
Can We Create Large k-Cores by Adding Few
Edges?

Rajesh Chitnis

Joint work with Nimrod Talmon (Ben Gurion University)

CSR, Moscow

10 June 2018

1/22

Outline of Talk

I What is a k-core?

I Finding k-cores

I Anchored k-cores

I This work: Obtaining k-cores via edge additions

2/22

Outline of Talk

I What is a k-core?

I Finding k-cores

I Anchored k-cores

I This work: Obtaining k-cores via edge additions

2/22

Outline of Talk

I What is a k-core?

I Finding k-cores

I Anchored k-cores

I This work: Obtaining k-cores via edge additions

2/22

Outline of Talk

I What is a k-core?

I Finding k-cores

I Anchored k-cores

I This work: Obtaining k-cores via edge additions

2/22

Outline of Talk

I What is a k-core?

I Finding k-cores

I Anchored k-cores

I This work: Obtaining k-cores via edge additions

2/22

Outline of Talk

I What is a k-core?

I Finding k-cores

I Anchored k-cores

I This work: Obtaining k-cores via edge additions

3/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Let G be an undirected graph

I Fix any k ≥ 1
I A maximal subgraph H ⊆ G is called as a k-core if degH(v) ≥ k for

each v ∈ H

I Can be shown that such a maximal subgraph is unique
I Hence, we can talk about the k-core

4/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Let G be an undirected graph
I Fix any k ≥ 1

I A maximal subgraph H ⊆ G is called as a k-core if degH(v) ≥ k for
each v ∈ H

I Can be shown that such a maximal subgraph is unique
I Hence, we can talk about the k-core

4/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Let G be an undirected graph
I Fix any k ≥ 1
I A maximal subgraph H ⊆ G is called as a k-core if degH(v) ≥ k for

each v ∈ H

I Can be shown that such a maximal subgraph is unique
I Hence, we can talk about the k-core

4/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Let G be an undirected graph
I Fix any k ≥ 1
I A maximal subgraph H ⊆ G is called as a k-core if degH(v) ≥ k for

each v ∈ H

I Can be shown that such a maximal subgraph is unique

I Hence, we can talk about the k-core

4/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Let G be an undirected graph
I Fix any k ≥ 1
I A maximal subgraph H ⊆ G is called as a k-core if degH(v) ≥ k for

each v ∈ H

I Can be shown that such a maximal subgraph is unique
I Hence, we can talk about the k-core

4/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]

I Clustering structure of social networks
I Bioinformatics
I Internet structure
I Network visualization
I Brain cortex structure
I

I How fast can we find the k-core?
I Next slide....

5/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]
I Clustering structure of social networks

I Bioinformatics
I Internet structure
I Network visualization
I Brain cortex structure
I

I How fast can we find the k-core?
I Next slide....

5/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]
I Clustering structure of social networks
I Bioinformatics

I Internet structure
I Network visualization
I Brain cortex structure
I

I How fast can we find the k-core?
I Next slide....

5/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]
I Clustering structure of social networks
I Bioinformatics
I Internet structure

I Network visualization
I Brain cortex structure
I

I How fast can we find the k-core?
I Next slide....

5/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]
I Clustering structure of social networks
I Bioinformatics
I Internet structure
I Network visualization

I Brain cortex structure
I

I How fast can we find the k-core?
I Next slide....

5/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]
I Clustering structure of social networks
I Bioinformatics
I Internet structure
I Network visualization
I Brain cortex structure

I

I How fast can we find the k-core?
I Next slide....

5/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]
I Clustering structure of social networks
I Bioinformatics
I Internet structure
I Network visualization
I Brain cortex structure
I

I How fast can we find the k-core?
I Next slide....

5/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]
I Clustering structure of social networks
I Bioinformatics
I Internet structure
I Network visualization
I Brain cortex structure
I

I How fast can we find the k-core?

I Next slide....

5/22

Can we create large k-cores by adding few edges?
What is a k-core?

I Applications of k-cores [via Wikipedia]
I Clustering structure of social networks
I Bioinformatics
I Internet structure
I Network visualization
I Brain cortex structure
I

I How fast can we find the k-core?
I Next slide....

5/22

Outline of Talk

I What is a k-core?

I Finding k-cores

I Anchored k-cores

I This work: Obtaining k-cores via edge additions

6/22

Can we create large k-cores by adding few edges?
Finding k-cores

I Algorithm to find the k-core

I Delete a vertex of degree < k
I Repeat

I The k-core, i.e, the subgraph obtained at the end, has min-degree
≥ k

I This algorithm requires polynomial time!

I Why do we even want large k-cores?

7/22

Can we create large k-cores by adding few edges?
Finding k-cores

I Algorithm to find the k-core
I Delete a vertex of degree < k

I Repeat
I The k-core, i.e, the subgraph obtained at the end, has min-degree
≥ k

I This algorithm requires polynomial time!

I Why do we even want large k-cores?

7/22

Can we create large k-cores by adding few edges?
Finding k-cores

I Algorithm to find the k-core
I Delete a vertex of degree < k
I Repeat

I The k-core, i.e, the subgraph obtained at the end, has min-degree
≥ k

I This algorithm requires polynomial time!

I Why do we even want large k-cores?

7/22

Can we create large k-cores by adding few edges?
Finding k-cores

I Algorithm to find the k-core
I Delete a vertex of degree < k
I Repeat

I The k-core, i.e, the subgraph obtained at the end, has min-degree
≥ k

I This algorithm requires polynomial time!

I Why do we even want large k-cores?

7/22

Can we create large k-cores by adding few edges?
Finding k-cores

I Algorithm to find the k-core
I Delete a vertex of degree < k
I Repeat

I The k-core, i.e, the subgraph obtained at the end, has min-degree
≥ k

I This algorithm requires polynomial time!

I Why do we even want large k-cores?

7/22

Can we create large k-cores by adding few edges?
Finding k-cores

I Algorithm to find the k-core
I Delete a vertex of degree < k
I Repeat

I The k-core, i.e, the subgraph obtained at the end, has min-degree
≥ k

I This algorithm requires polynomial time!

I Why do we even want large k-cores?

7/22

Can we create large k-cores by adding few edges?
k-cores

I We model social networks by undirected graphs.

I Introduce a vertex for each user, and add edges between users who
are friends in the social network.

I Motivation: The behavior of users in a social network is often
affected by the actions of others.

I Observation: An individual would remain engaged in a social network
only if he/she has a large enough number of friends who are also
engaged in the social network.

I We quantify "large enough"by a threshold k , i.e., an individual
remains engaged if and only if he/she has at least k friends in the
social network.

I The subgraph that remains is exactly the k-core.

8/22

Can we create large k-cores by adding few edges?
k-cores

I We model social networks by undirected graphs.
I Introduce a vertex for each user, and add edges between users who

are friends in the social network.

I Motivation: The behavior of users in a social network is often
affected by the actions of others.

I Observation: An individual would remain engaged in a social network
only if he/she has a large enough number of friends who are also
engaged in the social network.

I We quantify "large enough"by a threshold k , i.e., an individual
remains engaged if and only if he/she has at least k friends in the
social network.

I The subgraph that remains is exactly the k-core.

8/22

Can we create large k-cores by adding few edges?
k-cores

I We model social networks by undirected graphs.
I Introduce a vertex for each user, and add edges between users who

are friends in the social network.
I Motivation: The behavior of users in a social network is often

affected by the actions of others.

I Observation: An individual would remain engaged in a social network
only if he/she has a large enough number of friends who are also
engaged in the social network.

I We quantify "large enough"by a threshold k , i.e., an individual
remains engaged if and only if he/she has at least k friends in the
social network.

I The subgraph that remains is exactly the k-core.

8/22

Can we create large k-cores by adding few edges?
k-cores

I We model social networks by undirected graphs.
I Introduce a vertex for each user, and add edges between users who

are friends in the social network.
I Motivation: The behavior of users in a social network is often

affected by the actions of others.
I Observation: An individual would remain engaged in a social network

only if he/she has a large enough number of friends who are also
engaged in the social network.

I We quantify "large enough"by a threshold k , i.e., an individual
remains engaged if and only if he/she has at least k friends in the
social network.

I The subgraph that remains is exactly the k-core.

8/22

Can we create large k-cores by adding few edges?
k-cores

I We model social networks by undirected graphs.
I Introduce a vertex for each user, and add edges between users who

are friends in the social network.
I Motivation: The behavior of users in a social network is often

affected by the actions of others.
I Observation: An individual would remain engaged in a social network

only if he/she has a large enough number of friends who are also
engaged in the social network.

I We quantify "large enough"by a threshold k , i.e., an individual
remains engaged if and only if he/she has at least k friends in the
social network.

I The subgraph that remains is exactly the k-core.

8/22

Can we create large k-cores by adding few edges?
k-cores

I We model social networks by undirected graphs.
I Introduce a vertex for each user, and add edges between users who

are friends in the social network.
I Motivation: The behavior of users in a social network is often

affected by the actions of others.
I Observation: An individual would remain engaged in a social network

only if he/she has a large enough number of friends who are also
engaged in the social network.

I We quantify "large enough"by a threshold k , i.e., an individual
remains engaged if and only if he/she has at least k friends in the
social network.

I The subgraph that remains is exactly the k-core.

8/22

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:

I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!
I An individual remains engaged if and only if payoff is ≥ 0
I How does a pure Nash equilibrium H look like?

I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium
I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]

9/22

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:
I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!
I An individual remains engaged if and only if payoff is ≥ 0
I How does a pure Nash equilibrium H look like?

I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium
I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]

9/22

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:
I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!

I An individual remains engaged if and only if payoff is ≥ 0
I How does a pure Nash equilibrium H look like?

I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium
I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]

9/22

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:
I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!
I An individual remains engaged if and only if payoff is ≥ 0

I How does a pure Nash equilibrium H look like?
I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium
I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]

9/22

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:
I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!
I An individual remains engaged if and only if payoff is ≥ 0
I How does a pure Nash equilibrium H look like?

I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium
I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]

9/22

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:
I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!
I An individual remains engaged if and only if payoff is ≥ 0
I How does a pure Nash equilibrium H look like?

I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium

I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]

9/22

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:
I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!
I An individual remains engaged if and only if payoff is ≥ 0
I How does a pure Nash equilibrium H look like?

I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium
I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]

9/22

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:
I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!
I An individual remains engaged if and only if payoff is ≥ 0
I How does a pure Nash equilibrium H look like?

I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium
I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]

9/22

Can we create large k-cores by adding few edges?
Game-theoretic interpretation for k-cores

I Model:
I Cost of k to stay in the network
I Benefit of 1 from each friend in the network

I Two options: remain engaged, or leave!
I An individual remains engaged if and only if payoff is ≥ 0
I How does a pure Nash equilibrium H look like?

I No engaged played in H wants to drop out, i.e., H has min-degree
≥ k

I No player who dropped out wants to join, i.e., no V \ H has ≥ k
neighbors in H

I k-core is the unique maximal equilibrium
I Beneficial for users since they get max payoff
I Beneficial for network since it maximizes the size

I Some work on why this maximal equilibrium actually occurs in
real-life instantiations of this game!

I Chwe [’99]
I Sääskilahti [’07]

9/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I Any individual with less than k friends drops out of the network.

I However, this might lead to iterated withdrawls.
I Consider a path on n vertices with k = 2

I Since v1 has degree 1, it will drop out.
I Observe now that v2 has degree 1, and it also drops out.
I Ultimately, the whole social network collapses.

I How can we prevent this unraveling?

10/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I Any individual with less than k friends drops out of the network.
I However, this might lead to iterated withdrawls.

I Consider a path on n vertices with k = 2

I Since v1 has degree 1, it will drop out.
I Observe now that v2 has degree 1, and it also drops out.
I Ultimately, the whole social network collapses.

I How can we prevent this unraveling?

10/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I Any individual with less than k friends drops out of the network.
I However, this might lead to iterated withdrawls.
I Consider a path on n vertices with k = 2

I Since v1 has degree 1, it will drop out.
I Observe now that v2 has degree 1, and it also drops out.
I Ultimately, the whole social network collapses.

I How can we prevent this unraveling?

10/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I Any individual with less than k friends drops out of the network.
I However, this might lead to iterated withdrawls.
I Consider a path on n vertices with k = 2

I Since v1 has degree 1, it will drop out.
I Observe now that v2 has degree 1, and it also drops out.
I Ultimately, the whole social network collapses.

I How can we prevent this unraveling?

10/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I Any individual with less than k friends drops out of the network.
I However, this might lead to iterated withdrawls.
I Consider a path on n vertices with k = 2

I Since v1 has degree 1, it will drop out.

I Observe now that v2 has degree 1, and it also drops out.
I Ultimately, the whole social network collapses.

I How can we prevent this unraveling?

10/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I Any individual with less than k friends drops out of the network.
I However, this might lead to iterated withdrawls.
I Consider a path on n vertices with k = 2

I Since v1 has degree 1, it will drop out.
I Observe now that v2 has degree 1, and it also drops out.

I Ultimately, the whole social network collapses.

I How can we prevent this unraveling?

10/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I Any individual with less than k friends drops out of the network.
I However, this might lead to iterated withdrawls.
I Consider a path on n vertices with k = 2

I Since v1 has degree 1, it will drop out.
I Observe now that v2 has degree 1, and it also drops out.
I Ultimately, the whole social network collapses.

I How can we prevent this unraveling?

10/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I Any individual with less than k friends drops out of the network.
I However, this might lead to iterated withdrawls.
I Consider a path on n vertices with k = 2

I Since v1 has degree 1, it will drop out.
I Observe now that v2 has degree 1, and it also drops out.
I Ultimately, the whole social network collapses.

I How can we prevent this unraveling?

10/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I To prevent the unraveling described in the previous slide, we use the
concept of anchors.

I We motivate some of the users in the social network with “external
incentives”, so that they remain engaged even if they have less than
k friends.

I The role of the anchors is to augment the degrees of the other
vertices.

I If we set v1 and vn to be the anchors, then the entire social network
survives.

11/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I To prevent the unraveling described in the previous slide, we use the
concept of anchors.

I We motivate some of the users in the social network with “external
incentives”, so that they remain engaged even if they have less than
k friends.

I The role of the anchors is to augment the degrees of the other
vertices.

I If we set v1 and vn to be the anchors, then the entire social network
survives.

11/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I To prevent the unraveling described in the previous slide, we use the
concept of anchors.

I We motivate some of the users in the social network with “external
incentives”, so that they remain engaged even if they have less than
k friends.

I The role of the anchors is to augment the degrees of the other
vertices.

I If we set v1 and vn to be the anchors, then the entire social network
survives.

11/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I To prevent the unraveling described in the previous slide, we use the
concept of anchors.

I We motivate some of the users in the social network with “external
incentives”, so that they remain engaged even if they have less than
k friends.

I The role of the anchors is to augment the degrees of the other
vertices.

I If we set v1 and vn to be the anchors, then the entire social network
survives.

11/22

Can we create large k-cores by adding few edges?
Anchored k-cores

I To prevent the unraveling described in the previous slide, we use the
concept of anchors.

I We motivate some of the users in the social network with “external
incentives”, so that they remain engaged even if they have less than
k friends.

I The role of the anchors is to augment the degrees of the other
vertices.

I If we set v1 and vn to be the anchors, then the entire social network
survives.

11/22

Outline of Talk

I What is a k-core?

I Finding k-cores

I Anchored k-cores

I This work: Obtaining k-cores via edge additions

12/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p

Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k

Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:

I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:

I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Can we create large k-cores by adding few edges?
Anchored k-cores

The Anchored k-Core problem: Bhawalkar et al. [ICALP ’12]

Anchored k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ H with |B| ≤ b, and every v ∈ H \ B satisfies
degG [H](v) ≥ k
Parameters: b, k, p

Bhawalkar et al. (ICALP ’12) showed the following:
I The AKC problem is polytime solvable for k ≤ 2, and NP-hard for k ≥ 3.

I NP-hard to even approximate within a factor O(n1−ε) for any ε > 0.

I W[2]-hardness parameterized by b

Chitnis et al. (AAAI ’13) in a follow-up work showed that:
I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by p

I FPT on planar graphs parameterized by b

13/22

Outline of Talk

I What is a k-core?

I Finding k-cores

I Anchored k-cores

I This work: Obtaining k-cores via edge additions

14/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.
I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem

15/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.
I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem

15/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.
I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem

15/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.
I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem

15/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.
I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem

15/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.
I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem

15/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.

I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem

15/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.
I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem

15/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions?

I Instead of anchoring v1 and vn, we could add an edge between v1
and vn

I Then we get a cycle of length n, and the whole network survives

I Does not really make sense in case of social networks!
I Can’t add edges between random people

I Consider an existing network of computers, connected by some
topology

I Let k be the threshold of how many computers are needed for any task.
I Then this edge-addition tells us which connections to add!

I Next slide: Formal definition of Edge k-Core problem

15/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p

Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I First we see that there is no relation between Edge k-Core and
Anchored k-Core.

I Edge Additions > Anchored Vertices:
I Let G be a disjoint union of two components G1 and G2, where G1 = Kz1 and G2

is a z2-regular graph on n2 vertices
I Choose z1 � z2 � n2. If k = z2 and p = z1 + n2,
I Then number of anchors is bv = z1, while number of edge deletions is

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv

I Edge Additions < Anchored Vertices
I Let G1 = K2n, and G2 be K2n with a perfect matching removed. Add a matching

of size 2n between G1 and G2.
I Set k = 2n and p = 4n
I Then bv = 2n, and be = n < 2n = bv

16/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?

Parameters: b, k, p

I First we see that there is no relation between Edge k-Core and
Anchored k-Core.

I Edge Additions > Anchored Vertices:
I Let G be a disjoint union of two components G1 and G2, where G1 = Kz1 and G2

is a z2-regular graph on n2 vertices
I Choose z1 � z2 � n2. If k = z2 and p = z1 + n2,
I Then number of anchors is bv = z1, while number of edge deletions is

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv

I Edge Additions < Anchored Vertices
I Let G1 = K2n, and G2 be K2n with a perfect matching removed. Add a matching

of size 2n between G1 and G2.
I Set k = 2n and p = 4n
I Then bv = 2n, and be = n < 2n = bv

16/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I First we see that there is no relation between Edge k-Core and
Anchored k-Core.

I Edge Additions > Anchored Vertices:
I Let G be a disjoint union of two components G1 and G2, where G1 = Kz1 and G2

is a z2-regular graph on n2 vertices
I Choose z1 � z2 � n2. If k = z2 and p = z1 + n2,
I Then number of anchors is bv = z1, while number of edge deletions is

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv

I Edge Additions < Anchored Vertices
I Let G1 = K2n, and G2 be K2n with a perfect matching removed. Add a matching

of size 2n between G1 and G2.
I Set k = 2n and p = 4n
I Then bv = 2n, and be = n < 2n = bv

16/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I First we see that there is no relation between Edge k-Core and
Anchored k-Core.

I Edge Additions > Anchored Vertices:
I Let G be a disjoint union of two components G1 and G2, where G1 = Kz1 and G2

is a z2-regular graph on n2 vertices
I Choose z1 � z2 � n2. If k = z2 and p = z1 + n2,
I Then number of anchors is bv = z1, while number of edge deletions is

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv

I Edge Additions < Anchored Vertices
I Let G1 = K2n, and G2 be K2n with a perfect matching removed. Add a matching

of size 2n between G1 and G2.
I Set k = 2n and p = 4n
I Then bv = 2n, and be = n < 2n = bv

16/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I First we see that there is no relation between Edge k-Core and
Anchored k-Core.

I Edge Additions > Anchored Vertices:

I Let G be a disjoint union of two components G1 and G2, where G1 = Kz1 and G2

is a z2-regular graph on n2 vertices
I Choose z1 � z2 � n2. If k = z2 and p = z1 + n2,
I Then number of anchors is bv = z1, while number of edge deletions is

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv

I Edge Additions < Anchored Vertices
I Let G1 = K2n, and G2 be K2n with a perfect matching removed. Add a matching

of size 2n between G1 and G2.
I Set k = 2n and p = 4n
I Then bv = 2n, and be = n < 2n = bv

16/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I First we see that there is no relation between Edge k-Core and
Anchored k-Core.

I Edge Additions > Anchored Vertices:
I Let G be a disjoint union of two components G1 and G2, where G1 = Kz1 and G2

is a z2-regular graph on n2 vertices
I Choose z1 � z2 � n2. If k = z2 and p = z1 + n2,
I Then number of anchors is bv = z1, while number of edge deletions is

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv

I Edge Additions < Anchored Vertices
I Let G1 = K2n, and G2 be K2n with a perfect matching removed. Add a matching

of size 2n between G1 and G2.
I Set k = 2n and p = 4n
I Then bv = 2n, and be = n < 2n = bv

16/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I First we see that there is no relation between Edge k-Core and
Anchored k-Core.

I Edge Additions > Anchored Vertices:
I Let G be a disjoint union of two components G1 and G2, where G1 = Kz1 and G2

is a z2-regular graph on n2 vertices
I Choose z1 � z2 � n2. If k = z2 and p = z1 + n2,
I Then number of anchors is bv = z1, while number of edge deletions is

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv

I Edge Additions < Anchored Vertices

I Let G1 = K2n, and G2 be K2n with a perfect matching removed. Add a matching

of size 2n between G1 and G2.
I Set k = 2n and p = 4n
I Then bv = 2n, and be = n < 2n = bv

16/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I First we see that there is no relation between Edge k-Core and
Anchored k-Core.

I Edge Additions > Anchored Vertices:
I Let G be a disjoint union of two components G1 and G2, where G1 = Kz1 and G2

is a z2-regular graph on n2 vertices
I Choose z1 � z2 � n2. If k = z2 and p = z1 + n2,
I Then number of anchors is bv = z1, while number of edge deletions is

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv

I Edge Additions < Anchored Vertices
I Let G1 = K2n, and G2 be K2n with a perfect matching removed. Add a matching

of size 2n between G1 and G2.
I Set k = 2n and p = 4n
I Then bv = 2n, and be = n < 2n = bv 16/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I Our results:
I Solvable in polynomial time for 2 ≥ k

I NP-hard for k ≥ 3, even on planar graphs
I W[1]-hard parameterized by b + p, even for k = 3
I FPT parameterized by k + b + tw, even for k = 3

17/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I Our results:

I Solvable in polynomial time for 2 ≥ k

I NP-hard for k ≥ 3, even on planar graphs
I W[1]-hard parameterized by b + p, even for k = 3
I FPT parameterized by k + b + tw, even for k = 3

17/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I Our results:
I Solvable in polynomial time for 2 ≥ k

I NP-hard for k ≥ 3, even on planar graphs
I W[1]-hard parameterized by b + p, even for k = 3
I FPT parameterized by k + b + tw, even for k = 3

17/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I Our results:
I Solvable in polynomial time for 2 ≥ k

I NP-hard for k ≥ 3, even on planar graphs

I W[1]-hard parameterized by b + p, even for k = 3
I FPT parameterized by k + b + tw, even for k = 3

17/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I Our results:
I Solvable in polynomial time for 2 ≥ k

I NP-hard for k ≥ 3, even on planar graphs
I W[1]-hard parameterized by b + p, even for k = 3

I FPT parameterized by k + b + tw, even for k = 3

17/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I Our results:
I Solvable in polynomial time for 2 ≥ k

I NP-hard for k ≥ 3, even on planar graphs
I W[1]-hard parameterized by b + p, even for k = 3
I FPT parameterized by k + b + tw, even for k = 3

17/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1

I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively

I If b ≤ bα0
2 c, then the maximum size of a 1-core is α≥1 + 2b.

I Otherwise, if b > bα0
2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.

I Otherwise, if b > bα0
2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).

I k=2
I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k

I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices

I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4

I So, only degree of vertex is not only thing to consider! Degrees of their neighbors
are important too

I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!
I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too

I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!
I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3

18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: Polytime algorithms

Edge k-Core
Input: An undirected graph G = (V ,E) and integers b, k, p
Question: Is there a set of vertices H ⊆ V of size ≥ p such that
there is a set B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies

degG ′[H](v) ≥ k , where G ′ = (V ,E ∪ B)?
Parameters: b, k, p

I k = 0: Answer YES if and only if p ≤ n

I k=1
I Let α0, α≥1 be the number of vertices of degree 0,≥ 1 respectively
I If b ≤ bα0

2 c, then the maximum size of a 1-core is α≥1 + 2b.
I Otherwise, if b > bα0

2 c, then the entire vertex set can become a 1-core by adding

a matching between the vertices of degree 0 (and an extra edge if α0 is odd).
I k=2

I Simple greedy doesn’t work
I Say input graph is three disjoint edges and b = 2 = k
I Then greedy might just make it into a path on 6 vertices
I Optimal solution is to make a 4-cycle and get p = 4
I So, only degree of vertex is not only thing to consider! Degrees of their neighbors

are important too
I Our algorithm: Preprocessing + (surprisingly complicated) greedy algorithm!

I Next slide: NP-hardness for k ≥ 3
18/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: NP-hardness for k = 3 via 3-SAT

𝑟𝑖

𝑦𝑖𝑦𝑖

𝑥𝑖𝑥𝑖

𝑐1 𝑐𝑗 𝑐𝑚

𝐾4

𝑠𝑖

𝑟1

𝑦1𝑦1

𝑥1

𝑠1

𝑧1

𝑟𝑛

𝑦𝑛𝑦𝑛

𝑠𝑛

𝑥𝑛

𝑧𝑛

𝐾4 𝐾4𝐾4 𝐾4 𝐾4 𝐾4

𝑧1 𝑧𝑖 𝑧𝑖

𝑥𝑛

𝑧𝑛

𝑥1

𝛼1 𝛼𝑛𝛼𝑖𝛽1 𝛽𝑖 𝛽𝑛

Variables

Clauses

I Each variable is used at most 3 times
I Each variable is used at least once in positive, and at least once in negative
I SAT ⇔ (EKC answers YES with k = 3, b = n and p = |G | − 3n)

19/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: NP-hardness for k = 3 via 3-SAT

𝑟𝑖

𝑦𝑖𝑦𝑖

𝑥𝑖𝑥𝑖

𝑐1 𝑐𝑗 𝑐𝑚

𝐾4

𝑠𝑖

𝑟1

𝑦1𝑦1

𝑥1

𝑠1

𝑧1

𝑟𝑛

𝑦𝑛𝑦𝑛

𝑠𝑛

𝑥𝑛

𝑧𝑛

𝐾4 𝐾4𝐾4 𝐾4 𝐾4 𝐾4

𝑧1 𝑧𝑖 𝑧𝑖

𝑥𝑛

𝑧𝑛

𝑥1

𝛼1 𝛼𝑛𝛼𝑖𝛽1 𝛽𝑖 𝛽𝑛

Variables

Clauses

I Each variable is used at most 3 times

I Each variable is used at least once in positive, and at least once in negative
I SAT ⇔ (EKC answers YES with k = 3, b = n and p = |G | − 3n)

19/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: NP-hardness for k = 3 via 3-SAT

𝑟𝑖

𝑦𝑖𝑦𝑖

𝑥𝑖𝑥𝑖

𝑐1 𝑐𝑗 𝑐𝑚

𝐾4

𝑠𝑖

𝑟1

𝑦1𝑦1

𝑥1

𝑠1

𝑧1

𝑟𝑛

𝑦𝑛𝑦𝑛

𝑠𝑛

𝑥𝑛

𝑧𝑛

𝐾4 𝐾4𝐾4 𝐾4 𝐾4 𝐾4

𝑧1 𝑧𝑖 𝑧𝑖

𝑥𝑛

𝑧𝑛

𝑥1

𝛼1 𝛼𝑛𝛼𝑖𝛽1 𝛽𝑖 𝛽𝑛

Variables

Clauses

I Each variable is used at most 3 times
I Each variable is used at least once in positive, and at least once in negative

I SAT ⇔ (EKC answers YES with k = 3, b = n and p = |G | − 3n)

19/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: NP-hardness for k = 3 via 3-SAT

𝑟𝑖

𝑦𝑖𝑦𝑖

𝑥𝑖𝑥𝑖

𝑐1 𝑐𝑗 𝑐𝑚

𝐾4

𝑠𝑖

𝑟1

𝑦1𝑦1

𝑥1

𝑠1

𝑧1

𝑟𝑛

𝑦𝑛𝑦𝑛

𝑠𝑛

𝑥𝑛

𝑧𝑛

𝐾4 𝐾4𝐾4 𝐾4 𝐾4 𝐾4

𝑧1 𝑧𝑖 𝑧𝑖

𝑥𝑛

𝑧𝑛

𝑥1

𝛼1 𝛼𝑛𝛼𝑖𝛽1 𝛽𝑖 𝛽𝑛

Variables

Clauses

I Each variable is used at most 3 times
I Each variable is used at least once in positive, and at least once in negative
I SAT ⇔ (EKC answers YES with k = 3, b = n and p = |G | − 3n)

19/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: W[1]-hardness for k = 3 w.r.t (b + p) via Clique

𝐺12

𝐺31

𝐺21

𝐺15𝐺14𝐺13

𝐺23 𝐺25𝐺24

𝐺51

𝐺41 𝐺45

𝐺35𝐺32 𝐺34

𝐺52

𝐺42

𝐺54𝐺53

𝐺43

𝑣54
3

𝐶1
4

𝐶2
6

𝑣45
4

𝑥54
34

𝑥45
43

The graph G ′ when n = 8 and ` = 5.

I G has a `-clique ⇔ EKC answers YES on G ′ with k = 3, b =
(`
2
)

and p = 4b

20/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: W[1]-hardness for k = 3 w.r.t (b + p) via Clique

𝐺12

𝐺31

𝐺21

𝐺15𝐺14𝐺13

𝐺23 𝐺25𝐺24

𝐺51

𝐺41 𝐺45

𝐺35𝐺32 𝐺34

𝐺52

𝐺42

𝐺54𝐺53

𝐺43

𝑣54
3

𝐶1
4

𝐶2
6

𝑣45
4

𝑥54
34

𝑥45
43

The graph G ′ when n = 8 and ` = 5.

I G has a `-clique ⇔ EKC answers YES on G ′ with k = 3, b =
(`
2
)

and p = 4b 20/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice
I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi)∨(
∨b

`=1(u` = x∧v` = yi)∨(v` = x∧u` = yi))))

I Note that |φ(S)| = poly(k, b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
I Runtime is astronomical: tower of exponentials
I Main technical result of our paper: Explicit DP algorithm which

runs in time (k + tw)O(tw+b) · poly(n).

21/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice
I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi)∨(
∨b

`=1(u` = x∧v` = yi)∨(v` = x∧u` = yi))))

I Note that |φ(S)| = poly(k, b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
I Runtime is astronomical: tower of exponentials
I Main technical result of our paper: Explicit DP algorithm which

runs in time (k + tw)O(tw+b) · poly(n).

21/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice

I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi)∨(
∨b

`=1(u` = x∧v` = yi)∨(v` = x∧u` = yi))))

I Note that |φ(S)| = poly(k, b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
I Runtime is astronomical: tower of exponentials
I Main technical result of our paper: Explicit DP algorithm which

runs in time (k + tw)O(tw+b) · poly(n).

21/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice
I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi)∨(
∨b

`=1(u` = x∧v` = yi)∨(v` = x∧u` = yi))))

I Note that |φ(S)| = poly(k, b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
I Runtime is astronomical: tower of exponentials
I Main technical result of our paper: Explicit DP algorithm which

runs in time (k + tw)O(tw+b) · poly(n).

21/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice
I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi)∨(
∨b

`=1(u` = x∧v` = yi)∨(v` = x∧u` = yi))))

I Note that |φ(S)| = poly(k, b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
I Runtime is astronomical: tower of exponentials
I Main technical result of our paper: Explicit DP algorithm which

runs in time (k + tw)O(tw+b) · poly(n).

21/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice
I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi)∨(
∨b

`=1(u` = x∧v` = yi)∨(v` = x∧u` = yi))))

I Note that |φ(S)| = poly(k, b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
I Runtime is astronomical: tower of exponentials
I Main technical result of our paper: Explicit DP algorithm which

runs in time (k + tw)O(tw+b) · poly(n).

21/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice
I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi)∨(
∨b

`=1(u` = x∧v` = yi)∨(v` = x∧u` = yi))))

I Note that |φ(S)| = poly(k , b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)

I Runtime is astronomical: tower of exponentials
I Main technical result of our paper: Explicit DP algorithm which

runs in time (k + tw)O(tw+b) · poly(n).

21/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice
I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi)∨(
∨b

`=1(u` = x∧v` = yi)∨(v` = x∧u` = yi))))

I Note that |φ(S)| = poly(k , b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
I Runtime is astronomical: tower of exponentials

I Main technical result of our paper: Explicit DP algorithm which
runs in time (k + tw)O(tw+b) · poly(n).

21/22

Can we create large k-cores by adding few edges?
Obtaining k-cores via edge-additions: FPT algorithm parameterized by k + b + tw

I The previous hardness result says its unlikely there is an FPT
algorithm parameterized by k + b + p

I So we seek alternative parameters: tw is a natural choice
I We give an FPT algorithm parameterized by tw + k + b

I Idea: Express the optimization version of EKC in MSO logic

φ(S) = (∀x : x ∈ S → IsVertex(x)) ∧ ∃u1, v1, u2, v2, . . . , ub, vb : (∀1 ≤ i ≤
b : ui 6= vi) ∧ (∀x : x ∈ S → ∃y1, y2, . . . , yk : (

∧
1≤i≤k yi ∈ S) ∧ (

∧
1≤i 6=j≤k yi 6=

yj)∧∀1 ≤ i ≤ k : (Adjacent(x , yi)∨(
∨b

`=1(u` = x∧v` = yi)∨(v` = x∧u` = yi))))

I Note that |φ(S)| = poly(k , b)
I Arnborg et al. [’91] showed that we can find the largest set S

satisfying φ(S) in time which is FPT w.r.t (tw + |φ(S)|)
I Runtime is astronomical: tower of exponentials
I Main technical result of our paper: Explicit DP algorithm which

runs in time (k + tw)O(tw+b) · poly(n).

21/22

Thank You
Спасибо

Questions?

22/22

Thank You
Спасибо

Questions?

22/22

