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A Tight Lower Bound for Steiner Orientation
The Steiner Orientation problem

Steiner Orientation
Input: A mixed graph G , and a set T of k terminal pairs

Question: Is there an orientation of the undirected egdes of G such
that the resulting graph has an s ; t path for each (s, t) ∈ T
Parameter: k

I Solvable in polynomial time if G is undirected
I Hassin and Meggido [’89]

I NP-hard if G is actually mixed
I Arkin and Hassin [’02]

I How fast can we solve Steiner Orientation?
I nO(k)

I f (k) · nO(1)
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A Tight Lower Bound for Steiner Orientation
Sketch of nO(k) algorithm of Cygan, Kortsarz and Nutov [’13]

I Lemma 1: Let C be a subgraph which admits a strongly-connected
orientation. Then we can obtain an equivalent instance by
contracting C to a single node.

I Lemma 2: Let G ′ be graph obtained from G by contracting each
undirected component into a single vertex. If G ′ has a directed cycle
C ′ then we can find it in polytime and use it to find an oriented
cycle in G

I From Lemma 1 and Lemma 2, can assume G is a DAG
I Guess second and second-last vertices of satisfying path for each

terminal pair
I This gives nO(k) possibilities

I Use topological order of G (since it is a DAG) and some clever
dynamic programming
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A Tight Lower Bound for Steiner Orientation
Non-tight f (k) · no(

√
k) Lower Bound of Wahlstrom and Pilipczuk [’16]

Basic gadget: Attempt I

s1

t1 s2

t2

How can we satisfy both the pairs (s1, t1) and (s2, t2)?
Note that the only edges to orient are the green paths!
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A Tight Lower Bound for Steiner Orientation
Non-tight f (k) · no(

√
k) Lower Bound of Wahlstrom and Pilipczuk [’16]

Basic gadget: Attempt II

s1

t1 s2

t2 a1

b1 a2

b2

The pairs are (s1, t1), (s2, t2), (a1, b1) and (a2, b2)
Hence, by last slide we have the orientations of green paths:
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A Tight Lower Bound for Steiner Orientation
Non-tight f (k) · no(

√
k) Lower Bound of Wahlstrom and Pilipczuk [’16]

Multicolored k-Clique
Input: An undirected graph G = (V1 ∪ V2 ∪ . . .Vk ,E )
Question: Does G have a clique of size k which contains exactly one
vertex from each Vi

Parameter: k

I Solvable in
(
n
k

)
= nO(k) time

I Under ETH, there is a f (k) · no(k) lower bound by Chen et al. [’06]
where n = |V (G )|

I ETH: 3-SAT cannot be solved in time 2o(N), where N is number of variables

I Wahlstrom and Pilipczuk gave a reduction from Multicolored
k-Clique to Steiner Orientation with O(k2) pairs

I This gives a f (k) · no(
√

k) lower bound for Steiner Orientation under ETH
I Next slide...
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A Tight Lower Bound for Steiner Orientation
Non-tight f (k) · no(

√
k) Lower Bound of Wahlstrom and Pilipczuk [’16]

Xi,jVi

Yi,j

Vi

Yj,i

Vj

Xj,i

Vj

x ∈ Vi x ∈ Vi

y ∈ Vj

y ∈ Vj

In addition to usual terminal pairs, also add the pairs (Xi,j ,Yi,j ) and (Xj,i ,Yj,)
So we have to take one horizontal black row and one vertical black column!

Still need to encode edge-relations in vertices of black grid (next slide)
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A Tight Lower Bound for Steiner Orientation
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v x,y
i,j Splitting

Operation

v x,y
i,j,LB

v x,y
i,j,TR

I The splitting operation for vertex v x,y
i,j when (x , y) /∈ E (G ) where

x ∈ Vi and y ∈ Vj .

I The idea behind this splitting is that no matter which way we orient
the undirected dotted edge we cannot go both from left to right
and from top to bottom.

I However, if we just want to go from left to right (top to bottom)
then it is possible by orienting the dotted edge to the right (left),
respectively.

I So, if we use a horizontal black row and vertical black column then
the unique black vertex they meet in cannot be split, i.e., the two
corresponding vertices form an edge!
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I However, if we just want to go from left to right (top to bottom)
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A Tight Lower Bound for Steiner Orientation
Improved f (k) · no(k/ log k) Lower Bound of Wahlstrom and Pilipczuk [’16]

I The f (k) · no(
√
k) lower bound had O(1) pairs per edge gadget

I Standard way to improve this lower bound to f (k) · no(k/ log k) is to
reduce from a slightly different problem

Colored Subgraph Isomorphism (CSI)
Input: An undirected graph G = (V1 ∪ V2 ∪ . . .V`,E (G )) and an
undirected graph H = ([`],E (H))
Question: Is there an injective function φ : [`] = V (H)→ V (G ) such
that φ(i) ∈ Vi for each i ∈ [`] and for each 1 ≤ i 6= j ≤ ` we have
i − j ∈ E (H) implies φ(i)− φ(j) ∈ E (G )
Parameter: r = |E (H)|

I Marx [’07] showed a lower bound of f (r) · no(r/ log r) for CSI under
ETH

I The previous reduction can be easily modified to start from CSI
instead of Multicolored k-Clique

I The lower bound follows since the number of terminal pairs is
O(|V (H)|+ |E (H)|) = O(|E (H)|)
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A Tight Lower Bound for Steiner Orientation
Our f (k) · nO(k) Lower Bound
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A Tight Lower Bound for Steiner Orientation
Our f (k) · nO(k) Lower Bound

Our graph has genus 1, i.e., can be drawn on a torus.

20/23



A Tight Lower Bound for Steiner Orientation
Our f (k) · nO(k) Lower Bound

Our graph has genus 1, i.e., can be drawn on a torus.

20/23



Outline of Talk

I Steiner Orientation

I Upper Bound

I Non-Tight Lower Bound

I Tight Lower Bound

I Some new results...

21/23



A Tight Lower Bound for Steiner Orientation
New results since conference submission

I Since our graph has genus 1, the main open question was what
happens for genus 0 graphs, i.e., planar graphs.

I Recently managed to modify the construction to make the graph
planar

I We only had to "remove"either vertical or horizontal crossing edges.
I FPT inapproximability result: Under Gap-ETH, there is a constant
ε > 0 such that Steiner Orientation has no
(1+ c)-approximation in FPT time (even on planar graphs):

I k-Clique ⇒ All 16k pairs are satisfied
I Every k-vertex graph has at most 1

1+ε ·
(
k
2

)
edges ⇒ at most 16k

1+ε
pairs are satisfied

I Open question: Is there O(1)-approximation in FPT time? At least
on planar graphs?
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