disjoint edges and b = 2 = k
- Then greedy might just make it into a path on 6 vertices
- Optimal solution is to make a 4-cycle and get p = 4

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

•
$$k = 0$$
: Answer YES if and only if $p \le n$

▶ k=1

- ▶ Let $\alpha_0, \alpha_{\geq 1}$ be the number of vertices of degree 0, ≥ 1 respectively
- If $b \leq \lfloor \frac{\alpha_0}{2} \rfloor$, then the maximum size of a 1-core is $\alpha_{\geq 1} + 2b$.
- Otherwise, if b > L^αo/2, then the entire vertex set can become a 1-core by adding a matching between the vertices of degree 0 (and an extra edge if αo is odd).

- Simple greedy doesn't work
- Say input graph is three disjoint edges and b = 2 = k
- Then greedy might just make it into a path on 6 vertices
- Optimal solution is to make a 4-cycle and get p = 4
- So, only degree of vertex is not only thing to consider! Degrees of their neighbors are important too

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

- k = 0: Answer YES if and only if $p \le n$
- ▶ k=1
 - Let $\alpha_0, \alpha_{>1}$ be the number of vertices of degree $0, \geq 1$ respectively
 - If $b \leq \lfloor \frac{\alpha_0}{2} \rfloor$, then the maximum size of a 1-core is $\alpha_{\geq 1} + 2b$.
 - Otherwise, if $b > \lfloor \frac{\alpha_0}{2} \rfloor$, then the entire vertex set can become a 1-core by adding a matching between the vertices of degree 0 (and an extra edge if α_0 is odd).

- Simple greedy doesn't work
- Say input graph is three disjoint edges and b = 2 = k
- Then greedy might just make it into a path on 6 vertices
- Optimal solution is to make a 4-cycle and get p = 4
- So, only degree of vertex is not only thing to consider! Degrees of their neighbors are important too
- Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core

Input: An undirected graph G = (V, E) and integers b, k, p<u>Question</u>: Is there a set of vertices $H \subseteq V$ of size $\geq p$ such that there is a set $B \subseteq (\binom{V}{2} \setminus E)$ with $|B| \leq b$ and every $v \in H$ satisfies $\deg_{G'[H]}(v) \geq k$, where $G' = (V, E \cup B)$? <u>Parameters</u>: b, k, p

- k = 0: Answer YES if and only if $p \le n$
- ▶ k=1
 - ▶ Let $\alpha_0, \alpha_{\geq 1}$ be the number of vertices of degree 0, ≥ 1 respectively
 - If $b \leq \lfloor \frac{\alpha_0}{2} \rfloor$, then the maximum size of a 1-core is $\alpha_{\geq 1} + 2b$.
 - Otherwise, if $b > \lfloor \frac{\alpha_0}{2} \rfloor$, then the entire vertex set can become a 1-core by adding a matching between the vertices of degree 0 (and an extra edge if α_0 is odd).

- Simple greedy doesn't work
- Say input graph is three disjoint edges and b = 2 = k
- Then greedy might just make it into a path on 6 vertices
- Optimal solution is to make a 4-cycle and get p = 4
- So, only degree of vertex is not only thing to consider! Degrees of their neighbors are important too
- Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!
- <u>Next slide</u>: NP-hardness for $k \ge 3$

Can we create large k-cores by adding few edges? Obtaining k-cores via edge-additions: NP-hardness for k = 3 via 3-SAT

Can we create large k-cores by adding few edges? Obtaining k-cores via edge-additions: NP-hardness for k = 3 via 3-SAT

Each variable is used at most 3 times

Can we create large k-cores by adding few edges? Obtaining k-cores via edge-additions: NP-hardness for k = 3 via 3-SAT

Each variable is used at most 3 times

Each variable is used at least once in positive, and at least once in negative
Can we create large k-cores by adding few edges? Obtaining k-cores via edge-additions: NP-hardness for k = 3 via 3-SAT

- Each variable is used at most 3 times
- Each variable is used at least once in positive, and at least once in negative
- ▶ SAT \Leftrightarrow (EKC answers YES with k = 3, b = n and p = |G| 3n)

Can we create large k-cores by adding few edges? Obtaining k-cores via edge-additions: W[1]-hardness for k = 3 w.r.t (b + p) via Clique

The graph G' when n = 8 and $\ell = 5$.

Can we create large k-cores by adding few edges? Obtaining k-cores via edge-additions: W[1]-hardness for k = 3 w.r.t (b + p) via Clique

The graph G' when n = 8 and $\ell = 5$.

• G has a ℓ -clique \Leftrightarrow EKC answers YES on G' with $k = 3, b = \binom{\ell}{2}$ and p = 4b

Can we create large k-cores by adding few edges? Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k + b + \mathbf{tw}$

The previous hardness result says its unlikely there is an FPT algorithm parameterized by k + b + p

Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

- ► The previous hardness result says its unlikely there is an FPT algorithm parameterized by k + b + p
- ► So we seek alternative parameters: **tw** is a natural choice

Obtaining k-cores via edge-additions: FPT algorithm parameterized by $k + b + \mathbf{tw}$

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by k + b + p
- ► So we seek alternative parameters: **tw** is a natural choice
- We give an FPT algorithm parameterized by $\mathbf{tw} + k + b$

Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

- ► The previous hardness result says its unlikely there is an FPT algorithm parameterized by k + b + p
- So we seek alternative parameters: **tw** is a natural choice
- We give an FPT algorithm parameterized by $\mathbf{tw} + k + b$
- Idea: Express the optimization version of EKC in MSO logic

Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by k + b + p
- ► So we seek alternative parameters: **tw** is a natural choice
- We give an FPT algorithm parameterized by $\mathbf{tw} + k + b$
- Idea: Express the optimization version of EKC in MSO logic

 $\begin{aligned} \phi(S) &= (\forall x \colon x \in S \to lsVertex(x)) \land \exists u_1, v_1, u_2, v_2, \dots, u_b, v_b \colon (\forall 1 \le i \le b \colon u_i \ne v_i) \land (\forall x \colon x \in S \to \exists y_1, y_2, \dots, y_k \colon (\bigwedge_{1 \le i \le k} y_i \in S) \land (\bigwedge_{1 \le i \ne j \le k} y_i \ne y_j) \land \forall 1 \le i \le k \colon (Adjacent(x, y_i)) (\bigvee_{\ell=1}^b (u_\ell = x \land v_\ell = y_i)) (v_\ell = x \land u_\ell = y_i))))\end{aligned}$

Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by k + b + p
- ► So we seek alternative parameters: **tw** is a natural choice
- We give an FPT algorithm parameterized by $\mathbf{tw} + k + b$
- Idea: Express the optimization version of EKC in MSO logic

$$\begin{split} \phi(S) &= (\forall x \colon x \in S \to lsVertex(x)) \land \exists u_1, v_1, u_2, v_2, \dots, u_b, v_b \colon (\forall 1 \le i \le b \colon u_i \ne v_i) \land (\forall x \colon x \in S \to \exists y_1, y_2, \dots, y_k \colon (\bigwedge_{1 \le i \le k} y_i \in S) \land (\bigwedge_{1 \le i \ne j \le k} y_i \ne y_j) \land \forall 1 \le i \le k \colon (Adjacent(x, y_i) \lor (\bigvee_{\ell=1}^{b} (u_\ell = x \land v_\ell = y_i) \lor (v_\ell = x \land u_\ell = y_i)))) \end{split}$$

- Note that $|\phi(S)| = poly(k, b)$
- Arnborg et al. ['91] showed that we can find the largest set S satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)

Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by k + b + p
- ► So we seek alternative parameters: **tw** is a natural choice
- We give an FPT algorithm parameterized by $\mathbf{tw} + k + b$
- Idea: Express the optimization version of EKC in MSO logic

$$\begin{split} \phi(S) &= (\forall x \colon x \in S \to lsVertex(x)) \land \exists u_1, v_1, u_2, v_2, \dots, u_b, v_b \colon (\forall 1 \le i \le b \colon u_i \ne v_i) \land (\forall x \colon x \in S \to \exists y_1, y_2, \dots, y_k \colon (\bigwedge_{1 \le i \le k} y_i \in S) \land (\bigwedge_{1 \le i \ne j \le k} y_i \ne y_j) \land \forall 1 \le i \le k \colon (Adjacent(x, y_i) \lor (\bigvee_{\ell=1}^{b} (u_\ell = x \land v_\ell = y_i) \lor (v_\ell = x \land u_\ell = y_i)))) \end{split}$$

- Note that $|\phi(S)| = \operatorname{poly}(k, b)$
- Arnborg et al. ['91] showed that we can find the largest set S satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
- Runtime is astronomical: tower of exponentials

Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

- The previous hardness result says its unlikely there is an FPT algorithm parameterized by k + b + p
- ► So we seek alternative parameters: **tw** is a natural choice
- We give an FPT algorithm parameterized by $\mathbf{tw} + k + b$
- Idea: Express the optimization version of EKC in MSO logic

$$\begin{split} \phi(S) &= (\forall x \colon x \in S \to lsVertex(x)) \land \exists u_1, v_1, u_2, v_2, \dots, u_b, v_b \colon (\forall 1 \le i \le b \colon u_i \ne v_i) \land (\forall x \colon x \in S \to \exists y_1, y_2, \dots, y_k \colon (\bigwedge_{1 \le i \le k} y_i \in S) \land (\bigwedge_{1 \le i \ne j \le k} y_i \ne y_j) \land \forall 1 \le i \le k \colon (Adjacent(x, y_i) \lor (\bigvee_{\ell=1}^{b} (u_\ell = x \land v_\ell = y_i) \lor (v_\ell = x \land u_\ell = y_i)))) \end{split}$$

- ► Note that |φ(S)| = poly(k, b)
- Arnborg et al. ['91] showed that we can find the largest set S satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
- Runtime is astronomical: tower of exponentials
- ► Main technical result of our paper: Explicit DP algorithm which runs in time (k + tw)^{O(tw+b)} · poly(n).

Thank You Спасибо Thank You Спасибо

Questions?