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I Constructive vs Non-constructive 

Combinatorics

Purely combinatorial proofs often provide 

efficient procedures for solving the 

corresponding algorithmic problems, even 

when dealing with NP-hard invariants

Examples: Dirac’s Theorem: every graph with 

n≥3 vertices and minimum degree ≥ n/2 is

Hamiltonian.

Turán’s Theorem: every graph with degrees 

di contains an independent set of size at least

∑i 1/(di +1)
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Modern combinatorial techniques include

topological, algebraic, geometric and 

probabilistic methods.

Proofs obtained using these methods 

(especially the first three) are often non-

constructive, that is, provide no

efficient algorithms for the corresponding

problems.
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II Topologoical methods: applying           

fixed point theorems

Thm (Lovász, 78): In any coloring f of the k-

subsets of an n-set by n-2k+1 colors, there are 

two disjoint k-subsets with the same color.

The shortest known proof (Greene 03) defines,

using f, a coloring g of the sphere St with t=n-2k 

by t+1 colors, applies the Borsuk-Ulam Theorem

to get two nearly antipodal points with the same 

color, and concludes, using the definition of g 

from f, that two disjoint k-sets have the same 

color. 
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Thm (Schrijver (78)): Given a cycle C of length n,

for any coloring of the independent sets of size k 

of C by n-2k+1 colors, there are two disjoint

independent sets with the same color. 
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The Necklace Thm [A (87)]: Any open necklace

with kai beads of type i (1 ≤ i ≤ t) can be 

partitioned into intervals using at most (k-1)t 

cuts, so that the resulting intervals can be 

partitioned into k collections, each containing 

exactly ai beads of type i, for all 1 ≤ i ≤ t.

This is tight for all k and t.
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Steps of proofs:

Show that the validity of the statement for

k1 and k2 implies its validity for k=k1k2

Consider a continuous version of the problem, 

in which the necklace is an interval colored by t 

colors

Apply a fixed-point theorem (Bárány,Shlosman,

Szűcs (81)) to prove the statement for prime k.
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Open: Can we find the (k-1)t cuts efficiently,

for a given input necklace ?
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The cycle+triangles conjecture 

(Du, Hsu, Hwang (90) ): 

Let G=(V,E) be a graph on 3n vertices whose 

edges are the union of a Hamilton cycle (of length 

3n) and n pairwise vertex disjoint triangles. Then

G contains an independent set of size n.
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A stronger conjecture (Erdös (91)): Any such G

is 3-colorable

Thm (Fleischner and Stiebitz (92)): Any such G

is 3-choosable: for any assignment of a list of

3 colors to each vertex, there is a proper vertex 

coloring assigning to each vertex a color from 

its list.

The proof is based on the algebraic approach 

of A-Tarsi (92).
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A new proof of the cycle + triangles original 

conjecture, based on Schrijver’s Theorem 

(whose proof is based on the Borsuk-Ulam

Theorem). [Extensions appear in Aharaoni, A, 

Berger, Chudnovsky, Kotlar, Loebl, Ziv(17)]

Schrijver(78): Any coloring of the independent sets of 

size k in a cycle of length m by m-2k+1 colors contains 

two disjoint independent sets of the same color.   
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Assume, for contradiction, that there is a graph

G=(V,E) on a set V of 3n vertices whose edges 

are a Hamilton cycle C and n disjoint triangles, 

with no independent set of size n.

Color the independent sets of size n in C as 

follows: each set I is colored by the index of the

first triangle that contains at least 2 points of I.

By Schrijver, since 3n-2n+2>n there are two 

disjoint independent sets I1, I2 with the same 

color. This is impossible, as it ,means that the

same triangle contains 2 points of each of 

them.   ■
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Open: Given a graph G on 3n vertices whose 

edges are the union of a Hamilton cycle and n 

disjoint triangles, can one find efficiently an 

independent set of size n in G ?
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Hilbert’s Nullstellensatz (1893):

If F is an algebraically closed field, f, g1 , …,gm

polynomials in F[x1,x2,…,xn] and f vanishes 

whenever all gi do, then there is k ≥ 1 and 

polynomials hi so that

𝒇𝒌 = 

𝒊

𝒉𝒊𝒈𝒊

III Algebraic Methods
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Combinatorial Nullstellensatz [CN1] (A-99):

Let F be a field, f(x1, x2 , … ,xn) a polynomial over

F, let S1 , S2 , … ,Sn be subsets of F, and put

𝒈𝒊 𝒙𝒊 = 

𝒔∈𝑺𝒊

(𝒙 − 𝒔)

If f vanishes whenever all gi do, then there are 

polynomials hi with deg (hi) ≤ deg (f)-deg (gi) and

𝒇 = 

𝒊

𝒉𝒊𝒈𝒊
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Combinatorial Nullstellensatz [CN2] (A-99):

Let F be a field, f(x1, x2 , … ,xn) a polynomial over

F, and t1 ,t2 ,…,tn positive integers. If the degree

of f is t1+t2+…+tn , and the coefficient of 

 

𝒊=𝟏

𝒏

𝒙𝒊
𝒕
𝒊

in f is nonzero, then for any subsets S1,…,Sn of 

F, where |Si| ≥ ti +1 for all i, there are si in Si so 

that  f(s1,…,sn) is not 0. 
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The choice number ch(G) (or list chromatic 

number) of a graph G=(V,E) is the minimum k so 

that for any assignment of a list Lv of k colors to 

each vertex v, there is a proper coloring f of G 

with f(v) in Lv for each v.

This was defined independently by Vizing(76)

and by Erdős, Rubin and Taylor (79).

Clearly 𝒄𝒉 𝑮 ≥ 𝝌 𝑮 for every G. 

(Very) strict inequality is possible. 
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Sylvester (1878), Petersen (1891): The graph

polynomial of a graph G=(V,E) on the set of 

vertices V={1,2,..,n} is

𝒇𝑮(𝒙𝟏, … , 𝒙𝒏) =  

𝒊𝒋∈𝑬,𝒊<𝒋

(𝒙𝒊 − 𝒙𝒋)

If S1, S2 , … ,Sn are finite lists of colors 

(represented by real or complex numbers) 

then there are si in Si so that fG (s1 , … ,sn) ≠ 𝟎
iff there is a proper coloring of G assigning to 

each vertex i a color from its list Si .
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By CN1, a graph G is not 3-colorable iff

there are polynomials hi so that

𝒇𝑮 = 

𝒊

𝒉𝒊 (𝒙𝒊
𝟑 − 𝟏)

Exercise: use this fact to prove that K4 is not

3-colorable.

Note: this does not prove that NP=coNP
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By CN2, if G has kn edges and the

coefficient of  𝒙𝒊
𝒌 in fG is nonzero, then 

ch(G) ≤ k+1

In A-Tarsi(92) this coefficient is interpreted 

combinatorially in terms of Eulerian

orientations of G.

Using this interpretation, Fleishner and 

Stiebitz(92) proved that  the relevant coefficient 

is nonzero for any 4-regular graph G consisting 

of a Hamilton cycle+triangles, hence ch(G) ≤ 3.
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Open: Given a graph G on 3n vertices whose 

edges are the union of a Hamilton cycle and n 

disjoint triangles, can one find efficiently an 

independent set of size n in G ?

Can we find efficiently a proper 3-coloring of 

the vertices?

Given lists of size 3 for the vertices, can we find 

efficiently a proper vertex coloring assigning to 

each vertex a color from its list ?
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A similar reasoning provides a strengthening of 

the Four Color Theorem (4CT).

By Tait, the 4CT (Appel and Haken (76), 

Robertson,Sanders,Seymour and Thomas (96))

is equivalent to the fact that the chromatic

number of the line graph of any cubic, 

bridgeless planar graph is  3. 

A-Jaeger-Tarsi (same + extension by Ellingham-

Goddyn): The choice number of the line graph of 

any cubic, bridgeless, planar graph is 3.
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This is proved using CN2, by showing that the

relevant coefficient of the graph polynomial

is the number of proper 3 colorings  of this

line graph, which is nonzero, by 4CT 
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Open: Given a cubic, bridgeless, planar graph with 

a list of 3 colors for every edge, can one fine 

efficiently a proper coloring of the edges 

assigning to each edge a color from its list ?
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An even older result:

Thm (A-Friedland-Kalai (84)): Any (multi)graph

with average degree > 4 and maximum degree at

most 5 contains a 3-regular subgraph.
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An even older result:

Thm (A-Friedland-Kalai (84)): Any (multi)graph

with average degree > 4 and maximum degree at

most 5 contains a 3-regular subgraph.
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Proof using CN2: Let G=(V,E) be such a graph,

and put av,e=1 if v lies in e, 0 otherwise.

Apply CN to the following polynomial in the 

variables xe over Z3:

 

𝒗∈𝑽

[ 𝟏 − (  

𝒆,𝒗∈𝒆

𝒂𝒗, 𝒆 𝒙𝒆)
𝟐 ] − 

𝒆∈𝑬

(𝟏 − 𝒙𝒆)

with Se = {0,1} for all e.

The edges of the required subgraph are all e 

with xe =1.                ■
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Open: Given a graph with average degree  > 4

and maximum degree 5, can we find efficiently

a 3-regular subgraph ? 
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The Permanent Lemma

If A is an n by n matrix over a field, Per(A)≠0

and b is a vector in Fn then there is a 0/1 vector

x so that (Ax)i ≠ bi in all coordinates.

Proof: Apply CN2 to 

𝒇 = 

𝒊=𝟏

𝒏

( 

𝒋=𝟏

𝒏

𝒂𝒊𝒋𝒙𝒋 − 𝒃𝒊)

with t1=t2=…=tn=1, Si={0,1} for all i.
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Corollary: If G is a bipartite graph with classes 

of vertices A,B, |A|=|B|=n, B={b1,b2,…,bn}

which contains a perfect matching, then for 

any integers d1,…,dn there is a subset X of A so 

that for each i the number of neighbors of 

bi in X is not di

d1 =0

d2=1

d3=2

Example:

A B
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Corollary: If G is a bipartite graph with classes 

of vertices A,B, |A|=|B|=n, B={b1,b2,…,bn}
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any integers d1,…,dn there is a subset X of A so 

that for each i the number of neighbors of 
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Example:
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Problem: Given a bipartite graph with a perfect

matching on the vertex classes A and 

B={b1,..,bn}, and given integers d1,..,dn , can 

one find efficiently a subset X of A so that the

number of neighbors of each bi in X is not di ? 
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IV Hardness

Are these algorithmic problems complete for some 

natural complexity classes (like PPAD)?

Prop: The following algorithmic problem is at 

least as hard as inverting one-way permutations 

(e.g., computing discrete logarithm in Zp
* ) :

Given an arithmetic circuit computing an

f in F[x1 , …. ,xn ] with deg(f)=∑i ti and coefficient of 

 

𝒊

𝒙𝒊
𝒕𝒊

being nonzero, and given Si in F of size ti +1, find

si in Si with f(s1,…,sn) ≠ 0.
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The algorithmic versions of Borsuk-type fixed 

point theorems are also hard  in general.

However, the problems discussed here 

(necklace, cycle+triangles, choice 4CT, 

3-regular subgraph) and additional similar ones 

may be simpler. Are they ? 


