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Abstract. Let f : F k
q 7→ R be a function given via its table of values,

where Fq := {0, 1, . . . , q − 1} ⊂ R, k, q ∈ N. We design a randomised
verification procedure in the BSS model of computation that verifies if
f is close to an algebraic polynomial of maximal degree d ∈ N in each
of its variables. If f is such an algebraic polynomial there exists a proof
certificate that the verifier will accept surely. If f has at least distance
ε > 0 to the set of max-degree algebraic polynomials on F k

q , the verifier
will reject any proof with probability at least 1

2
for large enough q. The

verification procedure establishes a real number PCP of proximity, i.e.,
it has access to both the values of f and the additional proof certificate
via oracle calls. It uses O(k log q) random bits and reads O(1) many
components of both f and the additional proof string, which is of length
O((kq)O(k)). The paper is a contribution to the not yet much developed
area of designing PCPs of proximity in real number complexity theory.

1 Introduction

Property testing in the last decades has evolved as an important area in the-
oretical computer science. One of its several versions studies fast randomized
verification algorithms that yield an approximate decision making for a decision
problem L in the following sense: given an input x and an error bound ε > 0, the
verification should confirm with probability 1 if x ∈ L and reject every x that is
not ε-close1 to S with large enough constant probability. Most importantly, the
verifier may access components of x only by oracle calls and one major goal is
to reduce the number of such calls. In addition to this one-sided-error definition
other variants have been studied as well. Property testing among other appli-
cations has become crucial in relation with designing probabilistically checkable
proofs PCPs and proving the famous PCP theorem [1, 2]. In the context of PCPs
the question is varied; here, the verifier has full access to the input x and oracle
access to an additional certificate meant to provide a proof that x ∈ L. In yet
another scenario, so called PCPs of proximity (a notion coined in [6]), both x
and an additional certificate are accessible via oracle calls and again one major
goal is to give an approximate decision using as few as possible oracle calls to

1 where closeness usually is measured by using the Hamming distance of strings.
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both objects. A thorough presentation of the field can be found, for example, in
[12].

Similar questions also played a crucial role in using algebraic methods to
derive a real number analogue of the PCP theorem in the computational model
by Blum, Shub, and Smale, BSS model henceforth, over the real numbers [5].
Whereas in the first proof of the classical PCP theorem in [1, 2] algebraic poly-
nomials defined over finite fields are used crucially, the proof of the real number
PCPR theorem heavily relies on using trigonometric polynomials on suitable
subsets of R instead. They were in one major step of the proof used as coding
objects for real solutions of a quadratic system of polynomial equations; then,
a PCP of proximity was designed to show that trigonometric polynomials are
useful in this context.

It remained open whether algebraic polynomials can be used as coding ob-
jects as well, i.e., whether they can be tested by a real number PCP of proximity
using the same (low) amount of resources. The purpose of this paper is to an-
swer this question in the positive. Our construction heavily relies on the use of
trigonometric polynomials in [5] for designing segmented verifiers for real num-
ber problems and on the structure of algebraic polynomials on arbitrary finite
subsets of Rk as analysed in [11]. The main result complements the one of [11];
therein, a property test for algebraic polynomials on such general domains is
designed which uses a non-constant number of oracle queries. The PCP of prox-
imity given in this paper reduces the number of proof components read by the
verifier to be constant, having access to an additional proof certificate beside the
table of function values. Also from this additional certificate the verifier inspects
a constant number of components.

The present paper extends the still small list of objects for which real number
PCPs of proximity exist by algebraic polynomials - a central class for many
problems studied in BSS computability over R.

1.1 Previous work and outline

In the first proof of the PCP theorem in the Turing model [2, 1] multivariate
algebraic polynomials defined on finite fields were used as coding objects for
satisfying assignments of instances of the 3SAT problem. Testing a function
given by a table of its values for being close to such a polynomial was one key
ingredient in the entire proof. Most importantly, the test had to have a segmented
structure, see below, in order to be used in a further proof step called verifier
composition.

When trying to do the same in the real number BSS model [7], major diffi-
culties arise from the fact that a function value table can only specify a function
on a finite domain which, as subset of the reals, is not any longer a field. Loosing
the field structure causes severe problems when using algebraic polynomials in
the PCP framework over R.

In [15], a low degree test designed by Friedl et al. in [11] for functions f :
F k 7→ R on finite domains F ⊂ R was used to prove the existence of short almost
transparent proofs for the real number complexity class NPR. Though the test
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is able to verify closeness to an algebraic polynomial of maximal degree d in
each of its variables, it lacks the main feature of segmentation. This means the
following: A verifier is called segmented if it reads O(1) positions in the input
table for f as well as O(1) segments of an additional proof certificate π provided
by a prover; here, a certificate is a sequence of reals and a segment is a consecutive
subsequence of it. The segments are allowed to have non-constant length, but
they have to be queried in this structured form. This is a basic requirement in
the PCP framework for using such a verifier in the so-called composition step -
another important keystone to reduce the query complexity.

In [5] the authors succeeded in proving this theorem using algebraic meth-
ods and replacing the role of algebraic polynomials by trigonometric ones. 2 A
significant amount of work was devoted to developing a test, more precisely a
PCP of proximity, for trigonometric polynomials that is in segmented form. It
relies on the fact that at least some features of finite fields can be regained when
considering trigonometric polynomials on finite subdomains of R. However, the
authors have not been able to design a similar test for algebraic polynomials
that can be used as ingredient of a proof of the real PCP theorem.

In the present paper we show that such a test can be designed once we have
the machinery from [5] at hand. There are two main previous results needed in
our approach. The actual test for closeness to an algebraic polynomial uses (a
variant of) a result from [11]. It gives an estimate for the distance of a function f :
F k 7→ R to algebraic polynomials by distances of f to the set of functions that are
polynomials in at least one variable. The main task is to put this test procedure
into segmented form. To do so, we again use trigonometric polynomials for coding
certain restrictions of algebraic ones. This gives a segmented test algorithm using
O(k log |F |) random bits and making O(1) inspections of the table of function
values for f as well as O(1) inspections into proof segments of length O(|F |2).
In a final standard step, the technique of verifier composition as used in [5] for
the real number framework can be applied to reduce the total number of proof
components read to be constant. Our test procedure complements the one from
[11], which actually is a property testing algorithm.

The paper is organised as follows: Section 2 collects some basic definitions
and states the main result of this paper. Its proof is described in Section 3. In
its first subsection, we describe and analyse the closeness test verifying whether
a function is close to an algebraic polynomial. Section 3.2 is the main part of
the paper. Here, we explain how the closeness test can be put into segmented
form necessary for verifier composition. Since the construction heavily relies on
the low-degree test for trigonometric polynomials from [5], we first recall those
results in the form we need them. Then we show how trigonometric polynomials
can be used to code the information needed in the closeness test for algebraic
polynomials in such a way that the letter can be performed in segmented form
and how this leads to our main result. Section 3.3 briefly explains how the

2 Note that the real number PCP theorem had been established in the BSS model
earlier in [4] by a more combinatorial proof along the lines of [10].
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technique of real verifier composition leads to our main result. We close with
some concluding remarks.

2 Basic definitions, main result

We assume the reader to be familiar with the very basics of the BSS model of
computation and its complexity theoretic features over the real numbers, see
[7], and [16] for some surveys on more recent developments. Our main objects
of interest are real valued functions that are algebraic polynomials on a finite
subset of some Rk. More precisely, the following definition is fundamental.

Definition 1. Let q, k, d ∈ N and let Fq := {0, 1, . . . , q − 1} ⊂ R.

a) The set P (k, d) denotes all functions f : F kq 7→ R that have an extension to

Rk being a polynomial with maximal degree d in each of its variables.
b) For all 1 ≤ i ≤ k we denote by Pi(k, d) the set of all functions f : F kq 7→ R

that have an extension f̃ : Rk 7→ R being a polynomial of degree at most d
in its i-th variable. This means that whenever a point x ∈ Rk is fixed, the
map t 7→ f̃(x + tei) with ei ∈ Rk being the i-th unit vector is a univariate
polynomial in t of degree at most d. It is not hard to see that P (k, d) =
k⋂
i=1

Pi(k, d). 3

c) The distance of two functions f, g : F kq 7→ R is defined as d(f, g) := 1
qk
|{x ∈

F kq |f(x) 6= g(x)}|. Similarly, for the distance between an f and a set A of

functions from F kq 7→ R we define d(f,A) := min{d(f, g)|g ∈ A}.

Below, we shall choose q to be (without loss of generality) a prime and large
enough in relation to k, d, and 1/ε, where ε > 0 is a constant error bound, for
our results to hold. Our aim is to design a verification procedure that figures
out whether a given function value table represents with high probability an
algebraic polynomial of certain max-degree. The concept of such a verification
procedure in the BSS model and the resources it uses is defined next. We directly
focus on the task of designing a PCP of proximity for real algebraic polynomials.
The corresponding algorithms use randomisation and are allowed to inspect an
additional proof certificate in order to come to a decision.

Definition 2. a) Let r, u : N → N be two resource functions. A real proba-
bilistic (r(n), u(n))-restricted verifier V for testing algebraic polynomials is
a randomised real BSS machine; on input f : F kq 7→ R, given via a table of

its n := qk real function values, V first generates uniformly and indepen-
dently a string ρ of O(r(n)) random bits. Using ρ it makes O(u(n)) non-
adaptive queries into the table for f and into an additional proof certificate
π ∈ R∞ :=

⊔
i≥1 Ri. A query is made by writing an address on a query tape

and then in one step the real number stored at that address in the table or in

3 This can be shown by easy induction on k, see for example [3], pages 225ff.
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π, respectively, is returned. The verifier uses the results of the queries and
computes in time polynomial in n its decision ’accept’ or ’reject’.

b) We call a verifier V segmented if the queries are structured such that V
asks O(1) many segments of length at most O(u(n)) from the table for f and
the certificate π. Note that these objects are given as elements in R∞, thus
a segment is sequence of contiguous components of real numbers in such an
element.

c) Let ε > 0. A verifier for testing algebraic polynomials is ε-reliable if the
following conditions are satisfied. If f ∈ P (k, d), there is a proof certificate
π such that V accepts (f, π) with probability 1. And if d(f, P (k, d)) > ε, then
for all certificates π the verifier V rejects (f, π) with probability > 1

2 .

Note that the segmentation requirement only is meaningful when the number
of queries is not yet constant. Segmentation is crucial for obtaining our main
result:

Theorem 1. Let ε > 0 be fixed; let q be a prime and let q, k, d ∈ N be such

that q ∈ Ω(k
2d3

ε2 ) and Fq := {0, 1, . . . , q − 1} ⊂ R. There is a (O(k log q), O(1))-
restricted verifier that is ε-reliable for testing whether a given f : F kq 7→ R is an
algebraic polynomial of maximal degree d in each of its variables. The verifier
gets as input a table of the function values of f together with a proof certificate
of length O((kq)O(k)). Its running time is polynomial in kq.

Using the techniques behind the proof of the real number PCPR theorem in
[5], in particular verifier composition, the theorem actually follows easily from
the following one, in which the verifier’s query complexity is not yet constant and
thus segmentation is an important requirement. Proving Theorem 2 therefore is
the major task that will be solved in this paper.

Theorem 2. Let ε > 0 be fixed, q be a prime and Fq := {0, 1, . . . , q−1} ⊂ R. Let

q, k, d ∈ N be s.t. q ∈ Ω(k
2d3

ε2 ). There is a segmented and (O( 1
εk log q), O(q2))-

restricted verifier that is ε-reliable for testing whether a given f : F kq 7→ R is an
algebraic polynomial of maximal degree d in each of its variables. The verifier
gets as input a table of the function values of f together with a proof certificate of
length O((kq)O(k)), i.e., it is a PCP of proximity. Its running time is polynomial
in kq.

An outline for proving Theorems 1 and 2 is as follows. Two steps are needed.
The first consists of a test actually verifying closeness of a given f to a max-
degree d polynomial. The design and analysis of this test, given in Theorem
3, is based on a variant of a result from [11] relating d(f, P (k, d)) to the sum

of distances
k∑
i=1

d(f, Pi(k, d)). Its resources are not yet those required. In order

to reduce it we want to apply the classical technique of verifier composition.
However, to do so the closeness test has to be put into segmented form which it
does not have. Whereas a general procedure for putting a verifier into segmented
form for the Turing model has been developed in relation with the first proof
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of the classical PCP theorem, a similar technique in the real number framework
needs significant changes. A major part of [5] is devoted to design the relevant
steps in relation with a proof of the PCP theorem in the real number BSS
model. More precisely, a closeness test in form of a PCP of proximity is given for
trigonometric polynomials, i.e., [5] solves for trigonometric problems the question
we are now looking for to solve for algebraic polynomials. Our way to succeed
with the latter is based on the former. We therefore in the second proof step
show that the ideas from [5] as well can be used to put the above closeness test
for algebraic polynomials into segmented form. This will prove Theorem 2. Our
main Theorem 1 then follows by applying the verifier composition technique for
real number verifiers as designed in [5].

3 Segmentation as main task

We now explain how the main result is proved. We start with describing and
analyzing the test for verifying proximity of a function to an algebraic polynomial
of given max-degree. The significantly more intricate part of segmenting this test
is done in Section 3.2. Therein, we recall the necessary results from [5] for testing
trigonometric polynomials and show, how this can be used to put our proximity
test into a segmented form. Note that this step is by far not straightforward
given the results from [5]. The final step then will apply verifier composition for
achieving the claim of Theorem 1.

3.1 Distance to paraxial univariate restrictions

In this subsection we study the distance of an algebraic polynomial to paraxial
univariate restrictions. We describe a test for verifying closeness of a function to
an algebraic polynomial and give the test analysis.

Proposition 1 below occurs as an intermediate result in a slightly different
form within the proof of Theorem 2.2 in [11], page 61. For sake of completeness
and since that paper might not be easily available we include a proof here. We
also correct some minor typos.

Proposition 1. Let q, k, d ∈ N be such that q ≥ 18kd3 and define Fq :=
{0, 1, . . . , q − 1}. Let f : F kq → R and fi ∈ Pi(k, d) for 1 ≤ i ≤ k be given.

Then the following holds, where µ :=
√
d√

18q
:

1

6
· d(f, P (k, d)) ≤ 2kµ+ d(f, f1) +

k−1∑
j=1

d(fj , fj+1).

Proof. Before we give the proof note that the major change in our assertion with
respect to the statement as it occurs on page 61, right column of [11] is the fol-
lowing: Our statement is about an arbitrary set of polynomials fi ∈ Pi(k, d), 1 ≤
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i ≤ k, whereas in [11] the authors consider fi ∈ Pi(k, d) that minimize the dis-
tance from f to Pi(k, d). However, in the proof of the intermediate result this
optimality of the fi’s is not used.4

Now towards the proof of the statement as we need it. The proof in [11] uses
a result from [2] and an easy corollary of it, stated as Lemmas 4.4 and 4.5 in
[11]. These two results lead in [11], page 61 to the following alternatives, that
we take as starting point for proving the proposition.

Lemma 1. Let Fq, q, k, d be as in the statement of the proposition, define µ :=√
d√

18q
and let g : F kq 7→ R be an element of P1(k, d). Then either

∣∣∣∣{c ∈ Fq | d(g|x1=c, P (k − 1, d)) ≤ 1

6
}
∣∣∣∣ ≤ 2d− 1 (1)

or ∣∣∣∣{c ∈ Fq | d(g|x1=c, P (k − 1, d)) ≤ d(g, P (k, d))− µ}
∣∣∣∣ ≤ 6µq (2)

Now let functions f, f1, . . . , fk with fi ∈ Pi(k, d) be given. We use the lemma
to show by induction on i the following

Claim: For all 1 ≤ i ≤ k and any point (c1, . . . , ci) ∈ F iq except for at most

a fraction of 6iµ, i.e., except for at most 6iqiµ many points, it is

1

6
d(f, P (k, d)) ≤ iµ+ d(f, f1) +

i−1∑
j=1

d(fj |x1=c1,...,xj=cj , fj+1|x1=c1,...,xj=cj ) +

+d(fi|x1=c1,...,xi=ci , P (k − i, d)).

Proof (of the Claim). For f1 ∈ P1(k, d) one of the alternatives (1) or (2) holds
according to Lemma 1. If (1) is satisfied we have d(f1|x1=c1 , P (k− 1, d)) > 1

6 for
at least q−2d+1 choices of c1 ∈ Fq. Clearly, d(f, P (k, d)) ≤ 1, so 1

6d(f, P (k, d)) ≤
1
6 < d(f1|x1=c1 , P (k − 1, d)) for a fraction of at least 1− 2d−1

q ≥ 1− 6µ choices
for c1. The last inequality results from q > 2d and the definition of µ.

If alternative (2) holds, then for all but an exception of at most 6µq choices
for c1 one has d(f1, P (k, d)) < d(f1|x1=c1 , P (k−1, d))+µ and thus d(f, P (k, d)) ≤
d(f, f1) + d(f1, P (k, d)) ≤ d(f, f1) + d(f1|x1=c1 , P (k− 1, d)) +µ. In both cases it
follows

1

6
d(f, P (k, d)) ≤ 1 · µ+ d(f, f1) + d(f1|x1=c1 , P (k − 1, d))

as required.5

4 In [11] the optimality is needed because the final statement relates d(f, P (k, d)) with
the sum of the distances d(f, Pi(k, d)). Note that we use the letters k, d for arity and
degree instead of n, k in [11].

5 Note that this argument does nowhere rely on whether f1 is the best approximation
from P1(k, d) to f or not. Similarly below in the induction step.
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The argument is the same in the induction step: If (1) is true for an 1 ≤ i < k
and the function fi+1|x1=c1,...,xi=ci , which is in P1(k− i, d) with respect to xi+1,
then 1

6d(f, P (k, d)) ≤ 1
6 < d(fi+1|x1=c1,...,xi+1=ci+1 , P (k − i− 1, d)) except for a

fraction of at most 2d−1
q < 6µ choices for ci+1 ∈ Fq. In this situation the claim

is trivially satisfied.
And if (2) holds, then for all but an exception of at most 6µq choices for ci+1

one has

d(fi+1|x1=c1,...,xi=ci , P (k − i, d)) < d(fi+1|x1=c1,...,xi+1=ci+1
, P (k − i− 1, d)) + µ

and thus by the triangle inequality

d(fi|x1=c1,...,xi=ci , P (k − i, d)) ≤ d(fi|x1=c1,...,xi=ci , fi+1|x1=c1,...,xi=ci)+

d(fi+1|x1=c1,...,xi=ci), P (k − i, d))
< d(fi|x1=c1,...,xi=ci , fi+1|x1=c1,...,xi=ci)+

d(fi+1|x1=c1,...,xi+1=ci+1
, P (k − i− 1, d)) + µ

except for a fraction of at most 6µ choices of ci+1 ∈ Fq (and that for each
fixed (c1, . . . , ci) for which the induction hypothesis holds). Together with the
induction hypothesis for i this implies

1
6d(f, P (k, d)) ≤ (i+ 1)µ+ d(f, f1) +

i∑
j=1

d(fj |x1=c1,...,xj=cj , fj+1|x1=c1,...,xj=cj )

+d(fi+1|x1=c1,...,xi+1=ci+1 , P (k − i− 1, d)).

It remains to upper bound the number of points in F i+1
q for which this is false.

The induction hypothesis is false for at most 6iqiµ points in F iq , which contributes

at most 6iqi+1µ violations in F i+1
q . Moreover, each of the at least qi(1 − 6µ)

points in F iq that satisfy the hypothesis contributes at most 6µq bad choices of

ci+1 ∈ Fq. Altogether, this yields at most 6iqi+1µ+6µqqi(1−6iµ) ≤ 6(i+1)µqi+1

exceptions. The claim is proved.
To finish the proof of the proposition for i = k we take the average over

c ∈ F kq of all the inequalities in the claim as follows: for satisfying choices c ∈ F kq
we take the average of the inequality as it is stated in the claim, for the other
at most 6kµqk choices we take the inequality with 1

6 added on the right hand
side, which results trivially in a correct inequality. The latter for the average
contributes an additional term of kµ and we finally get

1

6
· d(f, P (k, d)) ≤ 2kµ+ d(f, f1) +

k−1∑
j=1

d(fj , fj+1).

2

The proposition gives a nearby idea to test closeness of a given f0 := f
to P (k, d). The verifier estimates for suitable fi the distances d(fi, fi+1) for
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0 ≤ i ≤ k − 1 by comparing the values in a randomly chosen point x(i+1) ∈ F k.
In one test round a function fi has to be evaluated in two random points, one for
estimating its distance to fi−1 and one for the distance to fi+1. These two points
have to be independent. Now if f has a large distance to P (k, d) the proposition
will result in a sufficient error probability for the test. Before we describe precisely
the test and its analysis note the following two aspects: Later on, we shall explain
how information about functions fi is presented to the verifier as part of a
proof certificate π. Basically, this will be done through univariate polynomials
resulting canonically from the random points in which an fi is evaluated by the
test. However, since this information should be accessed in segmented form, the
implementation needs the machinery of testing trigonometric polynomials. We
elaborate on this in the next subsection. Secondly, whereas the above outline
naively would require to generate k random points in F kq we can reduce the
amount of randomness by the well known method of two point sampling, see
Lemma 2. We only have to guarantee that the two points in which one function
fi is evaluated are independent, so pairwise independence of the k random points
suffices.

Lemma 2. (Two-point sampling, see [9]) Given random elements x(1), x(2) ∈
F kq there is a deterministic BSS algorithm running in polynomial time in k that

computes a sequence of points tps(x(1), x(2)) := (x(1), . . . , x(k)) ∈ (F kq )k that are
pairwise independent random variables being uniformly distributed.

We are now ready to describe the first test. In the description we assume
that the verification algorithm has access to a black box (later: a part of the
certificate) for evaluating fi in the demanded points.

Test: Closeness to P (k, d):

Input: Function value table for an f : F kq 7→ R; black box for evaluating

functions fi ∈ Pi(k, d), 1 ≤ i ≤ k in requested points from F kq .

1) Generate two uniformly distributed random points x(1), x(2) ∈ F kq
2) Compute by two-point sampling the sequence

tps(x(1), x(2)) := (x(1), . . . , x(k)) ∈ (F kq )k

3) Evaluate and check the following equalities: f(x(1)) = f1(x(1)), f1(x(2)) =
f2(x(2)), f2(x(3)) = f3(x(3)), . . . , fk−1(x(k)) = fk(x(k))

4) If one of the equalities is violated reject; otherwise accept. Similarly for
several rounds of the test: Reject if at least one equality is violated.

Theorem 3. Let f, fi, 1 ≤ i ≤ k be as above, and let ε > 0 be a constant

such that µ :=
√
d√

18q
≤ ε

24k . This holds, for example, if q ≥ 32k2d 1
ε2 . Then the

Closeness Test satisfies the following: If f ∈ P (k, d) and the fi all equal f , then
the test accepts with probability 1. If d(f, P (k, d)) ≥ ε, then for all choices of
f1, . . . , fk performing m ≥ 12

ε + 1 rounds of the test is sufficient to reject with
probability > 1

2 .
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One round of the test needs 2k log q random bits and inspects one value of
f and fk, and two values of each fi, 1 ≤ i ≤ k − 1. Similarly, in m rounds
considering ε as a constant the test needs O(k log q) random bits and inspects
O(1) values of each of the functions.

Proof. All statements except the one for the error probability are obvious, so
let us assume that d(f, P (k, d)) ≥ ε. Define ε1 := d(f, f1) and εi := d(fi−1, fi)
for 2 ≤ i ≤ k. Using Proposition 1 and the assumption on µ we have ε

12 ≤
1
6ε − 2kµ ≤

k∑
i=1

εi. The test in one round does not realize an error with prob-

ability at most
k∏
i=1

(1 − εi). This holds because the sequence of x(i)’s consists

of pairwise independent uniformly distributed random points and for one such
the probability that fi−1(x(i)) = fi(x

(i)) is at most 1− εi. Using the above and
a well known inequality for the Weierstraß product, see [8] for a proof, we get
k∏
i=1

(1 − εi) ≤ 1

1+
k∑
i=1

εi

≤ 1
1+ε/12 . Thus, in m rounds of the test an error is not

detected with probability at most
(

1
1+ε/12

)m
≤
(
1
e

) mε
12+ε . The latter is < 1

2 for

m ≥ 12
ε + 1, which proves the theorem. 2

Remark 1. In the next subsection below, for a point x ∈ F kq a proof certificate is
expected to represent the univariate restrictions of fi into the paraxial directions
ei, i.e., a representation of the univariate polynomial t 7→ fi(x + tei). In this
context, the verifier expects an ideal proof certificate to represent the correct
restriction of f to that paraxial line through x.

3.2 Segmentation of closeness test

The goal of this subsection is to transform the above verifier performing the
closeness test into a segmented form. As in the proof of the original PCP theo-
rem [1], segmented verifiers were crucial in [5] to prove the real number PCPR
theorem when using an algebraic approach. However, the real number setting
causes severe difficulties when working with algebraic polynomials. To circum-
vent these difficulties, in [5] trigonometric polynomials mapping a vector space
F kq over a finite field Fq to R are considered. A main result in [5] is a segmented
test for verifying, whether a given function f is close to a trigonometric poly-
nomial of certain max-degree. This test is used below to achieve segmentation
of the closeness test as follows: We suppose that all information about the alge-
braic polynomials fi, 1 ≤ i ≤ k which is potentially queried in the closeness test,
is coded by particular values of a trigonometric polynomial s of sufficient max-
degree. This potential information consists of the univariate paraxial restrictions
of an fi in a point x ∈ F kq having been generated by two-point sampling. The
corresponding trigonometric polynomial s is given as additional information to
the verifier in form of a table of its values, thereby replacing the black box
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assumption in the closeness test. To guarantee that this table with high prob-
ability represents a trigonometric polynomial the test from [5] is applied first.
Segmentation then is obtained as follows: For each pair (x(1), x(2)) ∈ F 2k

q , the

necessary information about tps(x(1), x(2)) and the corresponding restrictions
can be found when restricting s to a two-dimensional plane. In the ideal case,
this restriction is a bivariate trigonometric polynomial b of low max-degree. The
certificate expected by the verifier in addition contains the coefficients of these
bivariate polynomials as entire segments. The verifier in each round of the close-
ness test reads this segment, reconstructs b and performs the test. There are
several additional technical details such as guaranteeing that b with high prob-
ability is the correct restriction of s. This foregoing will result in Theorem 2;
it proves that the closeness test can be put into a format ready to apply com-
position of real number verifiers as developed in [5]. This will suffice to obtain
Theorem 1. Note finally that the classical segmentation technique seems not to
work directly (at least to the best of our knowledge) in the real number setting
because restrictions of trigonometric functions to lines or planes in general do
not behave well with respect to the resulting max-degrees of the restrictions.
On the other hand, real algebraic polynomials seem not appropriate as coding
objects for proving the real number PCPR theorem along the lines of [1], see
[5] for more detailed explanations of the involved problems. This in the end is
the reason why we have to take the detour along trigonometric polynomials for
proving a result on algebraic ones. Now towards the details.

Trigonometric polynomials, previous results. We define a special version
of real-valued trigonometric polynomials with a finite field as domain and recall
the results on testing them. Let Fq = {0, . . . , q− 1} be a finite field with q being
prime. We consider the elements of Fq as subset of R when appropriate.

Definition 3. Let Fq be a finite field as above. For d ∈ N a trigonometric
polynomial f : F kq 7→ R of max-degree d is given as f(x1, . . . , xk) =

∑
t
ct ·

exp( 2πi
q

k∑
j=1

xjtj), where the sum is taken over all t := (t1, . . . , tk) ∈ Zk with

|t1| ≤ d, . . . , |tk| ≤ d and ct ∈ C satisfy ct = c−t for all such t.

Remark 2. Note the following technical detail: if below a verifier is used as BSS
algorithm for inputs of varying size, then for different cardinalities q of the finite
field F it needs to work with different constants cos 2π

q , sin
2π
q . It is not hard to

see that given q one could add two real numbers to the verification proof which
in the ideal case represent real and imaginary part of a complex primitive q-th
root of unity. The verifier in question deterministically checks in polynomial time
whether this is the case and then continues to use these constants for evaluating
trigonometric polynomials.

The following theorem is used crucially later on. It deals with the problem to
verify whether a function s, given by a table of values, is close to a trigonometric



12 Klaus Meer

polynomial. The parameters ks, qs, ds used in the statement later on will depend
on the parameters k, q, d given with the input f.

Theorem 4 (Testing and correcting trigonometric polynomials; see
Theorems 2.4 and 5.2 in [5]). Let ds ∈ N, h := 1015, ks ≥ 3

2 (2h + 1), d̃s :=
2hksds, and let Fqs be a finite field with qs being a prime number larger than
104(2hksds + 1)3. Let s : F ksqs → R be a function given by a table of its values.

a) There exists a probabilistic verification algorithm in the BSS-model of com-
putation over the reals with the following properties:

i) The verifier as input gets the table for s together with a proof string con-
sisting of at most q2kss segments. Each segment has at most 2hksds+ks+1
many real components. The verifier uniformly generates O(ks log qs) ran-
dom bits and has a running time that is polynomially bounded in the
quantity ks log qs, i.e., polylogarithmic in the input size O(qkss ).

ii) For every table representing a trigonometric max-degree ds polynomial
on F ksqs there exists a proof such that the verifier accepts with probability
1.

iii) For any 0 < ε < 10−19 and for every function value table whose distance
to a closest max-degree d̃s := 2hksds trigonometric polynomial is at least
2ε, the probability that the verifier rejects is at least ε, no matter which
proof is given.

b) Suppose the verifier under a) has accepted s and the closest trigonometric
polynomial of max-degree ≤ d̃s is s̃ with a distance at most δ for arbitrary
fixed and small enough δ > 0. There exists another segmented verifier work-
ing as follows:

i) It gets as input the table for s, a point x ∈ F ksqs and an additional proof

certificate with at most O(
√
qs
ks−1) segments of length 2

√
qsksds + 1

each. The verifier uniformly generates O(ks log qs) random bits and has
a running time that is polynomially bounded in the quantity ks

√
qsds.

ii) If s ≡ s̃ is a trigonometric max-degree ds polynomial, there is a certificate
such that the verifier accepts with probability 1.

iii) If s(x) 6= s̃(x), the verifier rejects every certificate with probability ≥ 3
4 .

Note that even though the theorem does not give a sharp test in the sense that
acceptance of s only implies with high probability closeness to a trigonometric
polynomial of larger max-degree than ds, in the subsequent steps below that
rely on this test a verifier still expects from a correct prover to receive data as
if s is a max-degree ds polynomial. This refers, for example, to certain bivariate
restrictions of s used further on.

Coding univariate algebraic polynomials. We shall now work out how to
code the information a verifier needs in view of Theorem 3 when dealing with
a given function f : F kq → R. This will be done using, among other things, a
trigonometric polynomial s with suitable values for ks, qs, and ds to which, as
part of the verification procedure, Theorem 4 has to be applied.
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For each pair (x(1), x(2)) ∈ F 2k
q which the verifier might randomly generate in

the closeness test it needs to access information about the algebraic polynomials
fi when restricted to the paraxial direction ei. Those restrictions have to be
evaluated in some of the points constituting tps(x(1), x(2)). We next describe
how to encode this information using a trigonometric polynomial s in such a
way that each round of the closeness test needs to inspect a single segment of
the function value table for s only. The basic idea is to encode the d+1 coefficients
of a restriction of the form t → fi(x+ tei) as certain values of s in such a way,
that the information needed for one round of the test is encoded in one segment
representing the bivariate restriction of s to a two-dimensional plane. Consider
a fixed pair (x(1), x(2)) ∈ F 2k

q and let tps(x(1), x(2)) =: (x(1), x(2), . . . , x(k)) ∈
F

(k2)
q . Suppose the closeness test needs to access the k functions fj , 1 ≤ j ≤ k

with fj ∈ Pj(k, d). More precisely, the following univariate restrictions then are
of interest; the index in the table below will later on denote the first (of two)
values used to parameterize the plane.

index univariate restriction index univariate restriction

1 t→ f1(x(1) + te1) 2i− 1 t→ fi(x
(i) + tei)

2 t→ f1(x(2) + te1) 2i t→ fi(x
(i+1) + tei)

3 t→ f2(x(2) + te2)
...

...
4 t→ f2(x(3) + te2) 2k − 1 t→ fk(x(k) + tek)
5 t→ f3(x(3) + te3)
...

...

Every restriction is a univariate algebraic polynomial of degree d. We encode
the coefficients of these polynomials as values of a trigonometric function s :
F ksqs → R; here ks := 2 + 2k and qs is chosen to be at least as large as q and
satisfying the additional requirements of Theorem 4 once ds has been chosen
below. Furthermore, s(2i − 1,m, x(1), x(2)) gives the coefficient of monomial tm

of the polynomial t→ fi(x
(i) + tei), similarly for s(2i,m, x(1), x(2)). Note that s

is considered on F ksqs instead of F ksq in view of the requirements of the test behind

Theorem 4, part a) used later on. It follows that for each pair (x(1), x(2)) ∈ F 2k
q

the information used by the closeness test is coded by the values of s on the
plane E(x(1), x(2)) := {(j,m, x(1), x(2)) | j,m ∈ Fqs} ⊂ F ksqs parameterized by

the first two coordinates. On E(x(1), x(2)) we have to specify (2k − 1)(d + 1)
many values. The following easy technical result is necessary to bound the size
of that part of a certificate which specifies s as well as the size of another part
that codes the bivariate trigonometric polynomials obtained as restrictions of s
to the planes E(x(1), x(2)).

Lemma 3. Let q, k, d ∈ N be given, ks := 2k+2, qs ≥ q and let fi ∈ Pi(k, d), 1 ≤
i ≤ k.
a) There exists a trigonometric polynomial s : F ksqs → R of max-degree ds :=

O(q) which codes the coefficients of the fi for all pairs (x(1), x(2)) as described
above.
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b) For all pairs (x(1), x(2)) ∈ F 2k
q , the bivariate trigonometric polynomial de-

fined on E(x(1), x(2)) by b(x(1),x(2))(j,m) := s(j,m, x(1), x(2)) has max-degree
O(q).

c) Let q′, k′, d′ ∈ N and let s′ : F k
′

q′ → R be a trigonometric polynomial of max-
degree d′ ∈ N not identically 0. Then the number of zeros of s′ is at most
2d′(k′ + 1)(q′)k

′−1.

Proof. We just briefly sketch the elementary proofs. The given bounds might
not be sharp, but they suffice for later purposes.

a) This can be shown using trigonometric interpolation. Note that the in-
tended coding only prescribes values in points (j,m, x(1), x(2)), where 1 ≤ j ≤
2k − 1, 0 ≤ m ≤ d and x(1), x(2) ∈ F kq . Thus, all components range between 0
and max{2k − 1, d, q − 1}. The previous conditions on q (see Proposition 1 and
Theorem 3) guarantee that q − 1 is the maximal value. In the univariate case q
prescribed values can be interpolated by a trigonometric polynomial of degree
d q−12 e. Now, a standard tensor-product construction gives a suitable trigonomet-

ric Lagrange polynomial in the multivariate case of max-degree d q−12 e as well,
see for example [14].

b) follows immediately from the fact that the plane is parameterised by the
two first unit vectors (1, 0, . . .)T and (0, 1, 0, . . .)T ∈ F ksqs . The definition of the
degree of a trigonometric polynomial shows that the max-degree resulting from a
restriction to a plane depends on the values of the components of the respective
directional vectors. Since here those values only are 0 or 1, the max-degree of
the bivariate restrictions is no larger than that of s.

c) This is an easy induction on k′, noticing that in the univariate case 2d′+1
zeros imply that a degree d′ polynomial is identically 0. The induction step can
be performed as done, for example, in [3], pp. 222f in the case of algebraic
polynomials. 2

Revised Closeness test. We now describe and analyze an extended form of the
closeness test from Section 3.1. This will lead to the proof of Theorem 2. Before
we do so let us summarize the conditions on the involved parameters resulting
from our considerations so far: q, k, d ∈ N are given with the function f to be
tested, ε > 0 is the fixed reliability parameter. Here, q ≥ max{18kd3, 32k2d/ε}.
Then, ks := 2k + 2, ds = O(q) and qs = Ω(k3sd

3
s), and thus qs = Ω(k3q3);h is a

(huge) constant.

Closeness Test Revised: Let q, qs, k, ks, d, ds, h be as above, ε > 0
Input: Function value table for an f : F kq → R; a proof certificate π of length

O((kq)O(k)). It consists of four parts π1, . . . , π4. Here, π1 is a function value table
for an s : F ksqs → R, π2 is a certificate necessary to perform the tests on s behind

Theorem 4, part a), π3 represents for every pair (x(1), x(2)) ∈ F 2k
q a bivariate

trigonometric polynomial b(x(1),x(2)) : F 2
qs → R of max-degree q, given by its

coefficients, and π4 is the certificate used for the correctness test on s underlying
Theorem 4, part b).
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Goal: The test should be ε-reliable with respect to the question whether
f ∈ P (k, d).

1. Perform the test behind Theorem 4, part a) on s and verify, whether s
is sufficiently close to a trigonometric polynomial s̃ : F ksqs → R of max-degree

d̃s := 2hksq using part π2 of the certificate. If the test fails reject.
Perform O(1/ε) many rounds of the following steps 2-8:
2. Randomly generate two points x(1), x(2) ∈ F kq .
3. Compute deterministically (x(1), x(2), . . . , x(k)) := tps(x(1), x(2)) ∈ (F kq )k.
4. Read the coefficients of b(x(1),x(2)) from part π3 of the certificate.

5. Generate random j,m ∈ Fqs , verify s(j,m, x(1), x(2)) = s̃(j,m, x(1), x(2))
using the correctness test for s from Theorem 4, part b).

6. Check whether s(j,m, x(1), x(2)) = b(x(1),x(2))(j,m); reject if not.
7. Check consistency: if a single fi in one or several rounds has to be evaluated

in two points lying on the same paraxial line check that the resulting restrictions
are the same.

8. Check the equalities from the closeness test. Here, f(x(1)) is read from the
given table for f , whereas the values of an fi in x(i) or x(i+1), respectively, are
computed deterministically: Compute all coefficients from b(x(1),x(2)), evaluate it
for the relevant values of j,m and then compute the value of the coded univariate
algebraic polynomial. Reject, if at least one of the equations does not hold.

If at least one round leads to a reject, the verifier rejects, otherwise it accepts.

A verifier performing this revised closeness test fulfills the statement of The-
orem 2. More precisely, we get

Theorem 2 (reformulated). Let f : F kq → R. For ε > 0 let a verifier V
perform O(1/ε) rounds of the above revised closeness test. Then V is ε-reliable
concerning the question whether f is an algebraic polynomial of max-degree d.
The running time of V is polynomial in kq, it generates O(k log q) many random
bits, uses a certificate of size O((kq)O(k)), and reads O(1) segments of maximal
length O((qk)O(1)).

Proof. Let us first inspect the resources needed by V . The lengths of certificate
π and of segments can be estimated as follows: The table of values for f has size
qk. The test behind Theorem 4, part a) requires the table of values for s, which
has size O(qkss ). Lemma 3 shows that it suffices to require that the trigonometric
polynomial represented by the table has max-degree at most q; together with
the conditions qs ≥ 104(2hksq + 1)3 and ks = 2 + 2k (and ks ≥ 3

2 (2h + 1)) it
follows that the size of the table for s is in O((kq)3k). Performing the test for
closeness of s to a trigonometric polynomial s̃ uses a certificate π2 consisting of
q2kss = O((kq)3k) many segments; each segment has length O(ksq+ks) = O(kq).
Next, for all q2k many pairs (x(1), x(2)) ∈ F 2k

q part π3 of the certificate contains
the coefficients of the bivariate trigonometric polynomials b(x(1),x(2)). By Lemma

3 their max-degrees are bounded by O(q), so O(q2) coefficients are sufficient.
Thus, π3 has total length O(q2k+2), split into q2k segments of size O(q2). Finally,
in each round the test in Step 5 performs a correction relying on Theorem 4,
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part b). It requires a certificate π4 of length O(
√
qs
ksksq) = O((kq)2k), split into

segments of length 2
√
qsksq + 1 = O((kq)2.5). Altogether, the certificate π has

size O((kq)O(k)) and the segments have maximal size O((kq)2.5). Given the way
the restrictions of the fi’s are coded together with Theorem 4 the verifier reads
O(1) many segments.

Next, we determine the number of random bits: Step 1 of the test needs
O(ks log qs) = O(k log q) random bits; Step 2 requires as well O(k log q) random
bits in each round. Step 5 generates in each round two elements from Fqs us-
ing O(log qs) = O(log(kq)) random bits. The subsequent correctness test uses
O(ks log qs) = O(k log(kq)) random bits. In Section 3.1 we assumed q ≥ 18kd3,
so the number of random bits can be bounded by O(k log q).

The running time for Step 1 is poly(ksqs) = poly(k log q), again using that
qs = Θ(k3q3) and q ≥ 18kd3, so log qs = O(log q). The computation of the
sequence tps(x(1), x(2)) runs in polynomial time in k. Each b(x(1),x(2)) has O(q2)
many coefficients, so this is also the time to read all of them. The correctness
test for s according to Theorem 4, part b) can be performed in poly(ks

√
qsd) =

poly(kq) steps. For Step 6, b(x(1),x(2)) has to be evaluated in a (j,m) which needs

time O(q2). Checking validity of the k equations constituting the closeness test
then can be done in time poly(kd). The same holds for recording the points in
which the restriction of an fi is evaluated and for determining, whether different
such points lie on the same paraxial line. Altogether, verifier V runs in time
poly(kq).

Finally, we analyze the failure probability. Clearly, if f is a max-degree d
algebraic polynomial and if the information provided by certificate π is correct,
then V accepts with probability 1. Suppose then that f is not ε-close to an
algebraic max-degree d polynomial. As usual in this area, the arguments below
suffice to conclude that an independent repetition of some of the tests performed
constantly many times yields the required probability bounds. The error sources
in the test are the following: either s is not sufficiently close to a trigonometric
polynomial of suitable max-degree; or s is close but for the values in which s
has to be evaluated the result is not that of the closest trigonometric polynomial
s̃; or the restriction of this polynomial to one of the planes E occurring in the
revised closeness test does not equal the bivariate polynomial b; or the univariate
algebraic polynomials coded by b do not cause f to pass the original closeness
test. We now argue that the verifier detects if one of these cases holds with
arbitrarily high (constant) probability. Step 1 of the test rejects at least with
a positive constant probability δ > 0, if s is not 2δ-close to a trigonometric
polynomial s̃ of a corresponding max-degree; thus, O(1/δ) repetitions suffice to
raise this probability to an arbitrary constant close to 1. Next, the correctness
test behind Step 5 detects a difference in the values of s and s̃ in the chosen
point with probability at least 3

4 . Step 6 verifies whether the restriction s′ of s̃ to
the plane E(x(1),x(2)) equals b(x(1),x(2)). Here, b has max-degree O(q) and s′ has
arity k′ := 2 and max-degree d′ := 2hksq. Note that even though the low-degree
test for s gives closeness to a polynomial of higher max-degree s̃, the verifier
expects the degree to be the one of a correct s. Therefore, b is taken to have
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max-degree O(q) only. The potentially larger degree of s̃ enters the error analysis
only with respect to the domain F 2

qs from which the test randomly chooses the
point (j,m) in which b and s′ are evaluated. Using Lemma 3 applied to s′ − b
(with k′, d′ as above and q′ := qs) a difference between s′ and b is realized by
the verifier with probability at least 1 − 12hksqqs

q2s
. Since qs ≥ 104(2hksq + 1)3

this probability is ≥ 1 − 10−3. If all tests so far have passed without rejection,
then with arbitrarily high constant probability the data encoded by the different
b’s corresponds to suitable algebraic univariate polynomials of degree d. Now,
according to Theorem 3, Step 8 rejects with probability > 1

2 if f is not ε-close
to an algebraic polynomial. 2

3.3 Finishing the proof

The final step necessary for improving the statement of Theorem 2 to that of
Theorem 1 relies on the well known technique of (segmented) verifier composition
and the way it has been used in the real number framework in [5].

Proof. (of Theorem 1). We apply the well known technique of verifier composi-
tion developed in [2] and used also in the BSS framework in [5]. Therefore, we
only briefly outline how to apply the technique in the present situation. Consider
the verifier V of Theorem 2. Whenever it reads a segment of length O((kq)O(1))
it subsequently computes deterministically from the data read in polynomial
time in the size of the segment the corresponding answer to one of the ques-
tions occuring in the revised closeness test. This question can be expressed as
PR-question by formalizing the verifier’s computation on the information read in
the currently queried segment. For example, this can be done by describing the
computation via an instance of the NPR-complete problem of deciding solvabil-
ity of a system of quadratic polynomial equations over the real numbers; then,
the segment read provides a solution assignment to (part of) the variables of
that system; see [7] for this basic construction behind the corresponding NPR-
completeness proof. Reformulating things that way this part of the verification
can be replaced by what is called an inner verifier: Instead of reading the entire
segment (this would not reduce the number of proof components required to be
seen) the inner verifier performs a verification for the resulting instance of the
above mentioned NPR-problem. The advantage is that the input size is reduced,
and so is the number of positions of a new corresponding certificate read by the
inner verifier. Composition of verifiers means that a new composed verifier uses
the old (outer) verifier to determine the segments that should be asked, but re-
places the deterministic polynomial time procedure that uses the entire segment
to compute the answer to the corresponding query by another inner verification
procedure. In order to make this ongoing working the composed verifier in ad-
dition has to perform certain consistency checks. These checks guarantee that a
prover gives consistent answers to the inner verifier if the outer verifier asks in
several queries segments that contain overlapping data. This is only a sketchy
outlook. In the above situation, the outer verifier behind Theorem 2 has to be
composed several times with inner verifiers. More precisely, one can compose it



18 Klaus Meer

twice with the verifier designed in [5] that codes satisfying assignments of poly-
nomial systems using low max-degree trigonometric polynomials and after that
compose the resulting intermediate verifier with the long transparent verifier for
NPR, see also [5]. Since the way how those verifiers work is described in full
detail in the cited papers, this should suffice as short outline. That way, finally a
verifier is obtained that has O(k log q) randomness, query complexity O(1) and
is ε-reliable, i.e., it has the properties stated in Theorem 1. 2

4 Conclusions

In [11] an ε-reliable property test for algebraic k-variate polynomials of given
max-degree defined on a finite subdomain of suitable size q of the reals was de-
signed. The test uses O(k log q) random bits and queries O(k) positions in a table
for f (considering ε as a constant). In this paper we constructed a real number
PCP of proximity for this problem using as well O(k log q) random bits, but
only O(1) oracle calls to both the table of f and an additional proof certificate.
Here are some subsequent questions, some of which are inspired by the helpful
comments of the reviewers: The parameters used in our algorithm likely are far
from being optimal. This holds both for the necessary domain size on which f is
defined, for the size of the additional certificate, for the number of queries, and
for the running time. Can we significantly reduce the constants hidden behind
the respective O-statements? Next, it still seems puzzling that the algorithm for
algebraic polynomials relies on the use of trigonometric polynomials as coding
objects. This clearly makes the approach complicated and technically involved.
Are there easier verification algorithms not needing the detour along trigono-
metric polynomials? In the classical PCP literature, the important initial role
played by segmented verifiers has been subsumed by that of so-called robust
verifiers, see [6] and also [13]. Since the main technical problem to overcome is
segmentation, it is of course interesting to ask whether robust verifiers in the
real-number framework would lead to easier proofs as well, including a possibility
to avoid trigonometric polynomials. Another impact of classical robust verifiers
is to obtain property testers instead of PCPs of proximity. Would this be possible
both for algebraic and trigonometric polynomials? We do not have an educated
guess at the moment.6 Next, what about studying algebraic polynomials with a
more ’continuous’ closeness measure like the L1-norm, and then allowing small
differences between given values and those of a best-approximating polynomial?
Finally, there are of course numerous problems in the real number framework
where one could ask for the existence of either PCPs of proximity or property
testers, for example for algebraic polynomials (as said above), but also for many
other real-number problems. Together with the previous question this is also
related to the not yet studied question of software testing in the BSS model:
Here one could ask for checking in a randomized way whether a given program
approximately computes a predetermined function or a function from a given
class with not too many errors.

6 Thanks to an anonymous referee for very helpful comments in this respect.
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