Limitations of algebraic lower bound proofs

Markus Bläser

Saarland University
with Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov

How to prove a lower bound?

- presumably hard function f
- class of easy functions \mathcal{E}
- lower bound: a proof for $\mathrm{f} \notin \mathcal{E}$.

Approach

Exhibit a property \mathcal{P} such that

- f does not have property \mathcal{P} and
- all $\mathrm{g} \in \mathcal{E}$ have property \mathcal{P}.
- \mathcal{P} should be easier that "being in \mathcal{E} ".

Natural proofs

Definition (Razborov \& Rudich)

A property \mathcal{P} of Boolean functions is natural if it has the following properties:
Usefulness: If $\mathrm{f}:\{0,1\}^{n} \rightarrow\{0,1\}$ has poly (n)-sized circuits, then $f \in \mathcal{P}$.
Constructivity: Given f by a truthtable of size $N=2^{n}$, we can decide $f \in \mathcal{P}$ in time poly (N).
Largeness: A random function is not in \mathcal{P} with probability at least $1 / \operatorname{poly}(N)=2^{-O(n)}$.

The Razborov-Rudich barrier

- A function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \times\{0,1\}^{\ell} \rightarrow\{0,1\}$ is pseudorandom if when sampling the key $k \in\{0,1\}^{\ell}$ uniformly at random, the resulting distribution $f(., k)$ is computationally indistinguishable from a truly random function.
- If oneway functions exists, so do pseudorandom functions.

Theorem (Razborov \& Rudich)

A natural property \mathcal{P} distinguishes a pseudorandom function having poly (n)-size circuits from a truly random function in time $2^{\mathrm{O}(n)}$.

Conclusion

If you believe in private key cryptography, then no natural proof will show superpolynomial circuit lower bounds.

Valiant's classes

Definition

A sequence of polynomials $\left(f_{n}\right) \in K[X]$ is a p-family if for all n,

1. $f_{n} \in K\left[X_{1}, \ldots, X_{p(n)}\right]$ for some polynomially bounded function p and
2. $\operatorname{deg} f_{n} \leq q(n)$ for some polynomially bounded function q.

Definition

The class VP consists of all p-families (f_{n}) such that each f_{n} is computed by an algebraic circuit of polynomial size.

Example:

$$
\operatorname{det}_{n} X=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) X_{1, \pi(1)} \ldots X_{n, \pi(n)}
$$

Rank of bilinear maps

- bilinear forms $b_{1}(X, Y), \ldots, b_{n}(X, Y)$
- in variables $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$.

Definition

The rank of b_{1}, \ldots, b_{n} is the smallest number r of bilinear products P_{1}, \ldots, P_{r}, that is, $P_{i}=L_{i}(X) \cdot Q_{i}(Y)$ with linear forms L_{i} and Q_{i} such that

$$
b_{1}, \ldots, b_{n} \in\left\langle P_{1}, \ldots, P_{r}\right\rangle
$$

Example:

- Matrix multiplication: $b_{i, j}=\sum_{h=1}^{n} X_{i, h} Y_{h, j}$
- (Univariate) polynomial multiplication: $b_{i}=\sum_{j=0}^{i} X_{j} Y_{i-j}$

Tensor rank

Write

$$
\begin{gathered}
\sum_{v=1}^{n} b_{v} z_{v}=\sum_{h=1}^{k} \sum_{i=1}^{m} \sum_{j=1}^{n} t_{h, i, j} x_{h} y_{i} z_{j} . \\
t=\left(t_{h, i, j}\right) \in K^{k} \otimes K^{m} \otimes K^{n}
\end{gathered}
$$

is the tensor corresponding to b_{1}, \ldots, b_{n}.

Definition

$u \otimes v \otimes w=\left(u_{h} v_{i} w_{j}\right) \in \mathrm{K}^{k} \otimes \mathrm{~K}^{m} \otimes \mathrm{~K}^{n}$ is called a rank-one tensor.

Definition (Rank)

$R(t)$ is the smallest r such that there are rank-one tensors t_{1}, \ldots, t_{r} with $t=t_{1}+\cdots+t_{r}$.

Algebraic proofs

Boolean world

Objects: Boolean functions
Representations: Table of values
Lower bound proofs: Boolean property

Algebraic world

Objects: Polynomials
Representations: List of coefficients
Lower bound proofs: Polynomials (in the lists of coefficients)

Lower bound proofs can only prove that a list of coefficients is not contained in an algebraic variety!

Border complexity

Polynomial multiplication $\bmod X^{2}$:

$$
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)=\underbrace{a_{0} b_{0}}_{f_{0}}+(\underbrace{a_{1} b_{0}+a_{0} b_{1}}_{f_{1}}) X+a_{1} b_{1} X^{2}
$$

1	0
0	0

0	1
1	0

Observation

$R(t)=3$
However, t can be approximated by tensors of rank 2 .

$$
\mathrm{t}(\epsilon)=(1, \epsilon) \otimes(1, \epsilon) \otimes\left(0, \frac{1}{\epsilon}\right)+(1,0) \otimes(1,0) \otimes\left(1,-\frac{1}{\epsilon}\right)
$$

1	0
0	0

0	1
1	ϵ

Waring rank

$K\left[X_{1}, \ldots, X_{n}\right]_{d}$ denotes all homogeneous degree d polynomials

Definition (Waring rank)

The Waring rank of a polynomial $p \in K\left[X_{1}, \ldots, X_{m}\right]_{d}$ is the smallest number of homogeneous linear forms $\ell_{1}, \ldots, \ell_{r}$ such that

$$
p=\ell_{1}^{\mathrm{d}}+\cdots+\ell_{\mathrm{r}}^{\mathrm{d}} .
$$

- finite quantity
- also called symmetric rank

Example:

$$
4 X Y=(X+Y)^{2}-(X-Y)^{2}
$$

The discriminant

Simplest case: $\mathbb{C}[X, Y]_{2}$

- Elements are of the form $a X^{2}+b X Y+c Y^{2}$
- Algebraic proofs are elements in $\mathbb{C}[a, b, c]$

Fact

There are $\alpha, \beta \in \mathbb{C}$ such that $a X^{2}+b X Y+c Y^{2}=(\alpha X+\beta Y)^{2}$ iff $b^{2}-4 \mathrm{ac}=0$.

- The Waring rank of $4 X Y$ is 2 .
- The set of polynomials of Waring rank 1 equals the set of polynomials of border Waring rank 1.

Natural proofs, rephrased

Boolean:

If private key cryptography works, then

- proofs are hard to compute or
- work only for very specific functions

Algebraic:

If ????, then

- proofs have high circuit complexity

Algebraic natural proofs

Definition (Forbes, Shpilka \& Volk)

Let $M \subseteq K[X]$ be a set of monomials.
Let $\mathcal{C} \subseteq\langle M\rangle$ and let $\mathcal{D} \subseteq K\left[T_{m}: m \in M\right]$.
A polynomial $\mathrm{D} \in \mathcal{D}$ is an algebraic \mathcal{D}-natural proof against \mathcal{C}, if

1. D is a nonzero polynomial and
2. for all $f \in \mathcal{C}, D(f)=0$, that is, D vanishes on the coefficient vectors of all polynomials in \mathcal{C}.

A similar concept was defined independently by Grochow, Kumar, Saks \& Saraf.

Succinct hitting sets

Definition

A hitting set for $\mathcal{P} \subseteq \mathrm{K}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mu}\right]$ is a set $\mathcal{H} \subseteq \mathrm{K}^{\mu}$ such that for all $p \in \mathcal{P}$, there is an $h \in \mathcal{H}$ such that $p(h) \neq 0$.

Definition (Succinct hitting sets)

Let $M \subseteq K[X]$ be a set of monomials.
Let $\mathcal{C} \subseteq\langle M\rangle$ and let $\mathcal{D} \subseteq K\left[T_{m}: m \in M\right]$.
\mathcal{C} is a \mathcal{C}-succinct hitting set for \mathcal{D} if \mathcal{C} viewed as a set of vectors of coefficients of length $|M|$ is a hitting set for \mathcal{D}.

The succinct hitting set barrier

Theorem

Let $M \subseteq K[X]$ be a set of monomials.
Let $\mathcal{C} \subseteq\langle M\rangle$ and let $\mathcal{D} \subseteq \mathrm{K}\left[\mathrm{T}_{\mathrm{m}}: \mathrm{m} \in \mathrm{M}\right]$.
There are algebraic \mathcal{D}-natural proofs against \mathcal{C} iff \mathcal{C} is not a \mathcal{C}-succinct hitting set for \mathcal{D}.

Corollary

Let $\mathcal{C} \subseteq \mathrm{K}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ with degree $\leq \mathrm{d}$ and computable by $\operatorname{poly}(n, d)$-size circuits.
Then there is an algebraic poly $\left(\mathrm{N}_{\mathrm{n}, \mathrm{d}}\right)$-natural proof against \mathcal{C} iff there is no $\operatorname{poly}(\mathrm{n}, \mathrm{d})$-succinct hitting set for $\operatorname{poly}\left(\mathrm{N}_{\mathrm{n}, \mathrm{d}}\right)$-size circuits in $\mathrm{N}_{\mathrm{n}, \mathrm{d}}$ variables.

The succinct hitting set barrier (2)

Typical regime:

- $\mathrm{N}_{\mathrm{n}, \mathrm{d}}=\binom{\mathrm{n}+\mathrm{d}}{\mathrm{d}}$
- $\mathrm{d}=\operatorname{poly}(\mathrm{n}) \longrightarrow \operatorname{poly}(\mathrm{n})=\operatorname{poly} \log \left(\mathrm{N}_{\mathrm{n}, \mathrm{d}}\right)$

Conjecture/Wish/Fear

There are poly $\log (\mathrm{N})$-succinct hitting sets for $\operatorname{poly}(\mathrm{N})$-size circuits.

Tensor rank

Definition

1. A tensor $t \in K^{k \times m \times n}$ has rank-one if $t=u \otimes v \otimes w:=\left(u_{h} v_{i} w_{j}\right)$ for $u \in K^{k}, v \in K^{m}$, and $w \in K^{n}$.
2. The rank $R(t)$ of a tensor $t \in K^{k \times m \times n}$ is the smallest number r of rank-one tensors s_{1}, \ldots, s_{r} such that $t=s_{1}+\cdots+s_{r}$.
3. S_{r} denotes the set of all tensors of rank r.

Definition

$\mathrm{D} \in \mathrm{K}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{kmn}}\right]$ is a poly $(\mathrm{k}, \mathrm{m}, \mathrm{n})$-natural proof against S_{r} if

- D is nonzero,
- D vanishes on S_{r}, and
- D is computed by circuits of size poly (k, m, n).

Tensor rank (2)

Good news:

Theorem (Håstad)
Tensor rank is NP-hard.
Theorem (Shitov; Schaefer \& Stefankovic)
Tensor rank is as hard as the existential theory over K.

Bad news:

- S_{r} is not the zero set of a set of polynomials.
- When D vanishes on S_{r}, it also vanishes on its closure $\overline{S_{r}}$.
- $X_{r}:=\overline{S_{r}}$ is the set of tensors of border rank $\leq r$.
- X_{r} contains tensors of rank $>r$.

(Generalized) matrix completion

Definition

Let $A_{0}, A_{1}, \ldots, A_{m} \in K^{n \times n}$. The completion rank of $A_{0}, A_{1}, \ldots, A_{m}$ is the minimum number r such that there are scalars $\lambda_{1}, \ldots, \lambda_{m}$ with

$$
\operatorname{rk}\left(A_{0}+\lambda_{1} A_{1}+\cdots+\lambda_{m} A_{m}\right) \leq r .
$$

We denote the completion rank by $\operatorname{CR}\left(A_{0}, A_{1}, \ldots A_{m}\right)$.

- Can also be phrased in terms of an affine linear matrix $A_{0}+X_{1} A_{1}+\cdots+X_{m} A_{m}$.

(Generalized) matrix completion (2)

- The set of all $(m+1)$-tuples of $n \times n$-matrices together with m scalars $\lambda_{1}, \ldots, \lambda_{m}$

$$
\left(A_{0}, A_{1}, \ldots, A_{m}, \lambda_{1}, \ldots, \lambda_{m}\right) \in K^{(m+1) n^{2}+m}
$$

such that

$$
\operatorname{rk}\left(A_{0}+\lambda_{1} A_{1}+\cdots+\lambda_{m} A_{m}\right) \leq r
$$

is a closed set, since it is defined by vanishing of all $(r+1) \times(r+1)$-minors.

- Denote this set by $\mathrm{P}_{\mathrm{r}}^{\mathrm{m}, \mathrm{n}}$.
- Let $C_{r}^{m, n}$ be the projection of $P_{r}^{m, n}$ onto the first $(m+1) n^{2}$ components, that is, $C_{r}^{m, n}$ is the set of all $\left(A_{0}, A_{1}, \ldots, A_{m}\right)$ with $\operatorname{CR}\left(A_{0}, A_{1}, \ldots, A_{m}\right) \leq r$.
- $C_{r}^{m, n}$ is not closed.

Example

- Let

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad A_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

$\operatorname{CR}\left(A_{0}, A_{1}\right)=2$.

- Let

$$
\underbrace{\left(\begin{array}{ll}
1 & 0 \\
\epsilon & 1
\end{array}\right)}_{=: A_{0, \epsilon}}+\frac{1}{\epsilon}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 / \epsilon \\
\epsilon & 1
\end{array}\right) .
$$

$\operatorname{CR}\left(A_{0, \epsilon}, A_{1}\right)=1$ for every $\epsilon \neq 0$.

- $\left(A_{0, \epsilon}, A_{1}\right)$ converges to $\left(A_{0}, A_{1}\right)$ in the Euclidean topology.
- $\left(A_{0}, A_{1}\right)$ is contained in the Euclidean closure of C_{1}.

Closure

Example:

- Let B be any rank-one matrix.
- The completion rank of (I, B) is at least $n-1$.
- We can approximate B by $\mathrm{B}+\epsilon \mathrm{I}$.
- But $\mathrm{I}-\frac{1}{\epsilon}(\mathrm{~B}+\epsilon \mathrm{I})$ has rank 1 .

Conclusion:

- The rank of the approximating matrices should not be larger than the rank of the matrix itself.
- We take the closure in $\mathrm{K}^{n \times n} \times \mathrm{K}_{\mathrm{r}_{1}}^{n \times n} \times \cdots \times \mathrm{K}_{\mathrm{r}_{\mathrm{m}}}^{n \times n}$, where $\mathrm{K}_{\rho}^{n \times n}$ denotes the closed set of matrices of rank at most ρ and $r_{i}=\operatorname{rk}\left(A_{i}\right)$.

Border completion rank

Definition

Let $A_{0}, A_{1}, \ldots, A_{m} \in K^{n \times n}$. The border completion rank of $A_{0}, A_{1}, \ldots, A_{m}$ is the minimum number r such that there are approximations $\tilde{A}_{i} \in K(\epsilon)_{\operatorname{rk}\left(A_{i}\right)}^{n \times n}$ with $\tilde{A}_{i}=A_{i}+O(\epsilon), 0 \leq i \leq m$, and rational functions $\lambda_{1}, \ldots, \lambda_{m} \in K(\epsilon)$ with

$$
\operatorname{rk}\left(\tilde{A}_{0}+\lambda_{1} \tilde{A}_{1}+\cdots+\lambda_{m} \tilde{A}_{m}\right) \leq \mathrm{r}
$$

We denote the border completion rank by $\underline{\mathrm{CR}}\left(A_{0}, A_{1}, \ldots A_{m}\right)$.

Hardness of completion rank

- ϕ formula in 2-CNF over the variables x_{1}, \ldots, χ_{t} with clauses c_{1}, \ldots, c_{s}.
- Given b, it is NP-hard to decide whether there is an assignment satisfying at least b clauses.

Clause gadget: $\boldsymbol{c}_{\mathfrak{i}}=L_{1} \vee L_{2}$

$$
\left(\begin{array}{cc}
1-\ell_{1} & 1 \\
0 & 1-\ell_{2}
\end{array}\right)
$$

- ℓ_{j} in the matrix is x_{k} if the literal $L_{j}=x_{k}$ and it is $1-x_{k}$ if $L_{j}=\neg \chi_{k}, j=1,2$.

Observation

The clause gadget has rank 1 iff at least one of the literals ℓ_{1}, ℓ_{2} is set to be 1. Otherwise, it has rank 2.

Hardness of completion rank (2)

- All clause gadgets are blocks of our desired block diagonal matrix.
- We get a matrix $A_{0}+x_{1} A_{1}+\cdots+x_{t} A_{t}$ with affine linear forms as entries

Proposition

$\operatorname{CR}\left(A_{0}, A_{1}, \ldots, A_{t}\right) \leq 2 \mathrm{~s}-\mathrm{b}$ iff b clauses of ϕ can be satisfied.
Thus the problem $\operatorname{CR}\left(A_{0}, A_{1}, \ldots, A_{t}\right) \stackrel{?}{\leq} k$ is NP-hard.

Hardness of border completion rank

Observation

Each $A_{i}, i \geq 1$, is a diagonal matrix with diagonal entries ± 1. If the $j^{\text {th }}$ diagonal entry of A_{i} is nonzero, then the $j^{\text {th }}$ diagonal entry of any other A_{k} is zero, $i, k \geq 1$.

Let $\tilde{A}_{0}, \tilde{A}_{1}, \ldots, \tilde{A}_{\mathrm{t}}$ be approximations to $A_{0}, A_{1}, \ldots, A_{\mathrm{t}}$, that is, $\tilde{A}_{i}=A_{i}+O(\epsilon)$.

Lemma

There are (invertible) matrices $\mathrm{S}=\mathrm{I}_{\mathrm{n}}+\mathrm{O}(\epsilon)$ and $\mathrm{T}=\mathrm{I}_{\mathrm{n}}+\mathrm{O}(\epsilon)$ such that $\mathrm{S} \cdot\left(\tilde{A}_{0}+\lambda_{1} \tilde{A}_{1}+\cdots+\lambda_{t} \tilde{A}_{t}\right) \cdot T=\widehat{A_{0}}+\lambda_{1} A_{1}+\cdots+\lambda_{t} A_{t}$ for some $\widehat{A_{0}}=A_{0}+O(\epsilon)$.

Hardness of border completion rank (2)

Lemma

$\underline{\operatorname{CR}}\left(A_{0}, A_{1}, \ldots, A_{t}\right) \leq 2 \mathrm{~s}-\mathrm{b}$ iff b clauses of ϕ can be satisfied.

- \Leftarrow follows from hardness proof for CR.
- Assume there are $\lambda_{i}=a_{i, 0} \epsilon^{d_{i}}+a_{i, 1} \epsilon^{d_{i}+1}+\ldots$ with $a_{i, 0} \neq 0$ such that $\operatorname{rk}\left(\tilde{A}_{0}+\lambda_{1} A_{1}+\cdots+\lambda_{t} A_{t}\right) \leq 2 s-b$.
- λ_{i} induce an assignment to the x_{i} and thus to literals ℓ_{j}.
- A clause gadget looks like

$$
\left(\begin{array}{cc}
1+\mathrm{O}(\epsilon)-\ell_{1} & 1+\mathrm{O}(\epsilon) \\
\mathrm{O}(\epsilon) & 1+\mathrm{O}(\epsilon)-\ell_{2}
\end{array}\right)
$$

To have rank $1, \ell_{1}=1+O(\epsilon)$ or $\ell_{2}=1+O(\epsilon)$. We call such clauses " ϵ-satisfied".

- If we have at least b " ϵ-satisfied" clauses, then we substitute $\epsilon=0$ in corresponding λ_{i} and get an exact assignment.
- If there are $<\mathrm{b} \epsilon$-satisfied clauses, then
$\underline{\mathrm{CR}}\left(A_{0}, A_{1}, \ldots, A_{t}\right)>2 \mathrm{~s}-\mathrm{b}$.

Algebraic natural proofs for border completion rank

Let $\mathrm{t} \in \mathrm{K}^{\mathrm{n} \times n \times(\mathrm{m}+1)}$. An algebraic poly(n$)$-natural proof for the border completion rank of t being $>r$ is a polynomial
$P \in K\left[X_{h, i, j} \mid 1 \leq h, i \leq n, \quad 1 \leq j \leq m\right]$ such that

1. $\mathrm{P}(\mathrm{t}) \neq 0$,
2. $P(s)=0$ for every $s \in K^{n \times n \times(m+1)}$ with $\underline{C R}(s) \leq r$.
3. P is computed by a constant-free algebraic circuit of size $\operatorname{poly}(\mathrm{n})$.

Universal tensors

Observation

Let $\mathrm{U}_{\mathrm{i}, \mathrm{j}}, \mathrm{V}_{\mathrm{i}, \mathrm{j}}, 1 \leq \mathfrak{i} \leq \rho, 1 \leq \mathfrak{j} \leq \mathrm{n}$ be indeterminates. If we substititute arbitrary constants for the indeterminates in $\sum_{\substack{i=1 \\ K_{\rho}^{n} \times n}}^{\rho}\left(U_{i, 1}, \ldots, U_{i, n}\right)^{\top}\left(V_{i, 1}, \ldots, V_{i, n}\right)$, then we get all matrices in

Lemma

Let $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{t}}$ be polynomial matrices as in the observation above having ranks r_{0}, \ldots, r_{t}, respectively. We use fresh variables for each Q_{i}.
Let $\mathrm{g}:=\left(\mathrm{Q}_{0}-\mathrm{Z}_{0} \mathrm{Q}_{1}-\cdots-\mathrm{Z}_{\mathrm{t}} \mathrm{Q}_{\mathrm{t}}, \mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{t}}\right)$, where $\mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{t}}$ are new variables. If we substitute arbitrary constants for the indeterminates, then we get all tensors of completion rank $\leq r_{0}$ with the $\mathrm{i}^{\text {th }}$ slice having rank $\leq \mathrm{r}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{t}$.

Main result

Theorem

For infinitely many n , there is an m , a tensor $\mathrm{t} \in \mathrm{K}^{\mathrm{n} \times n \times m}$ and a value r such that there is no algebraic poly (n)-natural proof for the fact that $\underline{\mathrm{CR}}(\mathrm{t})>\mathrm{r}$ unless coNP $\subseteq \exists \mathrm{BPP}$.

- Let ϕ be a formula in 2-CNF and let $b \in \mathbb{N}$. We want to check whether every assignment satisfies $<\mathrm{b}$ clauses of ϕ. This problem is coNP-hard.
- Let $T_{\phi}=\left(A_{0}, \ldots, A_{t}\right)$ be the tensor constructed above.
- Guess a circuit C of polynomial size computing some P.
- Decide whether $\mathrm{P}(\mathrm{g})=0$ using polynomial identity testing.
- Check whether $\mathrm{P}\left(\mathrm{T}_{\phi}\right) \neq 0$. If yes, then accept. Otherwise reject.

Relation to tensor (border) rank

Theorem (Derksen)
If $\mathrm{t}=\left(\mathrm{A}_{0}, \mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}\right)$ is a concise tensor such that $\operatorname{rk}\left(A_{1}\right)=\cdots=\operatorname{rk}\left(A_{m}\right)=1$. Then

$$
\mathrm{R}(\mathrm{t})=\mathrm{CR}(\mathrm{t})+\mathrm{m} .
$$

Proposition

If $\mathrm{t}=\left(\mathrm{A}_{0}, A_{1}, \ldots, A_{m}\right)$ is a tensor such that $\operatorname{rk}\left(A_{1}\right)=\cdots=\operatorname{rk}\left(A_{m}\right)=1$. Then

$$
\underline{\mathrm{R}}(\mathrm{t}) \leq \underline{\mathrm{CR}}(\mathrm{t})+\mathrm{m} .
$$

Approximability of tensor rank

With similar methods, we can prove that tensor is hard to approximate.

Fun fact:

- Johan Håstad asked me this question about 15 years ago on the train back from Oberwolfach.
- Independently of our work, hardness of approximation was recently shown by Song, Woodruff and Zhong (under ETH)
- and Joseph Swernofsky

Tensor rank is hard to approximate

- Let ϕ be a formula in 3-CNF with t variables and s clauses such that every variable appears in a constant number c of clauses. Note that $s=O(t)$.
- We construct a matrix completion problem as before.
- We will have variable gadgets and clause gadgets.
- They will appear as blocks on the main diagonal.
- Problem: Everything needs to be of rank 1.

Variable gadget

$$
\left(\begin{array}{cccccccc}
1 & x & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & u & 0 & u-u_{1} & 0 & u-u_{2} & 0 & 0 \\
0 & u-u_{3} & 1 & u & 0 & u-u_{4} & 0 & 0 \\
0 & 0 & 1 & v & 0 & 0 & 0 & 2 v-v_{1} \\
0 & u-u_{5} & 0 & u-u_{6} & 1 & u & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & w & 2 w-w_{1} & 0 \\
0 & 0 & 0 & v-v_{2} & 0 & 0 & 1 & 2(v-1 / 2) \\
0 & 0 & 0 & 0 & 0 & w-w_{2} & 2(w-1 / 2) & 1
\end{array}\right)
$$

Lemma

1. If x is set to 0 or 1 , then the local variables in the variable gadget can be set such that the resulting matrix has rank 4.
2. If the variables are set in such a way that the rank of the variable gadget is 4 , then x is set to 0 or 1 .

Variable gadget

$$
\left(\begin{array}{cccccccc}
1 & x & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & u & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & u & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & v & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & u & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & w & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2(v-1 / 2) \\
0 & 0 & 0 & 0 & 0 & 0 & 2(w-1 / 2) & 1
\end{array}\right)
$$

Lemma

1. If x is set to 0 or 1 , then the local variables in the variable gadget can be set such that the resulting matrix has rank 4.
2. If the variables are set in such a way that the rank of the variable gadget is 4 , then x is set to 0 or 1 .

Clause gadget

$$
\left(\begin{array}{ccccccccc}
1 & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & u & 0 & 0 & 0 & 0 & s(u)-u_{1} & 0 & 0 \\
0 & 0 & 1 & y & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & v & 0 & 0 & 0 & s(v)-v_{1} & 0 \\
0 & 0 & 0 & 0 & 1 & z & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & w & 0 & 0 & s(w)-w_{1} \\
0 & u-u_{2} & 0 & 0 & 0 & 0 & 1-\ell(u) & 1 & 0 \\
0 & 0 & 0 & v-v_{2} & 0 & 0 & 0 & 1-\ell(v) & 1 \\
0 & 0 & 0 & 0 & 0 & w-w_{2} & 0 & 0 & 1-\ell(w)
\end{array}\right)
$$

- $\ell(u)=u$ if x appears positive in the clause and $\ell(u)=1-u$ otherwise.
- $s(u)=-u$ if x appears positive in the clause and $s(u)=u$ otherwise.

Hardness of approximation

Lemma

Assume that ϕ is either satisfiable or any assignment satisfies at most $(1-\epsilon)$ of the clauses for some $\epsilon>0$.

1. If ϕ is satisfiable, then the tensor rank of T_{ϕ} is $4 \mathrm{t}+5 \mathrm{~s}$.
2. If ϕ is not satisfiable, then the tensor rank of T_{ϕ} is at least $4 t+5 s+\delta t$ for some constant $\delta>0$.

Theorem

Tensor rank is NP-hard to approximate.

The permanent

Permanent:

$$
\operatorname{per}_{n} X=\sum_{\pi \in S_{n}} X_{1, \pi(n)} \cdots X_{n, \pi(n)}
$$

- complete for VNP
- evaluation at $\{0,1\}$-matrices is \#P-hard under Turing reductions.

Consider the hypersurface

$$
\mathcal{Z}_{n}=\left\{M \in K^{n \times n} \mid \operatorname{per} M=0\right\} .
$$

How hard is it to prove that some M is not in \mathcal{Z}_{n} ?

Matrices with permanent zero

Let X be an $n \times n$ matrix. Construct a matrix Z as follows:

$$
\begin{cases}z_{i j}=x_{i j} & \text { for } i \leq n-1 \\ z_{n j}=x_{n j} \operatorname{per} X_{n n} & \text { for } j \leq n-1, \\ z_{n n}=-\sum_{j=1}^{n-1} x_{n j} \text { per } X_{n j}, & \end{cases}
$$

where $X_{i j}$ is the matrix obtained from X by removing the $i^{\text {th }}$ row and the $j^{\text {th }}$ column.

Observation

We have per $Z=0$. Moreover, any matrix with per $Z=0$ and per $Z_{n n} \neq 0$ can be obtained in this way.

Natural proofs for matrices with permanent zero

Theorem

Let $\mathcal{Z}_{\mathrm{n}} \subseteq \mathrm{K}^{n \times n}$ be the set of matrices with permanent 0 . If \mathcal{Z}_{n} has algebraic VP^{0}-natural proofs, then $\mathrm{P}{ }^{\# \mathrm{P}} \subseteq \exists \mathrm{BPP}$.

- Construct iteratively a polynomial size circuit computing $\operatorname{per}_{\mathrm{k}}$.
- Using the circuit for per $_{\mathrm{k}-1}$ compute a small circuit computing Z_{k}.
- Guess a polynomial size circuit C_{k} vanishing on \mathcal{Z}_{k}
- Verify this by checking $C_{k}\left(Z_{k}\right)=0$.
- By Hilbert's Nullstellensatz, per ${ }_{k}^{e}$ divides C_{k}.
- Compute a small circuit for per $_{k}$ using Kaltofen's factoring algorithm.

GCT breaks the algebraic natural proofs barrier

- $\mathcal{Z} \subseteq \mathbb{C}^{n \times n}$ all matrices with permanent 0 .
- $\mathrm{GL}_{\mathrm{n}} \times \mathrm{GL}_{\mathrm{n}}$ acts on $\mathbb{C}^{\mathrm{n} \times n}$ via left-right multiplication:

$$
\left(g_{1}, g_{2}\right) \cdot A:=g_{1} A\left(g_{2}\right)^{\top} .
$$

- Let $\mathrm{Q}_{\mathrm{n}} \subseteq \mathrm{GL}_{\mathrm{n}}$ denote the group of monomial matrices, i.e., matrices with nonzero determinant that have a single nonzero entry in each row and column.
- \mathcal{Z} is closed under the action of the group $\mathrm{G}:=\mathrm{Q}_{\mathrm{n}} \times \mathrm{Q}_{\mathrm{n}} \subseteq \mathrm{GL}_{n} \times \mathrm{GL}_{n}$, which means that if $A \in \mathrm{Z}$, then $g A \in Z$ for all $g \in G$.

The GCT framework

- Assume that $A \in \mathcal{Z}$.
- $\mathrm{GA}:=\{\mathrm{gA} \mid \mathrm{g} \in \mathrm{G}\}$ is contained in \mathcal{Z}
- $\overline{\mathrm{GA}} \subseteq \mathcal{Z}$ as a subvariety.
- For a Zariski-closed subset $\mathrm{Y} \subseteq \mathbb{C}^{\mathrm{n} \times n}$ let $\mathrm{I}(\mathrm{Y}) \subseteq \mathbb{C}\left[\mathbb{C}^{\mathrm{n} \times n}\right]$ denote the vanishing ideal of Y .
- $\mathrm{I}(\mathrm{Y})_{\mathrm{d}}$ the homogeneous degree d component of $\mathrm{I}(\mathrm{Y})$. (inherits grading)
- Coordinate ring $\mathbb{C}[\mathrm{Y}]$ of Y is the quotient $\mathbb{C}[\mathrm{Y}]:=\mathbb{C}\left[\mathbb{C}^{\mathrm{n} \times n}\right] / \mathrm{I}(\mathrm{Y})$, inherits the grading $\mathbb{C}[Y]_{d}:=\mathbb{C}\left[\mathbb{C}^{n \times n}\right]_{d} / I(Y)_{d}$.
- Since $\overline{\mathrm{GA}} \subseteq \mathcal{Z}, \mathrm{I}(\mathcal{Z})_{\mathrm{d}} \subseteq \mathrm{I}(\overline{\mathrm{GA}})_{\mathrm{d}}$ for all d .
- Canonical surjection by restriction: $\mathbb{C}[\mathcal{Z}]_{\mathrm{d}} \rightarrow \mathbb{C}[\overline{\mathrm{GA}}]_{\mathrm{d}}$

Representations

Definition

- An H-representation is a finite dimensional vector space V with a group homomorphism $\rho: \mathrm{H} \rightarrow \mathrm{GL}(\mathrm{V})$. We write gf for $(\rho(\mathrm{g}))(\mathrm{f})$.
- A linear map $\varphi: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{2}$ between two H-representations is called equivariant if for all $g \in H$ and $f \in V_{1}, \varphi(g f)=g \varphi(f)$.
- A bijective equivariant map is called an H-isomorphism.
- Two H-representations are called isomorphic if an H-isomorphism exists from one to the other.
- A linear subspace of an H-representation that is closed under the action of H is called a subrepresentation.
- An H-representation whose only subrepresentations are itself and 0 is called irreducible.

Representations (2)

- Canonical pullback: $(\mathrm{gf})(\mathrm{B}):=\mathrm{f}\left(\mathrm{g}^{\top} \mathrm{B}\right)$ for $g \in G, f \in \mathbb{C}[Y], B \in \mathbb{C}^{n \times n}$.
- Turns $\mathbb{C}[\mathcal{Z}]_{\mathrm{d}}$ and $\mathbb{C}[\overline{\mathrm{G} A}]_{\mathrm{d}}$ into G-representations.
- G is linearly reductive, which means that every G-representation V decomposes into a direct sum of irreducible representations.
- For each type λ the multiplicity mult ${ }_{\lambda}(\mathrm{V})$ of λ in V is unique.

Lemma (Schur)

For an equivariant map $\varphi: \mathrm{V} \rightarrow \mathrm{W}$, the image $\varphi(\mathrm{V})$ is a G-representation and mult ${ }_{\lambda}(\mathrm{V}) \geq \operatorname{mult}_{\lambda}(\varphi(\mathrm{V}))$.

- The map $\mathbb{C}[\mathcal{Z}]_{d} \rightarrow \mathbb{C}[\overline{\mathrm{G} A}]_{\mathrm{d}}$ is equivariant, thus

$$
\operatorname{mult}_{\lambda}\left(\mathbb{C}[\mathcal{Z}]_{\mathrm{d}}\right) \geq \operatorname{mult}_{\lambda}\left(\mathbb{C}[\overline{\mathrm{GA}}]_{\mathrm{d}}\right)
$$

- A λ that violates this is an obstruction and proves " $\mathcal{A} \notin \mathcal{Z}$ ".

Main result

Theorem

Let $\mathrm{G}:=\mathrm{Q}_{\mathrm{n}} \times \mathrm{Q}_{\mathrm{n}}$ and $\mathrm{v}:=\left(\left(\left(1^{\mathrm{n}}\right),(\mathrm{n})\right),\left(\left(1^{\mathrm{n}}\right),(\mathrm{n})\right)\right)$. Then

- $\operatorname{mult}_{v}\left(\mathbb{C}[Z]_{n}\right)=0$ and
- $\operatorname{mult}_{v}\left(\mathbb{C}[\overline{\mathrm{GA}}]_{n}\right)=\left\{\begin{array}{ll}0 & \text { if } A \in Z \\ 1 & \text { otherwise }\end{array}\right.$.
- Subrepresentation is \langle per \rangle with mult $\left.\mathbb{C}^{\mathbb{C}} \mathbb{C}^{n \times n}\right]_{n}=1$.
- $\operatorname{mult}_{\mathrm{r}}\left(\mathrm{I}(\mathcal{Z})_{\mathrm{n}}\right)=1$ and thus $\operatorname{mult}_{v}\left(\mathbb{C}[\mathcal{Z}]_{\mathrm{n}}\right)=0$.
- For $A \in \mathcal{Z}, \overline{\mathrm{GA}} \subseteq \mathcal{Z}$. Therefore $\operatorname{mult}_{v}\left(\mathbb{C}[\overline{\mathrm{GA}}]_{n}\right)=0$.
- For $A \notin \mathcal{Z}, \operatorname{mult}_{\gamma}\left(\mathrm{I}(\overline{\mathrm{GA})})_{\mathrm{n}}\right)=0$ and therefore $\left.\operatorname{mult}_{v}(\mathbb{C}[\overline{G A})]_{n}=1\right)$.

Thank You!

