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Abstract. A word is called closed if it has a prefix which is also its
suffix and there is no internal occurrences of this prefix in the word. In
this paper we study the maximal number of closed factors in a word of
length n. We show that it is quadratic and give lower and upper bounds
for a constant.
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1 Introduction

Various questions that concern counting factors of a specific form in a word of
length n have been studied in combinatorics on words. Several studies have been
devoted to the words that are extremal with respect to the proportion of factors
with a given property. For example, an extensive study has been performed on
the problem of counting the maximal repetitions (runs) in a word of length n. It
has been shown in [17] that the maximal number of runs in a word is linear, and
it was conjectured to be n. Subsequently, there was much research performed to
find the bound [8]. Recently, the conjecture has been proved with a remarkably
simple argument, considering numerous attempts to solve it [4]. We remark that
questions about counting regular factors in a word are often non-trivial. For
example, the problem of bounding the number of distinct squares in a string:
A.S. Fraenkel and J. Simpson showed in 1998 [15] that a string of length n
contains at most 2n distinct squares, and conjectured that the bound is actually
n. After several improvements, the bound of 11

6 n has been proved in [9], but the
conjecture remains unsolved.

A related problem concerns counting palindromic factors. It is easy to see
that a word of length n can contain at most n + 1 distinct palindromes (see
e.g. [10]). Such words are called rich in palindromes, and there also exist infinite
words such that all their factors are rich. Words rich in palindromes have been
characterized in [16]. Words containing few palindromes were studied in [6, 14].
Recently some related questions about counting generalizations of palindromes
have been studied, e.g. privileged factors [22] and k-abelian palindromes [7].
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We are interested in counting the factors that are called closed. A finite word
is called closed if it has length ≤ 1 or it is a complete first return to some
proper factor, i.e. it starts and ends with the same word that has no other
occurrences but these two. Otherwise the word is called open. The terminology
closed and open was introduced by G. Fici in [12]; for more information on closed
words see [13]. The notion of closed word is actually the same as the notion of
complete return word. The name return word is usually referred to factors of an
infinite word and is used to study its properties. It can be regarded as a discrete
analogue of the first return map in dynamical systems. For example, F. Durand
characterized primitive substitutive words using the notion of a return word [11].
Return words also provide a nice characterization of the family of Sturmian words
[24]. The explicit formulae for the functions of closed and open complexities for
the family of Arnoux–Rauzy words, which encompass Sturmian words, were
obtained in [21]. In [20], the authors prove a refinement of the Morse–Hedlund
theorem (see [19]) providing a criterion of periodicity of an infinite word in terms
of closed and open complexities.

The concept of closed factor has recently found applications in string algo-
rithms. The longest closed factor array (LCF array) of a string x stores for every
suffix of x the length of its longest closed prefix. It was introduced in [3] in con-
nection with closed factorizations of a string. Among other things, the authors
presented algorithms for the factorization of a given string into a sequence of
longest closed factors and for computing the longest closed factor starting at
every position in the string. In [5], the authors present the algorithm of recon-
structing a string from its LCF array. See also [1] for some generalizations.

It is easy to show that each word of length n contains at least n+ 1 distinct
closed factors [2]. In this paper, we study closed-rich words, i.e., words containing
the maximal number of distinct closed factors among words of the same length.

We prove an upper bound of ∼ 3−
√
5

4 n2 on this number (see Theorem 1′), and we

show that a word can contain ∼ n2

6 distinct closed factors (see Proposition 3).
We also extend the notion of closed-rich words to infinite words, requiring that
each factor contains a quadratic number of distinct closed factors. We find a
sufficient condition on an infinite word to be closed-rich (see Proposition 5), and
provide some families of infinite closed-rich words.

2 Preliminaries

Let A be a finite set called an alphabet. A finite or an infinite word w = w0w1 · · ·
on A is a finite or infinite sequence of symbols from A. For a finite word w =
w0 · · ·wn−1, its length is |w| = n. We let ε denote the empty word, and we set
|ε| = 0. A word v is a factor of a finite or an infinite word w if there exist words
u and y such that w can be represented as their concatenation w = uvy. If u = ε,
then v is a prefix, and if y = ε, then v is a suffix of w. If a finite word w has
a proper prefix v which is also its suffix, then v is called a border of w. If the
longest border of a word w occurs in w only twice (as a prefix and as a suffix),
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then w is closed. By convention, if w is the empty word or a letter, then it is
closed.

It is not hard to see that a word of length n contains at least n+ 1 distinct
closed factors; G. Fici and Z. Lipták characterized words having exactly n + 1
closed factors [2] . In the same paper they showed that there are words containing
Θ(n2) many distinct closed factors. The example they provided is a binary word

with ∼ n2

32 closed factors. We say that a finite word w is closed-rich if it contains
at least as many distinct closed factors as any other word of the same length
and on the alphabet of the same cardinality.

If there exists an integer t such that for each i (i < |w| − t in the case w is

finite) we have wi+t = wi, then t is called a period of w. Let s = |w|
t and let u be

the prefix of w of length t. We say that w has exponent s and write w = us. The
notation w = uk+ means that w has exponent s > k for an integer k. The word
u is called the fractional root of w. The word w is primitive if its only integer
exponent is 1. Hereinafter we always assume t to be the shortest period of w,
and thus, s to be the largest exponent of w.

The following properties follow directly from the definitions.

Proposition 1. Any word with exponent at least two is closed.

Proposition 2. Let w be a word of exponent 3 and of length n. Then all its
factors of length at least 2n

3 are closed, and moreover, all of them except for one
of length 2n

3 are unioccurrent.

De Bruijn graph of order n on an alphabet A is the directed graph whose set
of vertices (resp. edges) consists of all words over A of length n (resp. n + 1).
There is a directed edge from u to v labeled w if u is a prefix of w and v a suffix
of w. We call a Hamiltonian path in this graph a de Bruijn word.

Proposition 3. Let n = 3 · |A|k for an integer k, and v be a de Bruijn word of

length n
3 . Then w = v3 has ∼ n2

6 distinct closed factors.

Proof. Due to Proposition 2, all factors that are longer than 2n
3 are closed and

distinct (there are n2

18 of those). All words of length n
3 + log(n3 ) ≤ l ≤ 2n

3 are also
closed with corresponding border of length l− n/3 (there are ∼ (n3 )2 of distinct
factors of these lengths).

If a factor of length less than n
3 + log(n3 ) is closed, then its border is shorter

than log(n3 ), because all factors of de Bruijn word of length at least log(n3 ) are
unioccurrent. Thus, there are not more than n

3 · log(n3 ) closed factors that are
shorter than n

3 + log(n3 ).

The construction from the previous proposition gives only words of length n =
3 · |A|k, k ≥ 0, but it could be easily modified to other lengths. For lengths n
divisible by 3 we can e.g. take cubes of prefixes of de Bruijn words (we omit
technical details here). Words of lengths not divisible by 3 can be obtained by
shortening a word of next length divisible by 3 — clearly, a prefix of length 1
or 2 can add at most linear number of closed factors. However, if we change one
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letter in the middle of a word, the total number of closed factors can change
dramatically:

Example 1. Let us show that the number of closed factors can change from
linear to quadratic when changing only one letter in a word. It is easy to see
that the word anbanban has quadratic number of closed factors. After replacing
the leftmost occurrence of b with a, we obtain the word anaanban with linear
number of closed factors.

For a finite word w, we let Cl(w) denote the number of distinct closed factors of
w. We now provide a trivial upper bound on Cl(w).

Proposition 4. For each word w of length n ≥ 7, one has Cl(w) ≤ n2

4 .

Proof. For a word u and a letter a, let us denote by t the longest repeated suffix
of ua, and z denote the longest repeated suffix of t. Clearly, the number of new

closed factors ending in the last letter of ua is at most |t|−|z| ≤
⌊
|ua|
2

⌋
when u is

non-empty. For n = 0 we have one closed factor (the empty word), for n = 1 we
add one closed factor (a letter). So, building w letter by letter, we get at most

2 +
∑n
i=2b

i
2c = 2 + n(n+1)

4 − dn2 e closed factors in w. The claim follows.

In the next section we prove a tighter upper bound with the leading coefficient
3−
√
5

4 ≈ 0.19. We believe it can be improved to 1
6 = 0.16.

3 Finite closed-rich words

The main goal of this section is to prove Theorem 1 providing an upper bound
on the number of closed factors that a finite word can contain. We start with
some auxiliary lemmas. Sometimes it will be convenient for us to consider cyclic
words. For a normal word w, we can consider a corresponding cyclic word as the
class of all its cyclic shifts. Then by a closed factor of a cyclic word we mean a
closed factor of some its shift.

Lemma 1. Let u be a primitive finite word of length k, then its cyclic square
has at most k2 distinct closed factors.

Proof. Let û be the cyclic square of u with the first letter û0 = u0. The following
observations constitute the proof of the lemma. Basically, we count (left) borders
giving rise to distinct closed words.

Each occurrence of a factor of û is a (left) border of at most one closed
factor. Since û is a cyclic square, in order to count borders giving rise to distinct
closed words, we can only consider the factors of û starting in its first half
û0 · · · ûk−1 = u0 · · ·uk−1 (borders starting in the second half of û give rise to the
same closed words). The border of a closed factor of û cannot be longer than k,
otherwise u is not a primitive word. The number of factors of û that start in its
first half and are not longer than k is k2. The statement follows.
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Lemma 2. Let w be a word with exponent at least 3, i.e., if we denote its period
by k and its length by n, then n ≥ 3k. Then the number of closed factors in the
word is at most k2 + (n− 3k)k + 1

2 (k + 1)k.

Proof. We count closed factors by their lengths: k2 is the upper bound for the
number of closed factors of length at most 2k (given by the bound for a cyclic
word of length 2k from Lemma 1); (n−3k)k counts k closed factors of each length
2k + 1, . . . , n − k; and 1

2 (k + 1)k counts long ones as the sum of an arithmetic
progression (k factors for length n − k + 1, k − 1 for n − k + 1, . . . , and 1 for
length n).

Corollary 1. For words of length n and of exponent greater than 3, we have

less than n2

6 factors asymptotically.

Proof. We estimate the bound from Lemma 2: for words with exponent t ≥ 3
we count closed factors and get the function c(t) = n2( 1

t −
3
2t2 ). The maximum

value of c(t) is n2

6 and it is achieved for t = 3.

We say that a finite word w′ is a cyclic shift (or a conjugate) of a finite word
w if there exist words u and v such that w = uv and w′ = vu.

Lemma 3. Let w be a word of exponent α ≥ 3 and v its primitive root, so that
w = vα. Then for any cyclic shift v′ of v, the word v′α contains the same number
of closed factors as w.

Proof. The proof follows from the counting in the proof of Lemma 2: the set
of closed factors consists of all long factors (their numbers are clearly the same
since we only take lengths into account) and short closed factors which are also
closed factors of the cyclic square, so their sets are the same.

The following example shows that the statement of Lemma 3 does not hold for
squares. Moreover, it is possible that taking a cyclic shift of the root changes the
number of closed factors in a word from linear to quadratic.

Example 2. The number of closed factors in an/2banban/2 is quadratic, while in
its cyclic shift anbanb it is linear.

The set of distinct closed factors of a word w can naturally be split into two
sets, the set of closed words of length at least 2, which have border, and the
set of closed words of length at most 1, i.e., letters and the empty word. We
let Cl′(w) denote the number of closed words of length at least 2 (“long” closed
factors), and Cl0(w) denote the number of “short” closed factors, so that Cl(w) =
Cl′(w) + Cl0(w).

Now we can state the main result of this section.

Theorem 1. For a finite word w of length n, the following holds:

Cl′(w) <
3−
√

5

4
n2 +

√
5− 1

4
n.



6 O. Parshina, S. Puzynina

Clearly, since Cl(w) = Cl′(w) + |A| + 1 ≤ Cl′(w) + n + 1, we can rewrite the
statement of Theorem 1 as follows.

Theorem 1′ For a finite word w of length n, the following holds:

Cl(w) <
3−
√

5

4
n2 +

3 +
√

5

4
n+ 1.

For a finite word w of length n, we denote its prefix of length n− 1 by w−. The
following lemma constitutes the key part of the proof of Theorem 1.

Lemma 4. Let w be a word of length n. If Cl′(w) − Cl′(w−) ≥ Cn for some
1
3 < C ≤ 1

2 , then Cl′(w) ≤ (1−C)2

2 n2 + 1−C
2 n.

Proof. In the proofs of the lemma and of Theorem 1, we only talk about long
closed factors (of length at least 2). Let t denote the longest repeated suffix of
w, z denote the longest repeated suffix of t, and c be the letter preceding the last
occurrence of z in w, so that cz is the shortest unrepeated suffix of t. Clearly,

Cl′(w)− Cl′(w−) ≤ |t| − |z|. (1)

Two cases are possible: the last and the penultimate occurrences of t in w might
intersect, or not. If they intersect, we have a power as a suffix of w; let l be the
period of this power. In this case we denote the suffix of t of length l by x. If
they do not intersect, we set x = t.

There are several possibilities of how the word w can look like depending
on whether the occurrences of t intersect or not and whether the penultimate
occurrence of t starts from the beginning of the word or not. The case w = x3+

is treated in Lemma 2 and is not considered here. Other possibilities follow.

1. w = xs, 2 ≤ s < 3 where x is the shortest period of w;
2. w = xvx for a non-empty word v;
3. w = uxvx for non-empty words u, v;
4. w = uxs for 2 ≤ s < 3 and a non-empty word u.

Let us treat each case separately.

1. Let w = xs, 2 ≤ s < 3. We use the following notation: |x| = l, r = n− 2l. In
this case the longest border t ending in the last position of w is of length r + l.
We should consider two subcases depending on the length of cz.

(a) The shortest unrepeated suffix cz of t occurs in w three times (see Fig. 1).
Due to inequality (1), in this case l ≥ Cn.
Let us count closed factors of w; it is easier to do by counting their borders.

Let us count borders that are suffixes of the rightmost occurrences of closed
factors of w. It is easy to see that every factor wi · · · wj for i ≥ l and j ≥
l + r is a border of the factor wi−l . . . wj . So, such border (suffix of a rightmost
occurrence of a closed factor) can start at the earliest at position l. There are
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lr r

x x

zc zc zc

Fig. 1. The case w = xs, 2 ≤ s < 3, |w| = n = 2l + r, |cz| ≤ r.

n−1∑
i=l

(n−i) −
l+r−1∑
i=l

(l+r−i) such borders in w. The second sum stands for borders

occurring inside wl . . . wl+r−1; each one of them defines the same closed factor
of w as the borders occurring in wn−r . . . wn−1. Since the word w is a power,
borders appearing in w0 . . . wl−1 do not define any closed factors different from
the ones already counted in the sum above. Hence,

Cl′(w) ≤
n−1∑
i=l

(n− i) −
l+r−1∑
i=l

(l + r − i) =
1

2
((n− l)(n− l + 1)− (r + 1)r)

=
1

2
((n− l)2 + (n− l)− r2 − r) = −3

2
l2 +

(
n+

1

2

)
l.

The last equality is due to the equality n− l = l+ r. This expression reaches its
maximum when l = 1

3n + 1
6 and is equal to 1

6n
2 + 1

6n + 1
24 . Thus, in this case

Cl′(w) ≤ 1
6n

2 + 1
6n+ 1

24 .

(b) The shortest unrepeated suffix cz of t occurs in w twice (Fig. 2).

lr r

x x

zc zc

Fig. 2. The case w = xs, 2 ≤ s < 3, |w| = n = 2l + r, |cz| > r.

Due to inequality (1), in this case l + r − |z| ≥ Cn.
Let us count the borders that are suffixes of the rightmost occurrences of

closed factors of w. All of them are located in the suffix of length n− l − |z| of
w. In a similar to 1.(a) way, using the relations r = n− 2l and |z| ≤ l + r − Cn
we obtain the following.

Cl′(w) ≤
n−1∑

i=l+r−|z|

(n−i) −
n−l−1∑

i=l+r−|z|

(n−l−i) =
l2

2
+l|z|+ l

2
≤ − l

2

2
+(1−C)nl+

l

2
.

This function reaches its maximum when l = (1− C)n+ 1
2 . Since we deal with

integers in all inequalities, we obtain Cl′(w) ≤ (1−C)2

2 n2 + (1−C)
2 n.
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2. If w = xvx for some word v (Fig. 3), inequality (1) gives l − |z| ≥ Cn.

l ≥ Cn

x xv

z zc c

Fig. 3. The case w = xvx, |w| = n.

Let us count borders that are suffixes of the rightmost occurrences of closed
factors of w. In fact, any such border cannot contain the first occurrence of cz
in w (the one starting with wl−|z|). Thus, we have the following inequality.

Cl′(w) ≤
n−1∑

j=l−|z|

(n− j) =
1

2
(n− l + |z|)(n− l + |z|+ 1)

≤ 1

2
(n− Cn)(n− Cn+ 1) ≤ (1− C)2

2
n2 +

(1− C)

2
n.

3. Let w = uxvx for non-empty words u, v (Fig. 4).

l ≥ Cn

u x v x

z zc c

Fig. 4. The case w = uxvx, |w| = n.

Due to inequality (1), in this case l ≥ Cn + |z|. We will count borders of
closed factors that start in u, and the borders that are factors of xvx separately.

Let us show that the border of a closed factor starting in u cannot contain
x as a factor. Suppose it is the case and consider the next occurrence of x in
this closed word. It must end before the index n− Cn, otherwise its suffix cz is
not unioccurrent in x. By the same reasoning it cannot start before |u| + Cn.
The distance between these two points is n− Cn− |u| − Cn = (1− 2C)n− |u|.
Provided with 1/3 < C ≤ 1/2 we have 1 − 2C < C. Thus, (1 − 2C)n − |u| <
Cn− |u| < Cn < l, and x cannot be placed in the indicated gap.

We will make a more generous rounding up saying that the number of borders
beginning in u is not greater than the number of factors in the prefix of w of

length n− Cn. This number is
|u|−1∑
j=0

(n− Cn− j) = n|u| − Cn|u| − |u|
2

2 + |u|
2 .
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The number of closed factors in xvx is not greater than
n−1∑

i=|u|+l−|z|
(n − i) =

1
2 (n− |u| − l + |z|)(n− |u| − l + |z|+ 1) ≤ 1

2 (n− |u| − Cn)(n− |u| − Cn+ 1).

Summing the two expressions, we obtain Cl′(w) ≤ (1−C)2

2 n2 + (1−C)
2 n.

4. Let w = uxs, 2 < s < 3. Analogously to the first case we should consider
two situations, when the the shortest unrepeated suffix cz is shorter than r, and
when it is longer than r.

(a) The shortest unrepeated suffix cz of t occurs in xs three times.

lr r

u x x

zc zc zc

Fig. 5. The case w = uxs, 2 ≤ s < 3, |cz| ≤ r, |w| = n.

Here n = |u|+ 2l + r, and l ≥ Cn.

The border of every closed factor that starts in u must end before the index
|u| + l − 1, otherwise x would occur in x2 three times, what contradicts the
assumption on x to be the smallest period of xs (see e.g. Problem 8.1.6. in [18]).
Thus, the number of closed factors starting in u is not greater than the sum
|u|−1∑
j=0

(|u|+ l − 1− j) = |u|2
2 −

|u|
2 + l|u|.

We will count the rightmost occurrences of borders of closed words that are
factors of xs. It is enough to count the borders that end in the last occurrence
of x in w. Again, the borders cannot start before the index n− l − r, otherwise
x would occur in x2 three times. Thus, the number of closed factors of xs is not

greater than
n−1∑

j=n−l−r
(n− j)− r(r+1)

2 = l2

2 + l
2 + lr.

Summing the two expressions, we get Cl′(w) ≤ |u|
2

2 −
|u|
2 + l|u|+ l2

2 + l
2 + lr =

l(|u|+ 2l+ r)− 3
2 l

2 + l
2 −

|u|
2 + |u|2

2 . Using the inequality |u| ≤ n− 2l, we obtain

Cl′(w) < ln−3

2
l2+

l

2
−n

2
+l+

n2

2
+2l2−2ln =

(n− l)2

2
−n

2
+

3l

2
<

(1− C)2

2
n2+

n

4
.

(b) The shortest unrepeated suffix cz of t occurs in xs twice (Fig. 6).

In this case l+r−|z| ≥ Cn. Since n = |u|+2l+r, we have n−l−|u|−|z| ≥ Cn,
and thus,

l + |u|+ |z| ≤ (1− C)n. (∗)
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lr r

u x x

zc zc

Fig. 6. The case w = uxs, 2 ≤ s < 3, |w| = n.

As in the case 4.(a), the number of closed factors starting in u is

|u|−1∑
j=0

(|u|+ l − j − 1) =
|u|2

2
+ l|u| − |u|

2
.

The number of closed factors in the suffix xs is less than

n−1∑
j=n−l−|z|

(n− j)− |z|(|z|+ 1)

2
=
l2

2
+ l|z|+ l

2
.

Thus, the number of closed factors in this case is

Cl′(w) ≤ |u|
2

2
+ l|u| − |u|

2
+
l2

2
+ l|z|+ l

2
= l(l+ |u|+ |z|)− l2

2
+
|u|2

2
+
l

2
− |u|

2
.

Using (∗) and |u| ≤ n− 2l we obtain

Cl′(w) ≤ (1− C)nl +
3l2

2
+
n2

2
− 2ln+

l

2
− n

2
+ l

=
3l2

2
+

(
−Cn− n+

3

2

)
l +

n2

2
− n

2
<

3l2

2
− (C + 1)nl +

n2

2
+
n

4
.

This expression reaches its minimum when l = 1+C
3 n.

Let us compare the values at the endpoints of its domain
(
Cn, n2

)
.

When l = Cn, the expression is (1−C)2

2 n2 + n
4 . When l = n

2 , the expression

is 3−4C
8 n2 + n

4 . Let us note that the latter value is smaller than the former for

all possible values of C. Thus, in this case Cl′(w) ≤ (1−C)2

2 n2 + n
4 .

The maximal bound among the obtained ones is (1−C)2

2 n2 + (1−C)
2 n.

We let prefi(w) and suffi(w) denote the prefix and the suffix of w of length i,
respectively.

Proof (of Theorem 1). Let us suppose that w is a word of length n with more

than Cn(n+1)
2 +

(√
5
2 − 1

)
n long closed factors, for some C ∈ ( 1

3 ,
1
2 ). Clearly, for

the proof we only need to consider C in these bounds due to Propositions 3 and 4.

In other words,
n∑
j=1

(Cl′(prefj(w))−Cl′(prefj−1(w)) ≥ Cn(n+1)
2 +

(√
5
2 − 1

)
n. It
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would mean that one of the terms in the sum, let us say the i-th one, is at least
Ci.

Let us consider the largest index i satisfying Cl′(prefi(w))−Cl′(prefi−1(w)) ≥
Ci, i.e., for all j > i, we have Cl′(prefj(w)) − Cl′(prefj−1(w)) < Cj. Using
Lemma 4, we can bound the number of distinct long closed factors of w the
following way.

Cl′(w) <
(1− C)2

2
i2 +

(1− C)

2
i+

n∑
j=i+1

Cj =
(1− C)2

2
i2 +

(1− C)

2
i

+ C
(n+ i+ 1)(n− i)

2
=

(
C2

2
− 3C

2
+

1

2

)
i2 +

(
1

2
− C

)
i+

C

2
n2 +

C

2
n.

The last expression in the formula is smaller than Cn(n+1)
2 +

(√
5
2 − 1

)
n when

C ≥ 3−
√
5

2 . Thus, the word w has less than Cn(n+1)
2 +

(√
5
2 − 1

)
n long closed

factors. Moreover, this expression reaches its maximum when C = 3−
√
5

2 .
Thus, the number of long closed factors in a word of length n is bounded by

3−
√
5

4 n2 +
√
5−1
4 n.

4 Infinite rich words

We say that an infinite word w is closed-rich if there is a constant C such that
for each n ∈ N each factor of w of length n contains at least Cn2 distinct closed
factors. We remark that in this definition we do not require the constant to be
optimal; however, a natural question is optimizing this constant (see Question 2).
In this section, we show that infinite closed-rich words exist, and provide some
families of examples.

Proposition 5. Let w be an infinite word, and let C > 2, α < 1 be two con-
stants. If for each n each factor of w of length n contains a factor of exponent
at least C and of length of period at least αn, then w is infinite closed-rich.

Proof. Let v be a factor of w of length n. By the condition of the lemma, it
contains a factor u of period k ≥ αn and of exponent C ′ ≥ C > 2, hence its
length l = C ′k ≥ Cαn.

To count closed factors of u we use the following two observations. All factors
of u of length greater than l − k are distinct. Each factor of u of length at least
2k has exponent at least 2 and hence is closed by Proposition 1.

If C ′ ≤ 3, there are at least
∑l
j=2k(l − j) ≥ (C′−2)2

2 k2 ≥ (C−2)2(αn)2
2 .

If C ′ > 3, then, in addition to the closed factors longer than l−k, the word u
has k distinct closed factors of each length between 2k and l−k. Thus, there are

at least (l− 3k)k +
∑l
j=l−k(l− j) ≥ (C ′ − 3)k2 + k2

2 = C′−5
2 k2 > (αn)2

2 = α2n2

2 .
Therefore, the constant in the definition of infinite rich words is given by

min(α
2

2 ,
(C−2)2α2

2 ).
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A morphism ϕ is a map on the set of all finite words on the alphabet A
such that ϕ(uv) = ϕ(u)ϕ(v) for all finite words u, v on A. The domain of the
morphism ϕ can be naturally extended to infinite words by ϕ(w0w1w2 · · · ) =
ϕ(w0)ϕ(w1)ϕ(w2) · · · . A morphism ϕ is primitive if there exists a positive integer
l such that the letter a occurs in the word ϕl(b) for each pair of letters a, b ∈ A.
A fixed point of a morphism ϕ is an infinite word w such that ϕ(w) = w.

Example 3. Let w be a fixed point of the morphism ϕ : a → abbba, b → abbbb.
We show that it is infinite closed-rich. Indeed, each block ϕk(c) for c ∈ {a, b} has
length 5k and contains a cube with the period 5k−1. Clearly, each factor of length
at least 2 · 5k − 1 contains a block ϕk(c). The maximal length, where we cannot
guarantee the next block ϕk+1(c), is 2·5k+1−2. Thus, we can apply Proposition 5
with C = 3 and α = 1

(2·52) = 0.02. We remark that this word can also be seen

as a Toeplitz word [23] with pattern baaa?, and that this construction can be
easily generalized to other morphic and Toeplitz words.

A large subclass of the family of Sturmian words also turns out to be infinite
closed-rich. Sturmian words are usually defined as infinite words with the small-
est possible number of distinct factors of each length among aperiodic words
(n + 1 factor of each length n ≥ 1). Sturmian words are known to be rich in
palindromes [16]. Sturmian words admit various characterizations. The one we
use here is via standard words. Let (d1, d2, . . . , dn, . . . ) be a sequence of integers,
with d1 ≥ 0 and dn > 0 for n > 1. To such a sequence, we associate a sequence
(sn)n≥1 of words by

s−1 = 1, s0 = 0, sn = sdnn−1sn−2 (n ≥ 1).

The sequence (sn)n≥−1 is a standard sequence, and the sequence (d1, d2, . . . ) is
its directive sequence. This sequence defines a limit: s = limn→∞ sn.

It is well known that a word is Sturmian if and only if it has the same
set of factors as the limit of some standard sequence. For more information on
Sturmian words we refer to Chapter 2 of [18].

Proposition 6. Let D be an integer and s be a Sturmian word with a directive
sequence (di)i≥1 such that di ≤ D for every i ≥ 1. Then s is infinite closed-rich.

Proof. For a sketch of proof, consider a factorization of s to standard words sk
and sk−1. If dk+1 ≥ 2, then between each two consecutive sk−1 in the factoriza-
tion there are at least two sk (in fact, dk or dk+1); that gives a power sαk with

2 < α ≤ D+ 1. In the case when dk+1 = 1, we can factorize sk to sdkk−1sk−2 and
get a power sγk−1 with 2 < γ ≤ D + 1. By Proposition 5, one can see that the
quadratic number of closed factors is achieved inside these powers. Here the con-
stant C from the definition of infinite closed-rich words depends on D. Note that
if the sequence of di’s is unbounded, then the Sturmian word can be made not
rich due to presence of powers with big exponents and relatively short periods.
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5 Concluding remarks

In this paper, we showed an upper bound ∼ 3−
√
5

4 n2 for the number of closed

factors in a finite word of length n, and we constructed examples with ∼ n2

6 . We
conjecture that this gives an asymptotic bound:

Conjecture 1. Finite closed-rich words contain ∼ n2

6 closed factors.

Based on numerical experiments, we also conjecture that they are cubes or words
of exponent close to 3. Table 1 shows the maximal number of closed factors that
a binary word of given length can contain.

Table 1. The maximal number of closed factors for binary words of length n.

n 1 2 3 4 5 6 7 8 9 10 11 12

max|w|=n Cl(w) 2 3 4 6 8 10 12 15 18 21 25 29

n 13 14 15 16 17 18 19 20 21 22 23 24

max|w|=n Cl(w) 33 37 42 48 54 60 66 72 79 86 93 101

Similar calculations have been made in [2], but there were some errors. We
made corrections for values n = 16, 17, . . . , 20. For the lengths we computed,
closed-rich words are cubes or close to cubes by their structure. For example,
the word u = (100101)3 of length 18 has 60 closed factors (one can easily verify
it). The word u− has 54 closed factors, and the word u1 has 66 closed factors.
The following question remains open even for binary alphabet:

Question 1. What is the exact formula for the maximal number of distinct closed
factors in a finite rich word?

In the last section we defined infinite closed-rich words as words for which there
exists a constant C such that each factor of length n contains Cn2 distinct closed
factors. A question that naturally arises is that of optimizing the constant:

Question 2. What is the supremum of the constant for infinite rich words?
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