A Tight Lower Bound for Steiner Orientation

Rajesh Chitnis

Joint work with Andreas Emil Feldmann

CSR, Moscow
7 June 2018

THE UNIVERSITY OF WARWICK

Outline of Talk

Outline of Talk

- Steiner Orientation

Outline of Talk

- Steiner Orientation
- Upper Bound

Outline of Talk

- Steiner Orientation
- Upper Bound
- Non-Tight Lower Bound

Outline of Talk

- Steiner Orientation
- Upper Bound
- Non-Tight Lower Bound
- Tight Lower Bound

Outline of Talk

- Steiner Orientation
- Upper Bound
- Non-Tight Lower Bound
- Tight Lower Bound
- Some new results...

Outline of Talk

- Steiner Orientation
- Upper Bound
- Non-Tight Lower Bound
- Tight Lower Bound
- Some new results...

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the resulting graph has an $s \leadsto t$ path for each $(s, t) \in \mathcal{T}$

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the resulting graph has an $s \sim t$ path for each $(s, t) \in \mathcal{T}$
Parameter: k

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the resulting graph has an $s \sim t$ path for each $(s, t) \in \mathcal{T}$ Parameter: k

- Solvable in polynomial time if G is undirected

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the resulting graph has an $s \sim t$ path for each $(s, t) \in \mathcal{T}$
Parameter: k

- Solvable in polynomial time if G is undirected
- Hassin and Meggido ['89]

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the resulting graph has an $s \sim t$ path for each $(s, t) \in \mathcal{T}$
Parameter: k

- Solvable in polynomial time if G is undirected
- Hassin and Meggido ['89]
- NP-hard if G is actually mixed

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the resulting graph has an $s \sim t$ path for each $(s, t) \in \mathcal{T}$
Parameter: k

- Solvable in polynomial time if G is undirected
- Hassin and Meggido ['89]
- NP-hard if G is actually mixed
- Arkin and Hassin ['02]

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the resulting graph has an $s \sim t$ path for each $(s, t) \in \mathcal{T}$ Parameter: k

- Solvable in polynomial time if G is undirected
- Hassin and Meggido ['89]
- NP-hard if G is actually mixed
- Arkin and Hassin ['02]
- How fast can we solve Steiner Orientation?

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the resulting graph has an $s \sim t$ path for each $(s, t) \in \mathcal{T}$ Parameter: k

- Solvable in polynomial time if G is undirected
- Hassin and Meggido ['89]
- NP-hard if G is actually mixed
- Arkin and Hassin ['02]
- How fast can we solve Steiner Orientation?
- $n^{O(k)}$

A Tight Lower Bound for Steiner Orientation

The Steiner Orientation problem

Steiner Orientation

Input: A mixed graph G, and a set \mathcal{T} of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the resulting graph has an $s \sim t$ path for each $(s, t) \in \mathcal{T}$ Parameter: k

- Solvable in polynomial time if G is undirected
- Hassin and Meggido ['89]
- NP-hard if G is actually mixed
- Arkin and Hassin ['02]
- How fast can we solve Steiner Orientation?
- $n^{O(k)}$
- $f(k) \cdot n^{O(1)}$

Outline of Talk

- Steiner Orientation
- Upper Bound
- Non-Tight Lower Bound
- Tight Lower Bound
- Some new results...

A Tight Lower Bound for Steiner Orientation

Sketch of $n^{O(k)}$ algorithm of Cygan, Kortsarz and Nutov ['13]

- Lemma 1: Let C be a subgraph which admits a strongly-connected orientation. Then we can obtain an equivalent instance by contracting C to a single node.

A Tight Lower Bound for Steiner Orientation

Sketch of $n^{O(k)}$ algorithm of Cygan, Kortsarz and Nutov ['13]

- Lemma 1: Let C be a subgraph which admits a strongly-connected orientation. Then we can obtain an equivalent instance by contracting C to a single node.
- Lemma 2: Let G^{\prime} be graph obtained from G by contracting each undirected component into a single vertex. If G^{\prime} has a directed cycle C^{\prime} then we can find it in polytime and use it to find an oriented cycle in G

A Tight Lower Bound for Steiner Orientation

Sketch of $n^{O(k)}$ algorithm of Cygan, Kortsarz and Nutov ['13]

- Lemma 1: Let C be a subgraph which admits a strongly-connected orientation. Then we can obtain an equivalent instance by contracting C to a single node.
- Lemma 2: Let G^{\prime} be graph obtained from G by contracting each undirected component into a single vertex. If G^{\prime} has a directed cycle C^{\prime} then we can find it in polytime and use it to find an oriented cycle in G
- From Lemma 1 and Lemma 2, can assume G is a DAG

A Tight Lower Bound for Steiner Orientation

Sketch of $n^{O(k)}$ algorithm of Cygan, Kortsarz and Nutov ['13]

- Lemma 1: Let C be a subgraph which admits a strongly-connected orientation. Then we can obtain an equivalent instance by contracting C to a single node.
- Lemma 2: Let G^{\prime} be graph obtained from G by contracting each undirected component into a single vertex. If G^{\prime} has a directed cycle C^{\prime} then we can find it in polytime and use it to find an oriented cycle in G
- From Lemma 1 and Lemma 2, can assume G is a DAG
- Guess second and second-last vertices of satisfying path for each terminal pair

A Tight Lower Bound for Steiner Orientation

Sketch of $n^{O(k)}$ algorithm of Cygan, Kortsarz and Nutov ['13]

- Lemma 1: Let C be a subgraph which admits a strongly-connected orientation. Then we can obtain an equivalent instance by contracting C to a single node.
- Lemma 2: Let G^{\prime} be graph obtained from G by contracting each undirected component into a single vertex. If G^{\prime} has a directed cycle C^{\prime} then we can find it in polytime and use it to find an oriented cycle in G
- From Lemma 1 and Lemma 2, can assume G is a DAG
- Guess second and second-last vertices of satisfying path for each terminal pair
- This gives $n^{O(k)}$ possibilities

A Tight Lower Bound for Steiner Orientation

Sketch of $n^{O(k)}$ algorithm of Cygan, Kortsarz and Nutov ['13]

- Lemma 1: Let C be a subgraph which admits a strongly-connected orientation. Then we can obtain an equivalent instance by contracting C to a single node.
- Lemma 2: Let G^{\prime} be graph obtained from G by contracting each undirected component into a single vertex. If G^{\prime} has a directed cycle C^{\prime} then we can find it in polytime and use it to find an oriented cycle in G
- From Lemma 1 and Lemma 2, can assume G is a DAG
- Guess second and second-last vertices of satisfying path for each terminal pair
- This gives $n^{O(k)}$ possibilities
- Use topological order of G (since it is a DAG) and some clever dynamic programming

Outline of Talk

- Steiner Orientation
- Upper Bound
- Non-Tight Lower Bound
- Tight Lower Bound
- Some new results...

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt I

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt I

How can we satisfy both the pairs $\left(s_{1}, t_{1}\right)$ and $\left(s_{2}, t_{2}\right)$?

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt I

How can we satisfy both the pairs $\left(s_{1}, t_{1}\right)$ and $\left(s_{2}, t_{2}\right)$? Note that the only edges to orient are the green paths!

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt I

This is the only way to satisfy both the pairs (s_{1}, t_{1}) and (s_{2}, t_{2})

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt I

This is the only way to satisfy both the pairs (s_{1}, t_{1}) and (s_{2}, t_{2})

- Except the choice of which unique blue edge is used by both paths

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt II

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt II

The pairs are $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt II

The pairs are $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Hence, by last slide we have the orientations of green paths:

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt II

The pairs are $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ Hence, by last slide the orientations of green paths are as shown!

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{\circ(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt II

The pairs are $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Hence, by last slide the orientations of green paths are as shown! Can we make the two gadgets use blue edges on same level?

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt II

The pairs are $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Hence, by last slide the orientations of green paths are as shown!
Can we make the two gadgets use blue edges on same level?

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt II

The pairs are $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Hence, by last slide the orientations of green paths are as shown!
Can we make the two gadgets use blue edges on same level?
Add orange edges, and the pairs $\left(a_{1}, t_{1}\right)$ and $\left(a_{2}, t_{2}\right)$

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]
Basic gadget: Attempt II

The pairs are $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Hence, by last slide the orientations of green paths are as shown!
Can we make the two gadgets use blue edges on same level?
Add orange edges, and the pairs $\left(a_{1}, t_{1}\right)$ and $\left(a_{2}, t_{2}\right)$

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{\circ(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

Multicolored k-Clique

Input: An undirected graph $G=\left(V_{1} \cup V_{2} \cup \ldots V_{k}, E\right)$
Question: Does G have a clique of size k which contains exactly one vertex from each V_{i}
Parameter: k

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

Multicolored k-Clique

Input: An undirected graph $G=\left(V_{1} \cup V_{2} \cup \ldots V_{k}, E\right)$
Question: Does G have a clique of size k which contains exactly one vertex from each V_{i}
Parameter: k

- Solvable in $\binom{n}{k}=n^{O(k)}$ time

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{\circ(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

```
Multicolored k-Clique
Input: An undirected graph G = ( V \cup U V2\cup .. V V , E)
Question: Does G have a clique of size k which contains exactly one
vertex from each }\mp@subsup{V}{i}{
Parameter: k
```

- Solvable in $\binom{n}{k}=n^{O(k)}$ time
- Under ETH, there is a $f(k) \cdot n^{o(k)}$ lower bound by Chen et al. ['06] where $n=|V(G)|$

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{\circ(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

```
Multicolored k-Clique
Input: An undirected graph G = ( V \cup U V2\cup .. V V , E)
Question: Does G have a clique of size k which contains exactly one
vertex from each }\mp@subsup{V}{i}{
Parameter: k
```

- Solvable in $\binom{n}{k}=n^{O(k)}$ time
- Under ETH, there is a $f(k) \cdot n^{o(k)}$ lower bound by Chen et al. ['06] where $n=|V(G)|$
- ETH: 3-SAT cannot be solved in time $2^{o(N)}$, where N is number of variables

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{\circ(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

```
Multicolored k-Clique
Input: An undirected graph G = ( V \cup U V2\cup .. V V , E)
Question: Does G have a clique of size }k\mathrm{ which contains exactly one
vertex from each }\mp@subsup{V}{i}{
Parameter: k
```

- Solvable in $\binom{n}{k}=n^{O(k)}$ time
- Under ETH, there is a $f(k) \cdot n^{o(k)}$ lower bound by Chen et al. ['06] where $n=|V(G)|$
- ETH: 3-SAT cannot be solved in time $2^{o(N)}$, where N is number of variables
- Wahlstrom and Pilipczuk gave a reduction from Multicolored k-Clique to Steiner Orientation with $O\left(k^{2}\right)$ pairs

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{\circ(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

```
Multicolored k-Clique
Input: An undirected graph G = ( V \cup U V2\cup .. V V , E)
Question: Does G have a clique of size }k\mathrm{ which contains exactly one
vertex from each }\mp@subsup{V}{i}{
Parameter: k
```

- Solvable in $\binom{n}{k}=n^{O(k)}$ time
- Under ETH, there is a $f(k) \cdot n^{o(k)}$ lower bound by Chen et al. ['06] where $n=|V(G)|$
- ETH: 3-SAT cannot be solved in time $2^{o(N)}$, where N is number of variables
- Wahlstrom and Pilipczuk gave a reduction from Multicolored k-Clique to Steiner Orientation with $O\left(k^{2}\right)$ pairs
- This gives a $f(k) \cdot n^{o(\sqrt{k})}$ lower bound for Steiner Orientation under ETH

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{\circ(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

```
Multicolored k-Clique
Input: An undirected graph G = ( V \cup U V2\cup .. V V , E)
Question: Does G have a clique of size }k\mathrm{ which contains exactly one
vertex from each }\mp@subsup{V}{i}{
Parameter: k
```

- Solvable in $\binom{n}{k}=n^{O(k)}$ time
- Under ETH, there is a $f(k) \cdot n^{o(k)}$ lower bound by Chen et al. ['06] where $n=|V(G)|$
- ETH: 3-SAT cannot be solved in time $2^{o(N)}$, where N is number of variables
- Wahlstrom and Pilipczuk gave a reduction from Multicolored k-Clique to Steiner Orientation with $O\left(k^{2}\right)$ pairs
- This gives a $f(k) \cdot n^{o(\sqrt{k})}$ lower bound for Steiner Orientation under ETH
- Next slide...

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

In addition to usual terminal pairs, also add the pairs $\left(X_{i, j}, Y_{i, j}\right)$ and $\left(X_{j, i}, Y_{j,}\right)$

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

In addition to usual terminal pairs, also add the pairs $\left(X_{i, j}, Y_{i, j}\right)$ and $\left(X_{j, i}, Y_{j,}\right)$ So we have to take one horizontal black row and one vertical black column!

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

In addition to usual terminal pairs, also add the pairs $\left(X_{i, j}, Y_{i, j}\right)$ and $\left(X_{j, i}, Y_{j,}\right)$ So we have to take one horizontal black row and one vertical black column!

Still need to encode edge-relations in vertices of black grid (next slide)

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The splitting operation for vertex $v_{i, j}^{x, y}$ when $(x, y) \notin E(G)$ where $x \in V_{i}$ and $y \in V_{j}$.

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The splitting operation for vertex $v_{i, j}^{x, y}$ when $(x, y) \notin E(G)$ where $x \in V_{i}$ and $y \in V_{j}$.
- The idea behind this splitting is that no matter which way we orient the undirected dotted edge we cannot go both from left to right and from top to bottom.

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The splitting operation for vertex $v_{i, j}^{x, y}$ when $(x, y) \notin E(G)$ where $x \in V_{i}$ and $y \in V_{j}$.
- The idea behind this splitting is that no matter which way we orient the undirected dotted edge we cannot go both from left to right and from top to bottom.
- However, if we just want to go from left to right (top to bottom) then it is possible by orienting the dotted edge to the right (left), respectively.

A Tight Lower Bound for Steiner Orientation

Non-tight $f(k) \cdot n^{o(\sqrt{k})}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The splitting operation for vertex $v_{i, j}^{x, y}$ when $(x, y) \notin E(G)$ where $x \in V_{i}$ and $y \in V_{j}$.
- The idea behind this splitting is that no matter which way we orient the undirected dotted edge we cannot go both from left to right and from top to bottom.
- However, if we just want to go from left to right (top to bottom) then it is possible by orienting the dotted edge to the right (left), respectively.
- So, if we use a horizontal black row and vertical black column then the unique black vertex they meet in cannot be split, i.e., the two corresponding vertices form an edge!

A Tight Lower Bound for Steiner Orientation

Improved $f(k) \cdot n^{o(k / \log k)}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The $f(k) \cdot n^{o(\sqrt{k})}$ lower bound had $O(1)$ pairs per edge gadget

A Tight Lower Bound for Steiner Orientation

Improved $f(k) \cdot n^{o(k / \log k)}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The $f(k) \cdot n^{o(\sqrt{k})}$ lower bound had $O(1)$ pairs per edge gadget
- Standard way to improve this lower bound to $f(k) \cdot n^{\circ(k / \log k)}$ is to reduce from a slightly different problem

A Tight Lower Bound for Steiner Orientation

Improved $f(k) \cdot n^{o(k / \log k)}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The $f(k) \cdot n^{o(\sqrt{k})}$ lower bound had $O(1)$ pairs per edge gadget
- Standard way to improve this lower bound to $f(k) \cdot n^{o(k / \log k)}$ is to reduce from a slightly different problem

Colored Subgraph Isomorphism (CSI)

Input: An undirected graph $G=\left(V_{1} \cup V_{2} \cup \ldots V_{\ell}, E(G)\right)$ and an undirected graph $H=([\ell], E(H))$
Question: Is there an injective function $\phi:[\ell]=V(H) \rightarrow V(G)$ such that $\phi(i) \in V_{i}$ for each $i \in[\ell]$ and for each $1 \leq i \neq j \leq \ell$ we have $i-j \in E(H)$ implies $\phi(i)-\phi(j) \in E(G)$
Parameter: $r=|E(H)|$

A Tight Lower Bound for Steiner Orientation

Improved $f(k) \cdot n^{o(k / \log k)}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The $f(k) \cdot n^{o(\sqrt{k})}$ lower bound had $O(1)$ pairs per edge gadget
- Standard way to improve this lower bound to $f(k) \cdot n^{o(k / \log k)}$ is to reduce from a slightly different problem

Colored Subgraph Isomorphism (CSI)

Input: An undirected graph $G=\left(V_{1} \cup V_{2} \cup \ldots V_{\ell}, E(G)\right)$ and an undirected graph $H=([\ell], E(H))$
Question: Is there an injective function $\phi:[\ell]=V(H) \rightarrow V(G)$ such that $\phi(i) \in V_{i}$ for each $i \in[\ell]$ and for each $1 \leq i \neq j \leq \ell$ we have $i-j \in E(H)$ implies $\phi(i)-\phi(j) \in E(G)$
Parameter: $r=|E(H)|$

- Marx ['07] showed a lower bound of $f(r) \cdot n^{o(r / \log r)}$ for CSI under ETH

A Tight Lower Bound for Steiner Orientation

Improved $f(k) \cdot n^{o(k / \log k)}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The $f(k) \cdot n^{o(\sqrt{k})}$ lower bound had $O(1)$ pairs per edge gadget
- Standard way to improve this lower bound to $f(k) \cdot n^{o(k / \log k)}$ is to reduce from a slightly different problem

Colored Subgraph Isomorphism (CSI)

Input: An undirected graph $G=\left(V_{1} \cup V_{2} \cup \ldots V_{\ell}, E(G)\right)$ and an undirected graph $H=([\ell], E(H))$
Question: Is there an injective function $\phi:[\ell]=V(H) \rightarrow V(G)$ such that $\phi(i) \in V_{i}$ for each $i \in[\ell]$ and for each $1 \leq i \neq j \leq \ell$ we have $i-j \in E(H)$ implies $\phi(i)-\phi(j) \in E(G)$
Parameter: $r=|E(H)|$

- Marx ['07] showed a lower bound of $f(r) \cdot n^{o(r / \log r)}$ for CSI under ETH
- The previous reduction can be easily modified to start from CSI instead of Multicolored k-Clique

A Tight Lower Bound for Steiner Orientation

Improved $f(k) \cdot n^{o(k / \log k)}$ Lower Bound of Wahlstrom and Pilipczuk ['16]

- The $f(k) \cdot n^{o(\sqrt{k})}$ lower bound had $O(1)$ pairs per edge gadget
- Standard way to improve this lower bound to $f(k) \cdot n^{\circ(k / \log k)}$ is to reduce from a slightly different problem

Colored Subgraph Isomorphism (CSI)

Input: An undirected graph $G=\left(V_{1} \cup V_{2} \cup \ldots V_{\ell}, E(G)\right)$ and an undirected graph $H=([\ell], E(H))$
Question: Is there an injective function $\phi:[\ell]=V(H) \rightarrow V(G)$ such that $\phi(i) \in V_{i}$ for each $i \in[\ell]$ and for each $1 \leq i \neq j \leq \ell$ we have $i-j \in E(H)$ implies $\phi(i)-\phi(j) \in E(G)$
Parameter: $r=|E(H)|$

- Marx ['07] showed a lower bound of $f(r) \cdot n^{o(r / \log r)}$ for CSI under ETH
- The previous reduction can be easily modified to start from CSI instead of Multicolored k-Clique
- The lower bound follows since the number of terminal pairs is $O(|V(H)|+|E(H)|)=O(|E(H)|)$

Outline of Talk

- Steiner Orientation
- Upper Bound
- Non-Tight Lower Bound
- Tight Lower Bound
- Some new results...

A Tight Lower Bound for Steiner Orientation

Our $f(k) \cdot n^{O(k)}$ Lower Bound

A Tight Lower Bound for Steiner Orientation

Our $f(k) \cdot n^{O(k)}$ Lower Bound
Our graph has genus 1, i.e., can be drawn on a torus.

A Tight Lower Bound for Steiner Orientation Our $f(k) \cdot n^{O(k)}$ Lower Bound

Our graph has genus 1 , i.e., can be drawn on a torus.

Outline of Talk

- Steiner Orientation
- Upper Bound
- Non-Tight Lower Bound
- Tight Lower Bound
- Some new results...

A Tight Lower Bound for Steiner Orientation

New results since conference submission

A Tight Lower Bound for Steiner Orientation

New results since conference submission

- Since our graph has genus 1 , the main open question was what happens for genus 0 graphs, i.e., planar graphs.

A Tight Lower Bound for Steiner Orientation

New results since conference submission

- Since our graph has genus 1 , the main open question was what happens for genus 0 graphs, i.e., planar graphs.
- Recently managed to modify the construction to make the graph planar

A Tight Lower Bound for Steiner Orientation

New results since conference submission

- Since our graph has genus 1, the main open question was what happens for genus 0 graphs, i.e., planar graphs.
- Recently managed to modify the construction to make the graph planar
- We only had to "remove"either vertical or horizontal crossing edges.

A Tight Lower Bound for Steiner Orientation

New results since conference submission

- Since our graph has genus 1, the main open question was what happens for genus 0 graphs, i.e., planar graphs.
- Recently managed to modify the construction to make the graph planar
- We only had to "remove"either vertical or horizontal crossing edges.

A Tight Lower Bound for Steiner Orientation

New results since conference submission

- Since our graph has genus 1, the main open question was what happens for genus 0 graphs, i.e., planar graphs.
- Recently managed to modify the construction to make the graph planar
- We only had to "remove"either vertical or horizontal crossing edges.
- FPT inapproximability result: Under Gap-ETH, there is a constant $\epsilon>0$ such that Steiner Orientation has no
$(1+c)$-approximation in FPT time (even on planar graphs):

A Tight Lower Bound for Steiner Orientation

New results since conference submission

- Since our graph has genus 1, the main open question was what happens for genus 0 graphs, i.e., planar graphs.
- Recently managed to modify the construction to make the graph planar
- We only had to "remove"either vertical or horizontal crossing edges.
- FPT inapproximability result: Under Gap-ETH, there is a constant $\epsilon>0$ such that Steiner Orientation has no $(1+c)$-approximation in FPT time (even on planar graphs):
- k-Clique \Rightarrow All $16 k$ pairs are satisfied

A Tight Lower Bound for Steiner Orientation

New results since conference submission

- Since our graph has genus 1, the main open question was what happens for genus 0 graphs, i.e., planar graphs.
- Recently managed to modify the construction to make the graph planar
- We only had to "remove"either vertical or horizontal crossing edges.
- FPT inapproximability result: Under Gap-ETH, there is a constant $\epsilon>0$ such that Steiner Orientation has no
$(1+c)$-approximation in FPT time (even on planar graphs):
- k-Clique \Rightarrow All $16 k$ pairs are satisfied
- Every k-vertex graph has at most $\frac{1}{1+\epsilon} \cdot\binom{k}{2}$ edges \Rightarrow at most $\frac{16 k}{1+\epsilon}$ pairs are satisfied

A Tight Lower Bound for Steiner Orientation

New results since conference submission

- Since our graph has genus 1 , the main open question was what happens for genus 0 graphs, i.e., planar graphs.
- Recently managed to modify the construction to make the graph planar
- We only had to "remove"either vertical or horizontal crossing edges.
- FPT inapproximability result: Under Gap-ETH, there is a constant $\epsilon>0$ such that Steiner Orientation has no $(1+c)$-approximation in FPT time (even on planar graphs):
- k-Clique \Rightarrow All $16 k$ pairs are satisfied
- Every k-vertex graph has at most $\frac{1}{1+\epsilon} \cdot\binom{k}{2}$ edges \Rightarrow at most $\frac{16 k}{1+\epsilon}$ pairs are satisfied
- Open question: Is there $O(1)$-approximation in FPT time? At least on planar graphs?

Thank You Спасибо

Thank You Спасибо

Questions?

