Limitations of algebraic lower bound proofs

Markus Bläser

Saarland University

with Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov

How to prove a lower bound?

- presumably hard function f
- lacktriangle class of easy functions ${\cal E}$
- ▶ lower bound: a proof for $f \notin \mathcal{E}$.

Approach

Exhibit a property ${\mathcal P}$ such that

- lacktriangleright f does not have property ${\cal P}$ and
- ▶ all $g \in \mathcal{E}$ have property \mathcal{P} .
- $ightharpoonup \mathcal{P}$ should be easier that "being in \mathcal{E} ".

Natural proofs

Definition (Razborov & Rudich)

A property \mathcal{P} of Boolean functions is *natural* if it has the following properties:

Usefulness: If $f:\{0,1\}^n \to \{0,1\}$ has $\operatorname{poly}(n)$ -sized circuits, then $f \in \mathcal{P}.$

Constructivity: Given f by a truthtable of size $N=2^n$, we can decide $f \in \mathcal{P}$ in time $\operatorname{poly}(N)$.

Largeness: A random function is not in \mathcal{P} with probability at least $1/\operatorname{poly}(N) = 2^{-O(n)}$

least $1/\operatorname{poly}(N) = 2^{-O(n)}$.

The Razborov-Rudich barrier

- ▶ A function $f: \{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}$ is *pseudorandom* if when sampling the key $k \in \{0,1\}^\ell$ uniformly at random, the resulting distribution f(.,k) is computationally indistinguishable from a truly random function.
- ▶ If oneway functions exists, so do pseudorandom functions.

Theorem (Razborov & Rudich)

A natural property $\mathcal P$ distinguishes a pseudorandom function having $\operatorname{poly}(\mathfrak n)$ -size circuits from a truly random function in time $2^{O(\mathfrak n)}$.

Conclusion

If you believe in private key cryptography, then no natural proof will show superpolynomial circuit lower bounds.

Valiant's classes

Definition

A sequence of polynomials $(f_n) \in K[X]$ is a *p-family* if for all n,

- 1. $f_{\mathfrak{n}} \in K[X_1, \dots, X_{\mathfrak{p}(\mathfrak{n})}]$ for some polynomially bounded function p and
- 2. $\deg f_n \leq q(n)$ for some polynomially bounded function q.

Definition

The class VP consists of all p-families (f_n) such that each f_n is computed by an algebraic circuit of polynomial size.

Example:

$$\mathrm{det}_n X = \sum_{\pi \in S_n} \mathrm{sgn}(\pi) X_{1,\pi(1)} \dots X_{n,\pi(n)}$$

Rank of bilinear maps

- ▶ bilinear forms $b_1(X,Y),...,b_n(X,Y)$
- ▶ in variables $X = \{x_1, \dots, x_k\}$ and $Y = \{y_1, \dots, y_m\}$.

Definition

The rank of b_1,\ldots,b_n is the smallest number r of bilinear products P_1,\ldots,P_r , that is, $P_i=L_i(X)\cdot Q_i(Y)$ with linear forms L_i and Q_i such that

$$b_1, \ldots, b_n \in \langle P_1, \ldots, P_r \rangle.$$

Example:

- ▶ Matrix multiplication: $b_{i,j} = \sum_{h=1}^{n} X_{i,h} Y_{h,j}$
- (Univariate) polynomial multiplication: $b_i = \sum_{j=0}^i X_j Y_{i-j}$

Tensor rank

Write

$$\sum_{\nu=1}^{n} b_{\nu} z_{\nu} = \sum_{h=1}^{k} \sum_{i=1}^{m} \sum_{j=1}^{n} t_{h,i,j} x_{h} y_{i} z_{j}.$$

$$t=(t_{h,i,j})\in K^k\otimes K^m\otimes K^n$$

is the tensor corresponding to b_1, \ldots, b_n .

Definition

 $u\otimes v\otimes w=(u_hv_iw_j)\in K^k\otimes K^m\otimes K^n \text{ is called a } \textit{rank-one tensor}.$

Definition (Rank)

R(t) is the smallest r such that there are rank-one tensors t_1, \ldots, t_r with $t = t_1 + \cdots + t_r$.

Algebraic proofs

Boolean world

Objects: Boolean functions

Representations: Table of values

Lower bound proofs: Boolean property

Algebraic world

Objects: Polynomials

Representations: List of coefficients

Lower bound proofs: Polynomials (in the lists of coefficients)

Lower bound proofs can only prove that a list of coefficients is not contained in an algebraic variety!

Border complexity

Polynomial multiplication mod X^2 :

$$(a_0 + a_1 X)(b_0 + b_1 X) = \underbrace{a_0 b_0}_{f_0} + \underbrace{(a_1 b_0 + a_0 b_1)}_{f_1})X + a_1 b_1 X^2$$

1	0
0	0

Observation

$$R(t) = 3$$

However, t can be approximated by tensors of rank 2.

$$t(\varepsilon) = (1,\varepsilon) \otimes (1,\varepsilon) \otimes (0,\tfrac{1}{\varepsilon}) + (1,0) \otimes (1,0) \otimes (1,-\tfrac{1}{\varepsilon})$$

1	0
0	0

Waring rank

 $K[X_1,...,X_n]_d$ denotes all homogeneous degree d polynomials

Definition (Waring rank)

The Waring rank of a polynomial $p \in K[X_1, \ldots, X_m]_d$ is the smallest number of homogeneous linear forms ℓ_1, \ldots, ℓ_r such that

$$p = \ell_1^d + \cdots + \ell_r^d.$$

- finite quantity
- also called symmetric rank

Example:

$$4XY = (X + Y)^2 - (X - Y)^2$$

The discriminant

Simplest case: $\mathbb{C}[X,Y]_2$

- ► Elements are of the form $aX^2 + bXY + cY^2$
- ▶ Algebraic proofs are elements in $\mathbb{C}[a,b,c]$

Fact

There are $\alpha, \beta \in \mathbb{C}$ such that $\alpha X^2 + bXY + cY^2 = (\alpha X + \beta Y)^2$ iff $b^2 - 4\alpha c = 0$.

- ► The Waring rank of 4XY is 2.
- ▶ The set of polynomials of Waring rank 1 equals the set of polynomials of border Waring rank 1.

Natural proofs, rephrased

Boolean:

If private key cryptography works, then

- proofs are hard to compute or
- work only for very specific functions

Algebraic:

If ????, then

proofs have high circuit complexity

Algebraic natural proofs

Definition (Forbes, Shpilka & Volk)

Let $M \subseteq K[X]$ be a set of monomials.

Let $\mathcal{C} \subseteq \langle M \rangle$ and let $\mathcal{D} \subseteq K[T_{\mathfrak{m}} : \mathfrak{m} \in M]$.

A polynomial $D \in \mathcal{D}$ is an algebraic \mathcal{D} -natural proof against \mathcal{C} , if

- 1. D is a nonzero polynomial and
- 2. for all $f \in C$, D(f) = 0, that is, D vanishes on the coefficient vectors of all polynomials in C.

A similar concept was defined independently by Grochow, Kumar, Saks & Saraf.

Succinct hitting sets

Definition

A hitting set for $\mathcal{P}\subseteq K[X_1,\ldots,X_{\mu}]$ is a set $\mathcal{H}\subseteq K^{\mu}$ such that for all $p\in\mathcal{P}$, there is an $h\in\mathcal{H}$ such that $p(h)\neq 0$.

Definition (Succinct hitting sets)

Let $M \subseteq K[X]$ be a set of monomials.

Let $\mathcal{C}\subseteq \langle M \rangle$ and let $\mathcal{D}\subseteq K[T_{\mathfrak{m}}:\mathfrak{m}\in M].$

 $\mathcal C$ is a $\mathcal C$ -succinct hitting set for $\mathcal D$ if $\mathcal C$ viewed as a set of vectors of coefficients of length |M| is a hitting set for $\mathcal D$.

The succinct hitting set barrier

Theorem

Let $M \subseteq K[X]$ be a set of monomials.

Let $\mathcal{C} \subseteq \langle M \rangle$ and let $\mathcal{D} \subseteq K[T_\mathfrak{m} : \mathfrak{m} \in M]$.

There are algebraic \mathcal{D} -natural proofs against \mathcal{C} iff \mathcal{C} is not a \mathcal{C} -succinct hitting set for \mathcal{D} .

Corollary

Let $C \subseteq K[X_1, ..., X_n]$ with degree $\leq d$ and computable by $\operatorname{poly}(n, d)$ -size circuits.

Then there is an algebraic $\operatorname{poly}(N_{n,d})$ -natural proof against $\mathcal C$ iff there is no $\operatorname{poly}(n,d)$ -succinct hitting set for $\operatorname{poly}(N_{n,d})$ -size circuits in $N_{n,d}$ variables.

The succinct hitting set barrier (2)

Typical regime:

- $\blacktriangleright \ N_{n,d} = \binom{n+d}{d}$
- $\blacktriangleright \ d = \operatorname{poly}(n) \longrightarrow \operatorname{poly}(n) = \operatorname{poly}\log(N_{n,d})$

Conjecture/Wish/Fear

There are poly log(N)-succinct hitting sets for poly(N)-size circuits.

Tensor rank

Definition

- 1. A tensor $t \in K^{k \times m \times n}$ has rank-one if $t = u \otimes v \otimes w := (u_h v_i w_j)$ for $u \in K^k$, $v \in K^m$, and $w \in K^n$.
- 2. The rank R(t) of a tensor $t \in K^{k \times m \times n}$ is the smallest number r of rank-one tensors s_1, \ldots, s_r such that $t = s_1 + \cdots + s_r$.
- 3. S_r denotes the set of all tensors of rank r.

Definition

 $D \in K[X_1, \dots, X_{kmn}]$ is a $\operatorname{poly}(k, m, n)\text{-natural proof against } S_r$ if

- D is nonzero,
- ▶ D vanishes on S_r, and
- ▶ D is computed by circuits of size poly(k, m, n).

Tensor rank (2)

Good news:

Theorem (Håstad)

Tensor rank is NP-hard.

Theorem (Shitov; Schaefer & Stefankovic)

Tensor rank is as hard as the existential theory over K.

Bad news:

- \triangleright S_r is not the zero set of a set of polynomials.
- ▶ When D vanishes on S_r , it also vanishes on its closure $\overline{S_r}$.
- $X_r := \overline{S_r}$ is the set of tensors of border rank $\leq r$.
- $ightharpoonup X_r$ contains tensors of rank > r.

(Generalized) matrix completion

Definition

Let $A_0,A_1,\ldots,A_m\in K^{n\times n}$. The completion rank of A_0,A_1,\ldots,A_m is the minimum number r such that there are scalars $\lambda_1,\ldots,\lambda_m$ with

$$\mathrm{rk}(A_0 + \lambda_1 A_1 + \cdots + \lambda_m A_m) \leq r.$$

We denote the completion rank by $CR(A_0, A_1, ... A_m)$.

► Can also be phrased in terms of an affine linear matrix $A_0 + X_1A_1 + \cdots + X_mA_m$.

(Generalized) matrix completion (2)

▶ The set of all (m+1)-tuples of $n \times n$ -matrices together with m scalars $\lambda_1, \ldots, \lambda_m$

$$(A_0, A_1, \ldots, A_m, \lambda_1, \ldots, \lambda_m) \in K^{(m+1)n^2+m}$$

such that

$$\operatorname{rk}(A_0 + \lambda_1 A_1 + \dots + \lambda_m A_m) \leq r$$

is a closed set, since it is defined by vanishing of all $(r+1)\times (r+1)$ -minors.

- ▶ Denote this set by $P_r^{m,n}$.
- Let $C_r^{m,n}$ be the projection of $P_r^{m,n}$ onto the first $(m+1)n^2$ components, that is, $C_r^{m,n}$ is the set of all (A_0,A_1,\ldots,A_m) with $\mathrm{CR}(A_0,A_1,\ldots,A_m) \leq r$.
- ► C_r^{m,n} is not closed.

Example

Let

$$A_0 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \qquad \text{and} \qquad A_1 = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right).$$

$$\operatorname{CR}(A_0,A_1)=2.$$

▶ Let

$$\underbrace{\left(\begin{array}{cc} 1 & 0 \\ \varepsilon & 1 \end{array}\right)}_{=:A_{0,\varepsilon}} + \frac{1}{\varepsilon} \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 1 & 1/\varepsilon \\ \varepsilon & 1 \end{array}\right).$$

 $CR(A_{0,\epsilon}, A_1) = 1$ for every $\epsilon \neq 0$.

- $(A_{0,\epsilon},A_1)$ converges to (A_0,A_1) in the Euclidean topology.
- $ightharpoonup (A_0, A_1)$ is contained in the Euclidean closure of C_1 .

Closure

Example:

- Let B be any rank-one matrix.
- ▶ The completion rank of (I, B) is at least n 1.
- We can approximate B by $B + \epsilon I$.
- ▶ But $I \frac{1}{\epsilon}(B + \epsilon I)$ has rank 1.

Conclusion:

- The rank of the approximating matrices should not be larger than the rank of the matrix itself.
- We take the closure in $K^{n\times n}\times K^{n\times n}_{r_1}\times \cdots \times K^{n\times n}_{r_m}$, where $K^{n\times n}_{\rho}$ denotes the closed set of matrices of rank at most ρ and $r_i=\operatorname{rk}(A_i)$.

Border completion rank

Definition

Let $A_0,A_1,\ldots,A_m\in K^{n\times n}$. The border completion rank of A_0,A_1,\ldots,A_m is the minimum number r such that there are approximations $\tilde{A}_i\in K(\varepsilon)^{n\times n}_{\mathrm{rk}(A_i)}$ with $\tilde{A}_i=A_i+O(\varepsilon)$, $0\leq i\leq m$, and rational functions $\lambda_1,\ldots,\lambda_m\in K(\varepsilon)$ with

$$\operatorname{rk}(\tilde{A}_0 + \lambda_1 \tilde{A}_1 + \dots + \lambda_m \tilde{A}_m) \leq r.$$

We denote the border completion rank by $\underline{\mathrm{CR}}(A_0, A_1, \ldots A_{\mathfrak{m}})$.

Hardness of completion rank

- lack lack formula in 2-CNF over the variables x_1, \ldots, x_t with clauses c_1, \ldots, c_s .
- ► Given b, it is NP-hard to decide whether there is an assignment satisfying at least b clauses.

Clause gadget: $c_i = L_1 \vee L_2$

$$\left(\begin{array}{cc} 1-\ell_1 & 1 \\ 0 & 1-\ell_2 \end{array}\right)$$

• ℓ_j in the matrix is x_k if the literal $L_j = x_k$ and it is $1 - x_k$ if $L_j = \neg x_k$, j = 1, 2.

Observation

The clause gadget has rank 1 iff at least one of the literals ℓ_1, ℓ_2 is set to be 1. Otherwise, it has rank 2.

Hardness of completion rank (2)

- ► All clause gadgets are blocks of our desired block diagonal matrix.
- ▶ We get a matrix $A_0 + x_1A_1 + \cdots + x_tA_t$ with affine linear forms as entries

Proposition

 $\operatorname{CR}(A_0,A_1,\ldots,A_t) \leq 2s-b$ iff b clauses of φ can be satisfied. Thus the problem $\operatorname{CR}(A_0,A_1,\ldots,A_t) \stackrel{?}{\leq} k$ is NP-hard.

Hardness of border completion rank

Observation

Each A_i , $i \ge 1$, is a diagonal matrix with diagonal entries ± 1 . If the j^{th} diagonal entry of A_i is nonzero, then the j^{th} diagonal entry of any other A_k is zero, $i,k \ge 1$.

Let $\tilde{A}_0, \tilde{A}_1, \ldots, \tilde{A}_t$ be approximations to A_0, A_1, \ldots, A_t , that is, $\tilde{A}_i = A_i + O(\varepsilon)$.

Lemma

There are (invertible) matrices $S = I_n + O(\varepsilon)$ and $T = I_n + O(\varepsilon)$ such that $S \cdot (\tilde{A}_0 + \lambda_1 \tilde{A}_1 + \dots + \lambda_t \tilde{A}_t) \cdot T = \hat{A_0} + \lambda_1 A_1 + \dots + \lambda_t A_t$ for some $\hat{A_0} = A_0 + O(\varepsilon)$.

Hardness of border completion rank (2)

Lemma

 $\underline{\mathrm{CR}}(A_0,A_1,\ldots,A_t) \leq 2s-b \ \text{iff b clauses of } \varphi \ \text{can be satisfied}.$

- ightharpoonup \Leftarrow follows from hardness proof for CR.
- Assume there are $\lambda_i = \alpha_{i,0} \varepsilon^{d_i} + \alpha_{i,1} \varepsilon^{d_i+1} + \dots$ with $\alpha_{i,0} \neq 0$ such that $\mathrm{rk}(\tilde{A}_0 + \lambda_1 A_1 + \dots + \lambda_t A_t) \leq 2s b$.
- \blacktriangleright λ_i induce an assignment to the x_i and thus to literals ℓ_j .
- A clause gadget looks like

$$\left(\begin{array}{cc}
1 + O(\epsilon) - \ell_1 & 1 + O(\epsilon) \\
O(\epsilon) & 1 + O(\epsilon) - \ell_2
\end{array}\right)$$

To have rank 1, $\ell_1=1+O(\varepsilon)$ or $\ell_2=1+O(\varepsilon)$. We call such clauses " ε -satisfied".

- ▶ If we have at least b " ϵ -satisfied" clauses, then we substitute $\epsilon = 0$ in corresponding λ_i and get an exact assignment.
- ▶ If there are $< b \epsilon$ -satisfied clauses, then $CR(A_0, A_1, ..., A_t) > 2s b$.

Algebraic natural proofs for border completion rank

Let $t \in K^{n \times n \times (m+1)}$. An algebraic $\operatorname{poly}(n)$ -natural proof for the border completion rank of t being > r is a polynomial $P \in K[X_{h,i,j}|1 \leq h, i \leq n, \ 1 \leq j \leq m]$ such that

- 1. $P(t) \neq 0$,
- 2. P(s) = 0 for every $s \in K^{n \times n \times (m+1)}$ with $\underline{CR}(s) \le r$.
- 3. P is computed by a constant-free algebraic circuit of size poly(n).

Universal tensors

Observation

Let $U_{i,j}, V_{i,j}$, $1 \leq i \leq \rho$, $1 \leq j \leq n$ be indeterminates. If we substititute arbitrary constants for the indeterminates in $\sum_{\substack{i=1 \ \rho}}^{\rho} (U_{i,1}, \ldots, U_{i,n})^T (V_{i,1}, \ldots, V_{i,n})$, then we get all matrices in $K_{\rho}^{n \times n}$

Lemma

Let Q_0, Q_1, \ldots, Q_t be polynomial matrices as in the observation above having ranks r_0, \ldots, r_t , respectively. We use fresh variables for each Q_i .

Let $g:=(Q_0-Z_0Q_1-\cdots-Z_tQ_t,Q_1,\ldots,Q_t)$, where Z_1,\ldots,Z_t are new variables. If we substitute arbitrary constants for the indeterminates, then we get all tensors of completion rank $\leq r_0$ with the i^{th} slice having rank $\leq r_i$, $1\leq i\leq t$.

Main result

Theorem

For infinitely many n, there is an m, a tensor $t \in K^{n \times n \times m}$ and a value r such that there is no algebraic $\operatorname{poly}(n)$ -natural proof for the fact that $\operatorname{\underline{CR}}(t) > r$ unless $\operatorname{coNP} \subseteq \exists \mathsf{BPP}$.

- Let ϕ be a formula in 2-CNF and let $b \in \mathbb{N}$. We want to check whether every assignment satisfies < b clauses of ϕ . This problem is coNP-hard.
- Let $T_{\varphi} = (A_0, \dots, A_t)$ be the tensor constructed above.
- Guess a circuit C of polynomial size computing some P.
- ▶ Decide whether P(g) = 0 using polynomial identity testing.
- ▶ Check whether $P(T_{\varphi}) \neq 0$. If yes, then accept. Otherwise reject.

Relation to tensor (border) rank

Theorem (Derksen)

If
$$t=(A_0,A_1,\ldots,A_m)$$
 is a concise tensor such that $\mathrm{rk}(A_1)=\cdots=\mathrm{rk}(A_m)=1$. Then

$$R(t) = CR(t) + m.$$

Proposition

If
$$t=(A_0,A_1,\ldots,A_m)$$
 is a tensor such that $\mathrm{rk}(A_1)=\cdots=\mathrm{rk}(A_m)=1$. Then

$$\underline{R}(t) \leq \underline{CR}(t) + m.$$

Approximability of tensor rank

With similar methods, we can prove that tensor is hard to approximate.

Fun fact:

- ▶ Johan Håstad asked me this question about 15 years ago on the train back from Oberwolfach.
- Independently of our work, hardness of approximation was recently shown by Song, Woodruff and Zhong (under ETH)
- and Joseph Swernofsky

Tensor rank is hard to approximate

- Let ϕ be a formula in 3-CNF with t variables and s clauses such that every variable appears in a constant number c of clauses. Note that s = O(t).
- ▶ We construct a matrix completion problem as before.
- ▶ We will have variable gadgets and clause gadgets.
- They will appear as blocks on the main diagonal.
- Problem: Everything needs to be of rank 1.

Variable gadget

$$\begin{pmatrix} 1 & x & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & u & 0 & u - u_1 & 0 & u - u_2 & 0 & 0 & 0 \\ 0 & u - u_3 & 1 & u & 0 & u - u_4 & 0 & 0 & 0 \\ 0 & 0 & 1 & v & 0 & 0 & 0 & 2v - v_1 & 0 \\ 0 & u - u_5 & 0 & u - u_6 & 1 & u & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & w & 2w - w_1 & 0 & 0 \\ 0 & 0 & 0 & v - v_2 & 0 & 0 & 1 & 2(v - 1/2) \\ 0 & 0 & 0 & 0 & 0 & w - w_2 & 2(w - 1/2) & 1 & 0 \end{pmatrix}$$

Lemma

- 1. If x is set to 0 or 1, then the local variables in the variable gadget can be set such that the resulting matrix has rank 4.
- 2. If the variables are set in such a way that the rank of the variable gadget is 4, then x is set to 0 or 1.

Variable gadget

Lemma

- 1. If x is set to 0 or 1, then the local variables in the variable gadget can be set such that the resulting matrix has rank 4.
- 2. If the variables are set in such a way that the rank of the variable gadget is 4, then x is set to 0 or 1.

Clause gadget

$$\begin{pmatrix} 1 & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & u & 0 & 0 & 0 & 0 & s(u) - u_1 & 0 & 0 & 0 \\ 0 & 0 & 1 & y & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & v & 0 & 0 & 0 & s(v) - v_1 & 0 \\ 0 & 0 & 0 & 0 & 1 & z & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & w & 0 & 0 & s(w) - w_1 \\ 0 & 0 & 0 & 0 & 1 & w & 0 & 0 & s(w) - w_1 \\ 0 & u - u_2 & 0 & 0 & 0 & 0 & 1 - \ell(u) & 1 & 0 \\ 0 & 0 & 0 & v - v_2 & 0 & 0 & 0 & 1 - \ell(v) & 1 \\ 0 & 0 & 0 & 0 & w - w_2 & 0 & 0 & 1 - \ell(w) \end{pmatrix}$$

$$\blacktriangleright \ell(u) = u \text{ if } x \text{ appears positive in the clause and } \ell(u) = 1 - u$$

- $\ell(u) = u$ if x appears positive in the clause and $\ell(u) = 1 u$ otherwise.
- ▶ s(u) = -u if x appears positive in the clause and s(u) = u otherwise.

Hardness of approximation

Lemma

Assume that ϕ is either satisfiable or any assignment satisfies at most $(1 - \epsilon)$ of the clauses for some $\epsilon > 0$.

- 1. If ϕ is satisfiable, then the tensor rank of T_{ϕ} is 4t+5s.
- 2. If φ is not satisfiable, then the tensor rank of T_{φ} is at least $4t+5s+\delta t$ for some constant $\delta>0$.

Theorem

Tensor rank is NP-hard to approximate.

The permanent

Permanent:

$$\operatorname{per}_n X = \sum_{\pi \in S_n} X_{1,\pi(n)} \cdots X_{n,\pi(n)}$$

- complete for VNP
- evaluation at {0, 1}-matrices is #P-hard under Turing reductions.

Consider the hypersurface

$$\mathcal{Z}_n = \{ M \in K^{n \times n} \mid \operatorname{per} M = 0 \}.$$

How hard is it to prove that some M is not in \mathcal{Z}_n ?

Matrices with permanent zero

Let X be an $n \times n$ matrix. Construct a matrix Z as follows:

$$\begin{cases} z_{ij} = x_{ij} & \text{for } i \leq n-1, \\ z_{nj} = x_{nj} \operatorname{per} X_{nn} & \text{for } j \leq n-1, \\ z_{nn} = -\sum_{j=1}^{n-1} x_{nj} \operatorname{per} X_{nj}, \end{cases}$$

where X_{ij} is the matrix obtained from X by removing the i^{th} row and the j^{th} column.

Observation

We have $\operatorname{per} Z=0$. Moreover, any matrix with $\operatorname{per} Z=0$ and $\operatorname{per} Z_{\operatorname{nn}} \neq 0$ can be obtained in this way.

Natural proofs for matrices with permanent zero

Theorem

Let $\mathcal{Z}_n \subseteq K^{n \times n}$ be the set of matrices with permanent 0. If \mathcal{Z}_n has algebraic VP^0 -natural proofs, then $\mathsf{P}^{\#\mathsf{P}} \subseteq \exists \mathsf{BPP}$.

- Construct iteratively a polynomial size circuit computing per_k.
- Using the circuit for per_{k-1} compute a small circuit computing Z_k.
- Guess a polynomial size circuit C_k vanishing on \mathcal{Z}_k
- Verify this by checking $C_k(Z_k) = 0$.
- ▶ By Hilbert's Nullstellensatz, per_k^e divides C_k .
- ► Compute a small circuit for per_k using Kaltofen's factoring algorithm.

GCT breaks the algebraic natural proofs barrier

- ▶ $\mathcal{Z} \subseteq \mathbb{C}^{n \times n}$ all matrices with permanent 0.
- ▶ $GL_n \times GL_n$ acts on $\mathbb{C}^{n \times n}$ via left-right multiplication:

$$(g_1, g_2) \cdot A := g_1 A (g_2)^T.$$

- ▶ Let $Q_n \subseteq GL_n$ denote the group of monomial matrices, i.e., matrices with nonzero determinant that have a single nonzero entry in each row and column.
- ▶ \mathcal{Z} is closed under the action of the group $G := Q_n \times Q_n \subseteq \operatorname{GL}_n \times \operatorname{GL}_n$, which means that if $A \in Z$, then $gA \in Z$ for all $g \in G$.

The GCT framework

- ▶ Assume that $A \in \mathcal{Z}$.
- ▶ $GA := \{gA \mid g \in G\}$ is contained in Z
- ▶ $\overline{\mathsf{GA}} \subseteq \mathcal{Z}$ as a subvariety.
- ▶ For a Zariski-closed subset $Y \subseteq \mathbb{C}^{n \times n}$ let $I(Y) \subseteq \mathbb{C}[\mathbb{C}^{n \times n}]$ denote the *vanishing ideal* of Y.
- I(Y)_d the homogeneous degree d component of I(Y).
 (inherits grading)
- $\begin{array}{l} \hbox{$\blacktriangleright$ Coordinate ring $\mathbb{C}[Y]$ of Y is the quotient} \\ \mathbb{C}[Y] := \mathbb{C}[\mathbb{C}^{n\times n}]/I(Y), \\ \hbox{$inherits the grading $\mathbb{C}[Y]_d$} := \mathbb{C}[\mathbb{C}^{n\times n}]_d/I(Y)_d. \end{array}$
- ▶ Since $\overline{GA} \subseteq \mathcal{Z}$, $I(\mathcal{Z})_d \subseteq I(\overline{GA})_d$ for all d.
- ▶ Canonical surjection by restriction: $\mathbb{C}[\mathcal{Z}]_d \twoheadrightarrow \mathbb{C}[\overline{\mathsf{GA}}]_d$

Representations

Definition

- ▶ An H-representation is a finite dimensional vector space V with a group homomorphism $\rho: H \to \operatorname{GL}(V)$. We write gf for $(\rho(g))(f)$.
- A linear map $\varphi: V_1 \to V_2$ between two H-representations is called *equivariant* if for all $g \in H$ and $f \in V_1$, $\varphi(gf) = g\varphi(f)$.
- A bijective equivariant map is called an H-isomorphism.
- ► Two H-representations are called *isomorphic* if an H-isomorphism exists from one to the other.
- A linear subspace of an H-representation that is closed under the action of H is called a *subrepresentation*.
- ► An H-representation whose only subrepresentations are itself and 0 is called *irreducible*.

Representations (2)

- ightharpoonup Canonical pullback: $(qf)(B) := f(q^TB)$ for $g \in G$, $f \in \mathbb{C}[Y]$, $B \in \mathbb{C}^{n \times n}$.
- ▶ Turns $\mathbb{C}[\mathcal{Z}]_d$ and $\mathbb{C}[\overline{GA}]_d$ into G-representations.
- ▶ G is *linearly reductive*, which means that every G-representation V decomposes into a direct sum of irreducible representations.
- ▶ For each type λ the *multiplicity* $\operatorname{mult}_{\lambda}(V)$ of λ in V is unique.

Lemma (Schur)

For an equivariant map $\varphi: V \to W$, the image $\varphi(V)$ is a G-representation and $\operatorname{mult}_{\lambda}(V) \geq \operatorname{mult}_{\lambda}(\varphi(V))$.

▶ The map $\mathbb{C}[\mathcal{Z}]_d \to \mathbb{C}[\overline{GA}]_d$ is equivariant, thus

$$\operatorname{mult}_{\lambda}(\mathbb{C}[\mathcal{Z}]_d) \geq \operatorname{mult}_{\lambda}(\mathbb{C}[\overline{GA}]_d).$$

▶ A λ that violates this is an *obstruction* and proves "A $\notin \mathcal{Z}$ ".

Main result

Theorem

Let
$$G:=Q_{\mathfrak{n}}\times Q_{\mathfrak{n}}$$
 and $\nu:=(((1^{\mathfrak{n}}),(\mathfrak{n})),((1^{\mathfrak{n}}),(\mathfrak{n}))).$ Then

- $\operatorname{mult}_{\nu}(\mathbb{C}[Z]_n) = 0$ and
- $\qquad \operatorname{mult}_{\nu}(\mathbb{C}[\overline{GA}]_n) = \begin{cases} 0 & \text{if } A \in \mathsf{Z} \\ 1 & \text{otherwise} \end{cases}.$
- ▶ Subrepresentation is $\langle \operatorname{per} \rangle$ with $\operatorname{mult}_{\nu} \mathbb{C}[\mathbb{C}^{n \times n}]_n = 1$.
- $\quad \operatorname{mult}_{\nu}(I(\mathcal{Z})_n) = 1 \text{ and thus } \operatorname{mult}_{\nu}(\mathbb{C}[\mathcal{Z}]_n) = 0.$
- ▶ For $A \in \mathcal{Z}$, $\overline{GA} \subseteq \mathcal{Z}$. Therefore $\operatorname{mult}_{\nu}(\mathbb{C}[\overline{GA}]_{\mathfrak{n}}) = 0$.
- ▶ For $A \notin \mathcal{Z}$, $\operatorname{mult}_{\nu}(I(\overline{GA}))_n) = 0$ and therefore $\operatorname{mult}_{\nu}(\mathbb{C}[\overline{GA})]_n = 1)$.

Thank You!