
Variants of the Determinant Polynomial and the
VP-completeness

Prasad Chaugule, Nutan Limaye, and Shourya Pandey

Indian Institute of Technology, Bombay, India
{prasad,nutan ??,shouryap}@cse.iitb.ac.in

Abstract. The determinant is a canonical VBP-complete polynomial in
the algebraic complexity setting. In this work, we introduce two vari-
ants of the determinant polynomial which we call StackDetn(X) and
CountDetn(X) and show that they are VP and VNP complete respectively
under p-projections. The definitions of the polynomials are inspired by
a combinatorial characterisation of the determinant developed by Ma-
hajan and Vinay (SODA 1997). We extend the combinatorial object in
their work, namely clow sequences, by introducing additional edge labels
on the edges of the underlying graph. The idea of using edge labels is
inspired by the work of Mengel (MFCS 2013).

Keywords: Algebraic Circuits · VP-Completeness · Determinant Fam-
ily.

1 Introduction

In an influential paper of Valiant [12], a complexity theoretic view of algebraic
computation was presented. This work led to a classification of polynomials
based on the ease of computing them. Consequently, complexity classes such
as VF, VBP, VP and VNP were defined and investigated in many follow-up
papers. These algebraic classes were designed with the intention of mimicking
Boolean complexity classes. It was believed that they would give rise to equally
interesting, but potentially easier to resolve questions. For example, the question
of separating the classes VP and VNP turned out to be very interesting, like its
Boolean counterpart, namely the famous question of separating NP from P.

While there are many parallels between these two worlds, over the years,
many crucial differences between them have also surfaced. Specifically, in the
Boolean world, many naturally occurring problems have been found to be com-
plete for the classes NP and P1. Although many naturally occurring polynomials

?? Funded by SERB Project no. MTR/2017/000909
1 A problem P is said to be complete for a Boolean complexity class C if P ∈ C and

any problem P ′ in C reduces to P in polynomial time.

2 P. Chaugule et. al

are known to be complete2 for VNP, until very recently no natural polynomial
was known to be complete for VP.

The process of finding many complete problems for a complexity class is
crucial in many ways. For one, each complete problem presents a potentially
different way of understanding the class. It also makes the complexity class rich
and robust. In this work, we contribute to the class of VP-complete polynomials.

Until as recently as 2014, hardly any natural VP-complete polynomials were
known. In Durand et. al. [2] and Mahajan et al. [5], many interesting and fairly
natural families of polynomials were shown to be VP-complete. In [1], a few more
polynomials complete for VP were presented. All these polynomials were based
on counting graph homomorphisms3.

In this work we define two fairly simple to state variants of the determinant
polynomial and show that they are VP and VNP complete. As the determinant
is known to be complete for the class VBP 4 (a class known to be contained in
VP), this gives a satisfactory way of using the same base polynomial, namely the
determinant polynomial, whose generalisations capture the class VP and VNP.

The determinant polynomial is a central object of study in algebraic com-
plexity theory. Classically, the determinant has been studied for many centuries
by mathematicians, physicists, numerical analysts and computer scientists.

The determinant is known to be easy to compute. In this respect, it enjoys
a rather rare place in computation; it is an extremely useful quantity which is
also efficiently computable. The classical efficient algorithms for the determinant
are typically variants of the Guassian elimination method. In last three to four
decades, other approaches for computing the determinant have also been pro-
posed. One such example is an innovative approach proposed by Mahajan and
Vinay [6], which gave the first combinatorial characterization of the determinant
that yielded an efficient algorithm.

In this work, we take our inspiration from this combinatorial characterization
of the determinant polynomial and define two variants of the determinant which
we call StackDetn and CountDetn. We show that they are complete for the
classes VP and VNP, respectively.

The main proof idea comes from a paper of Mengel [8], which introduces
characterisations of VP and VNP using Algebraic Branching Programs (ABPs)

2 A polynomial Pn(X) is said to be complete for an algebraic complexity class A if
Pn(X) can be computed in A and any polynomial P ′

m(Y) can be obtained from
Pn(X) by setting the variables in X to variables in Y or field constants. For formal
definitions see Section 2

3 See also [3] for interesting variants of homomorphism polynomials.
4 An algebraic branching program (ABP) is a directed layered acyclic graph with a

source s and a sink t. The edges are labelled with formal variables or field constants.
The weight of an s to t path π is the product of the weights on the edges of π.
The polynomial computed by the ABP is the sum of weights of all the s to t paths.
A family fn with s(n) number of variables and degree d(n) where both s(n) and
d(n) are polynomially bounded in n is said to be in VBP iff there exist algebraic
branching program of size polynomially bounded in n which computes fn. For more
details see [11].

Variants of the Determinant Polynomial and the VP-completeness 3

with memory. In that work, informally speaking, it is shown that when ABPs
are appended with stack-like memory, then they capture the class VP, and when
they are appended with counter-like memory, they characterise the class VNP.
We use these ideas and combine them with the combinatorial characterisation
of the determinant to define our polynomial families.

The proof that shows that the determinant polynomial is complete for VBP
can be adapted in a very straightforward way along with the ABP with memory
characterisations of VP and VNP from the work of [8], to obtain polynomial
families that are hard for these classes. However, like many other classes of
polynomials (see for instance polynomial families from [10] and [7]), they are
circuit-description dependent. From the work started by Durand et al. the quest
has been to find circuit-description independent polynomial families complete
for VP. We are able to achieve that here. The polynomial families we obtain
here are circuit-description independent as desired and are variants of the deter-
minant polynomial, which make them substantially different from the previous
works [2], [5], [1].

1.1 Our Results

Before going into the details of our results, we recall the combinatorial charac-
terisation of the determinant. Let Y be an m × m matrix, with (i, j)th entry
equal to yi,j . It is known that the determinant of Y is sum of signed cycle covers
of the directed graph represented by Y . This is one of the many combinatorial
definitions of the determinant, but as is, it is not known to give rise to an efficient
computational procedure. Mahajan and Vinay generalized cycle covers using a
notion of clow sequences and proved that the sum of signed clow sequences also
equals the determinant. They then proved that the signed sum of clow sequences
is efficiently computable.

StackDetm and CountDetm. We also use sum of signed clow sequences to de-
fine our polynomial. In our case, the graph has some additional edge labels. For
StackDetm (for CountDetm), the labels come from a stack alphabet (counter
alphabet, resp.). Based on these labels, we get two types of clow sequences;
those which are stack-realizable (counter-realizable) and those which are not.
The polynomial sums only the prior clow sequences. We show that StackDetm
is VP-complete and that CountDetm is VNP-complete. We state our main theo-
rem.

Theorem 1. StackDetn(X) is VP-complete and CountDetn(X) is VNP-complete
over any field under p-projections.

2 Preliminaries

In this paper, a graph is always a directed graph unless specified otherwise.

Let G = (V,E) be a graph where V = [n]. A walk (u1, u2, . . . , uk+1) in G is

4 P. Chaugule et. al

called a closed walk, or a clow, if u1 = uk+1, u1 is the least numbered vertex
in the walk and for any 2 ≤ i ≤ k, ui 6= u1. The vertex u1 is called the head
of the clow. We use deg(C) to denote the number of edges in C (counted with
multiplicity), i.e. in this case k.

Definition 1 (A clow sequence [6]). A clow sequence Ĉ = 〈C1, . . . C`〉 in a
graph G = (V,E) is an ordered tuple of clows such that Head(C1) < Head(C2) <
Head(C3) < . . . < Head(C`) and deg(Ĉ) =

∑`
i=1 deg(Ci) = n, where V = [n]. The

sign of a clow sequence, sign(Ĉ), is (−1)n+`.

Definition 2 (Stack graphs and Counter graphs). A stack graph is a
directed graph G = (V,E,Σ, φ), where V is a set of vertices, E is a set of
edges. The set Σ is a symbol set. The function φ labels every edge of the graph
with either Push(s), Pop(s) for some s ∈ Σ or with No-op 5. A counter graph
G = (V,E,Σ, φ) is very similar to the stack graph except in this case, the func-
tion φ labels every edge of the graph with either Read(s), Write(s) for some
s ∈ Σ or with No-op.

We call Push(s), Pop(s) as the stack operations whereas Read(s), Write(s) as
the counter operations. No-op is both a stack as well as a counter operation. Let
s1 = [a1, a2, . . . , am] and s2 = [b1, b2, . . . , bn] be two sequences of stack opera-
tions (or counter operations) then concatenation of s1 followed by s2 (denoted as
s1�s2) is the ordered sequence [a1, a2, . . . , am, b1, b2, . . . , bn]. It is easy to extend
this definition of concatenation of two sequences to any number of sequences. Let
W = (u1, . . . , uk+1) be a walk of length k in a stack graph (or counter graph) G.
We define Seq[W] to be the sequence of stack operations (counter operations, re-
spectively) along the edges in this walk, i.e. [φ(u1, u2), φ(u2, u3), . . . , φ(uk, uk+1)].

Definition 3 (Stack-realizable sequence). A stack-realizable sequence of op-
erations is a sequence of stack operations which can be inductively formed using
the following rules :

– The empty sequence is a stack-realizable sequence.
– If P is a stack-realizable sequence then Push(s) � P � Pop(s) is stack-

realizable ∀s ∈ Σ.
– If P is a stack-realizable sequence then No-op � P and P � No-op are also

stack-realizable.
– If P and Q are stack-realizable sequences then P � Q is a stack-realizable

sequence.

For example, [Push(a), Push(b), Pop(b), Push(c), No-op, Pop(c), Pop(a), No-op] is
a stack-realizable sequence, whereas [Push(a), Pop(b)] is not.

Definition 4 (Counter-realizable sequence). A sequence of counter opera-
tions P is said to be counter-realizable if for every s ∈ Σ, Write(s) and Read(s)
occur equal number of times in P and for every prefix P’ of P, the number of
times Write(s) occurs in P’ is at least as much as the number of times Read(s)
appears in P’.

5 No-op stands for No-operation

Variants of the Determinant Polynomial and the VP-completeness 5

A directed walkW in a stack graph (or counter graph) G is called stack-realizable
walk (or counter-realizable walk, respectively) if and only if Seq[W] is stack-
realizable (or counter-realizable, respectively).

Definition 5 (A realizable clow sequence). A clow sequence Ĉ = 〈C1, . . . , C`〉
of a stack graph (or counter graph) G is called stack-realizable (or counter-
realizable, respectively) if and only if Seq[C1]�Seq[C2]� . . .�Seq[C`] is a stack-
realizable sequence (or counter-realizable, respectively).

Let X be a set of variables. Consider a stack graph (or a counter graph) G =
(V,E,Σ, φ) with an edge-labeling function L : E → X ∪ F. For some 1 ≤ j ≤ `
and clow Cj = (u1, u2, . . . , uk+1), mon(Cj) denotes monomial formed by mul-

tiplying the labels of the edges in Cj , i.e. mon(Cj) =
∏k
i=1 L ((ui, ui+1)) and

mon(Ĉ) =
∏`
i=1mon(Ci).

Before going into the details of the definition of the Stack Determinant, we
recall the definition of a determinant of a graph G as stated in [6].

Definition 6 (Determinant). Consider a directed graph G = (V,E). Let L :
E −→ X ∪ F, where X is the set of variables. The determinant polynomial
Det(X) is defined as follows : Det(X) =

∑
All clow

sequences Ĉ of degree |V |.
sign(Ĉ)mon(Ĉ).

Definition 7 (General Stack Determinant). Consider a stack graph
G = (V,E,Σ, φ). Let L : E −→ X ∪ F, where X is the set of variables. Let
φ : E −→

⋃
a∈Σ{Push(a), Pop(a)}∪{No-op} be any edge map. The general stack

determinant polynomial GenStackDet(X) is defined as follows :

GenStackDet(X) =
∑

All stack realizable clow
sequences Ĉ of degree |V |.

sign(Ĉ)mon(Ĉ).

In Definition 7, we now fix our graph family Gn and instantiate the function φ
to Φ and define the stack determinant family StackDetn(X).

Definition 8 (Stack Determinant). Let Σ = {s1, . . . , sn}. Consider a stack
graph Gn = (V,E,Σ, Φ) with V = [4n] and E = {ei,j = (i, j)|1 ≤ i, j ≤ 4n}.
Let L((i, j)) = xi,j. We define the function Φ : E −→

⋃
a∈Σ{Push(a), Pop(a)} ∪

{No-op} such that for all i ∈ [n], Φ(ek=4(i−1)+1,k+1) = Push(si) and Φ(ek+2,k+3) =
Pop(si). All the other remaining edges are mapped to No-op. The stack deter-
minant polynomial StackDetn(X) is defined as follows :

StackDetn(X) =
∑

All stack realizable clow
sequences Ĉ of degree |V |.

sign(Ĉ)mon(Ĉ)

Definition 9 (General Counter Determinant). Consider a counter graph
G = (V,E,Σ, φ). Let L : E −→ X ∪ F, where X is the set of variables. Let
φ : E −→

⋃
a∈Σ{Write(a), Read(a)} ∪ {No-op} be any edge map. The general

counter determinant polynomial GenCountDet(X) is defined as follows :

GenCountDet(X) =
∑
All counter realizable clow
sequences Ĉ of degree |V |.

sign(Ĉ)mon(Ĉ).

6 P. Chaugule et. al

In Definition 9, we now instantiate the function φ to Φ and redefine the counter
determinant (with respect to Φ).

Definition 10 (Counter Determinant). Let Σ = {s1, . . . , sn}. Consider a
counter graph Gn = (V,E,Σ, Φ) with V = [4n] and E = {ei,j = (i, j)|1 ≤ i, j ≤
4n}. Let the function Φ : E −→

⋃
a∈Σ{Write(a), Read(a)}∪{No-op} be such that

for all i ∈ [n], Φ(ek=4(i−1)+1,k+1) = Write(si) and Φ(ek+2,k+3) = Read(si). All
the other remaining edges are mapped to No-op. Let L((i, j)) = xi,j.The counter
determinant polynomial CountDetn(X) is defined as follows :

CountDetn(X) =
∑
All counter realizable clow
sequences Ĉ of degree |V |.

sign(Ĉ)mon(Ĉ).

Definition 11. A polynomial family {fn} is said to be a projection of a family
{gn}, denoted as {fn} ≤ {gn}, if for every fn (where n ∈ N), there exist some
m ∈ N where fn can be computed by gm by setting the variables of gm to either
the variables of fn or the field constants. If m is polynomially bounded in n, it
is said to be a p-projection, denoted by {fn} ≤p {gn}.

Definition 12. A p-bounded family {fn} is complete for class C, if fn ∈ C and
for every {gn} ∈ C, {gn} ≤p {fn}.

3 Upper bounds for variants of determinant family

In this section, we discuss the upperbounds of StackDetn(X) and CountDetn(X).
Before going into the details of the upper bound proof, we recall the definition
of the stack branching program (SBP) and the definition of the random access
branching program (RABP) and the characterization of the classes VP and VNP
using SBP and RABP respectively [8].

Definition 13 (SBP [8]). A stack branching program G = (V,E) (over Σ) is
an algebraic branching program with a function φ : E −→

⋃
a∈Σ{Push(a), Pop(a)}

∪ {No-op}. The polynomial computed by G is fG =
∑
P mon(P), where the sum

is over all the stack-realizable s-t paths in G. The size of a stack branching
program G is the number of vertices in it, i.e., |V |

Definition 14 (RABP [8]). A random access branching program G = (V,E)
(over Σ) is an algebraic branching program with an additional function φ : E −→⋃
a∈Σ{Write(a), Read(a)} ∪ {No-op}. The polynomial computed by G is fG =∑
P mon(P), where the sum is over all the counter-realizable s-t paths in G.

The size of a random access branching program G is the number of vertices in
it.

Lemma 1 ([8]). A family {fn} is in VP if and only if there exist a stack branch-
ing program family Sn of size poly(n) to compute {fn}. A family {fn} is in VNP
if and only if there exist a random access branching program family Rn of size
poly(n) to compute {fn}.

Variants of the Determinant Polynomial and the VP-completeness 7

The upper bound proofs is motivated by the ABP upper bound for the Deter-
minant polynomial proved by [6]. The determinant is known to be equal to the
sum of signed clow sequences. This combinatorial definition of the determinant
was used in [6] to obtain an ABP upper bound. Those familiar with the proof
of [6] may notice that the definitions of StackDetn(X) and CountDetn(X) are
inspired by this definition of the determinant. We observe that, just like the com-
binatorial definition of the determinant is used to obtain an ABP upper bound
in [6], our definition of StackDetn(X) and CountDetn(X) allow us to compute
them using an SBP and RABP, respectively.

Construction of an SBP computing StackDetn(X) : Let Gn = (V,E,Σ, Φ)
and L be as in the definition of StackDetn(X). Consider the complete directed
graph G′n = (V,E), i.e Gn without the stack symbols and labels. Let An denote
the adjacency matrix of this graph under the labelling L, i.e. An[i, j] = xi,j .
From the result of [6], we get an ABP, say Bn (of size poly (n)), that computes
the determinant of An. From Bn we obtain an SBP Sn, by simply defining the
function φ. We inherit φ from the Φ defined in the stack graph Gn as follows. Let
Bn be the graph underlying the ABP Bn. In Bn some edges are labelled with X
variables, while some other edges are labelled with field constants. The function
φ for all edges which are labelled with field constants is set to No-op. Consider
any edge (p, q) in Bn that is labelled with an X variable. Suppose the edge is
labelled xi,j , then we let φ((p, q)) = Φ((i, j)).

The following statement can now be proved in a straightforward way, which
finishes the proof of the upper bound.

Claim. Let Ĉ be any clow sequence in Gn. The SBP Sn has a stack-realizable
path from s to t with weight sign(Ĉ) ·mon(Ĉ) if and only if Ĉ is a stack-realizable
clow sequence of degree |V |.

Proof. Let us start by recalling the construction of an ABP for the determinant
polynomial from [6]. First recall that the determinant polynomial Detn is defined
as follows in [6].

Detn(G
′
n) =

∑
Ĉ a clow sequence of degree |V |

sign(Ĉ)mon(Ĉ)

It was shown that there exist an algebraic branching program Bn (with s as the
source vertex and t as the sink vertex and two special nodes t+ and t−) of size
O(n3) which computes Detn(G). The ABP Bn has the following properties.

– For every clow sequence Ĉ = 〈C1, C2, . . . , Ck〉 of degree |V | and positive sig-
nature, there exists a unique s− t path P in Bn such that path P is obtained
by unwinding the clows in the clow sequence Ĉ = 〈C1, C2, . . . , Ck〉 into paths,
P1,P2, . . . ,Pk, respectively and then stitching these paths together in order
P1 followed by P2 and so on upto Pk and then followed by a single edge ê
labelled by +1 from t+ to t. For negative signature, it is similar; except the
last edge is labelled -1 and is from t− to t.

8 P. Chaugule et. al

– The variable labels on the edges (except the last edge) in s − t path P in
Bn are consistent with the variable labels on the edges in the closed walks
in the clow sequence C of Gn.

– There are no s− t paths in Bn other than the kind of paths stated above.

As the SBP Sn has the same underlying graph as Bn, i.e. Bn, ignoring Φ, we
get a bijection between clow sequences of the stack graph Gn and s to t paths
in Bn.

Stack graph Sn is obtained by specifying φ along with Bn. Note that the
set of s to t paths in Sn and Bn continue to be the same. In Sn some paths
become stack-realizable under the function φ. Consider a stack-realizable path
P in Sn. It has a corresponding clow sequence Ĉ associated with it in Gn. As
the labels of P are consistent with those on Ĉ, we get that Ĉ is a stack-realizable
clow sequence.

Conversely, if we start with a stack-realizable clow sequence of Gn, we will
find an s to t stack-realizable path in Sn. This finishes the proof. ut

Remark 1. To show that CountDetn(X) is in VNP, we can construct RABP Rn
which computes CountDetn(X) using arguments very similar as in the case of
the construction of SBP Sn computing StackDetn(X).

4 StackDetn(X) is hard for VP

In this section we prove that StackDetn(X) is VP-hard. We start by proposing
two simple approaches for proving the hardness and discuss why they do not
seem to work directly.

– The first way is to mimic the construction used to show that the determinant
polynomial is VBP hard. Start with a stack branching program P computing
f . P has designated nodes s and t. Add an extra vertex, say α, and add edges
from t to α and from α to s. Also add self-loops on all the vertices of P except
α. Then do the following.
(a) Firstly observe that the stack-realizable clow sequences of this graph can

be partitioned into two sets, say G and B. Prove that the clow sequences
in B pairwise cancel each other and their weights add up to zero.

(b) Moreover, show that the signed clow sequences in G are in one-to-one
correspondence with the monomials of f .

(c) Finally prove that the sum of signed clow sequences in G is equal to
StackDetn.

While (a) and (b) above can be proved, (c) does not seem to be true. This
is because we do not have any control over the map φ used in P . Note that
in the definition of StackDetn Φ is a fixed map, whereas, in P , φ depends
on the polynomial f . For instance, it is possible that stack symbols repeat
themselves several times in φ, while in Φ they do not as per the definition.
To obtain a graph along with the Φ as defined in StackDetn does not seem
feasible in this straightforward proof idea.

Variants of the Determinant Polynomial and the VP-completeness 9

– A possible fix to the above problem is to update the definition of StackDetn
so that it allows for a φ that arises from the underlying stack branching
program P that computes f . Unfortunately, that leads to polynomial families
that are circuit-description dependent.

We will work on the first approach above. Our proof steps consist of the addi-
tional effort required to make this approach work. We state the main three steps
in the proof outline.
Step 1 : Let Um be a universal circuit ([10, 11, 2]) of size poly(m) computing an
m-variate, degree poly(m) polynomial fm(Y) ∈ VP. We obtain a universal block
circuit Ũm, which has some more structure than Um and computes fm(Y).
Step 2 : We take the directed graph underlying the circuit Ũm and transform
it into another graph GN with N vertices, where N = poly(m) and N = 4n for
some parameter n. The graph GN has the following properties.

-All the cycle covers of GN have the same sign (say +ve sign w.l.o.g.).

-All the cycle covers can be classified into two categories: good cycle covers,
say G, and bad cycle covers, say B; and the sum of weights of the good cycle
covers equals fm(Y). (We will define these notions formally below.)
Step 3 : From GN we obtain a stack graph HN with the following properties.
The set of stack-realizable clow sequences in HN which are cycle covers, equals
G. Moreover, the sum of signed weights of stack-realizable cycle covers in HN

equals the sum of signed weights of cycle covers in G, i.e. equal to fm(Y). and the
sum of signed weights of stack-realizable clow sequences that are not cycle covers
equals 0. Overall, the sum of signed weights of stack-realizable clow sequences
of HN equals fm(Y).

We can now interpret HN as a complete graph, where L((i, j)) = 0 if (i, j) is
not an edge in HN . We will show that the polynomial StackDetn defined with
respect to HN equals fm(Y).

The Step 1 and 2 above are obtained using the ideas of Block Trees from [1].
Step 3 above uses the cancellation trick from [6], but now in the context of
stack-realizable clow sequences (instead of clow sequences) and with respect to
an SBP (instead of an ABP).

4.1 VP-hardness of StackDetn(X) Step 1

Recall that from the constructions in [10, 11, 2], we can assume the following
properties about the universal circuit. The circuit Um has m variables, size s(m)
and each even layer is a + gate, while each odd layer is a × gate. The output gate
is a × gate. The × gates are multiplicatively disjoint 6 and have fan-in bounded
by 2. The input gates have fanin 0, fanout 1. The total depth7 of the circuit

6 A multiplication gate α with children gates α` and αr in an arithmetic circuit C is
called multiplicatively disjoint if the subcircuits rooted at α` and αr are disjoint.

7 The depth of the circuit is the length of the longest input gate to output gate path.

10 P. Chaugule et. al

is 2cdlogme + 1, where c is some fixed constant. Say it computes a polynomial
fm(Y) of degree poly(m)8.

We now create a circuit Ũm, which will have the same depth, each even layer
will again consist of + gates and each odd layer of × gates. It will continue to be
multiplicatively disjoint and its size will be poly(s(m)). It is created as follows:

Block structure. In the jth layer of Ũm we create t(j) = 2b
j
2 c many blocks.

The blocks on the j layer are denoted by B
(j)
1 , B

(j)
2 , . . . , B

(j)
t(j).

Gates. If j is odd - Let g1, . . . , gr be the × gates appearing in Um in layer j.
In Ũm, each block B has one copy of g1, . . . gr.
If j is even - Let g1, . . . , gr be the + gates appearing in Um in layer j. Each
block B in jth layer in Ũm has s(m) sub-blocks. Each sub-block has one copy of
g1, . . . , gr. (That is, there are s(m) copies of each gate in each block and there
are t(j) many blocks. So each gate is copied t(j) · s(m) times. Note that this is
polynomially bounded in poly(m).)
Wires: Let g be a + gate in layer j with children g1, g2, . . . gr in Um. Then the

copy of g in B
(j)
i has copies of g1, . . . , gr from block B

(j+1)
i as its children for

each i ∈ t(j). Let g be a × gate in layer j with children gleft, gright in Um. Also
among the different gates that use gleft, let g be the kth such gate. Then (the

unique) copy of g in B
(j)
i has kth copy of gleft from block B

(j+1)
2i−1 as its child.

Similarly, among the gates that use gright, let g be the k′th such gate. Then the

copy of g in B
(j)
i has k′th copy of gright from block B

(j+1)
2i as its child. Finally,

we only keep the minimal circuit, i.e. we remove gates that eventually do not
feed into the output gate.

This completes the description of Ũm. The construction is exactly the same
as the construction of D′n in [1]. We call this the universal block circuit.

Claim. The polynomial computed by Ũm is fm(Y) and the size of the circuit is
polynomial in s(m), say p(m), which in turn is polynomial in m.

We skip the proof details (See [9] for proof details).

×

+ +

× × ×

x1 x2 x1 x3 x2 x3 x1 x1 x2 x3 x2 x3

× × ×

+ +

×

Fig. 1. Um computing (x1x2 + x1x3)(x2x3) and the corresponding Ũm

8 This description is slightly different as compared to the one in [2], but it is easy to
see that we can get this form for a universal circuit using ideas from [10].

Variants of the Determinant Polynomial and the VP-completeness 11

4.2 VP-hardness of StackDetn(X) Step 2

We now consider the graph underlying the universal block circuit created in Step
1. We direct all the edges in this graph from top (i.e. from the output gate) to
bottom (to the input gates). The top-most layer has a single vertex, which is the
output gate. Each layer j has t(j)-many blocks. We denote this directed graph
by Vp(m), where p(m) is the number of vertices in this graph. We take two views
of this underlying graph; a coarse view and a fine view. The fine view is simply
the whole graph Vp(m), while the coarse view is the graph formed by the block
structure.
Block Tree. For the coarse view, we think of each block of Vp(m) as a vertex.
We call these block vertices. Two blocks vertices B,B′ are said to be connected
if and only if ∃u ∈ B and v ∈ B′ such that there is an edge between u and v
in Vp(m). We refer to (B,B′) as a block edge. By observing the connections in
Vp(m), it is easy to see that the coarse view results into a tree. We call this tree
T∆(m), where ∆(m) denotes the number of leaf nodes in the tree. Let B be a
vertex in T∆. If B is on an even layer, then it has only one child. We call these
the unary blocks. If it is on an odd layer then it has two children. We call these
blocks binary blocks. A path formed by block edges is called a block path.
When m is clear from the context, we use Vp and T∆ to talk about these two
graphs.

Construction of GN.

– For any binary block B and any vertex u ∈ B, we do the following. Let B`
and Br be the two children of B in T∆. Let u` ∈ B` and ur ∈ Br such that
(u, u`) and (u, ur) are edges in Vp. We sub-divide the edge (u, ur) into (u, zu)
and (zu, ur). We delete the edge (u, zu) from the graph, but retain the edge
(zu, ur). For any node u in a binary block, we use Couple(u) to denote the
pair of edges {(u, u`), (zu, ur)}. (Couple(u) is not defined for a u in a unary
block.)
Note that this creates a new graph which is disconnected. If we look at the
coarse view of this new graph then it is a collection of ∆ block paths, let us
call them P1, . . . ,P∆. Each block path contains exactly one leaf node of T∆.
We will assume that the block paths are numbered such that the ith leaf
node of T∆ belongs to Pi.

– We add two more vertices for each block path. We add a source vertex si
and a sink vertex ti for each i ∈ [∆]. We also add edges from si to all the
vertices in the first block in the block path Pi. The vertices in the last block
in any block path are vertices corresponding to input gates in Ũm and hence
are labelled with input variables Y . Let u be a vertex in the leaf block of
the path Pi labelled y ∈ Y . We add a directed edge (u, ti) and label it with
y. (We do this for each vertex in every leaf block of all block paths.) The
graphs thus obtained are called R1, . . . ,R∆.

– We now identify ti with si+1 for 1 ≤ i ≤ ∆ − 1. We use R to denote
the graph thus formed and θi to denote the vertex formed by identifying
ti with si+1 for 1 ≤ i ≤ ∆ − 1. Addtionally, we want to ensure that the
number of vertices in the resultant graph is a multiple of 4 (This will help

12 P. Chaugule et. al

in defining a stack graph in the next step). To ensure this, we add three9

additional vertices α1, α2, α3 and the following directed edges to obtain a
graph DN : (t∆, α3), (α3, α2), (α2, α1), (α1, s1). We add self-loops on all the
vertices except on α1, α2 and α3. The edges which are not labelled with
variables from Y are labelled 1.

The graph thus obtained is denoted by GN , where N is the number of vertices
in it. It is easy to note that N = poly(p(m)) which is poly(m). We have also
ensured that N = 4n for some parameter n.

Definition 15. We say that a cycle cover Ĉ = 〈C1, . . . , Ck〉 of GN is a good cycle

cover if for any vertex u appearing in Ĉ for which Couple(u) is defined, either

both the edges in Couple(u) are present in Ĉ or neither is. All the other cycle
covers are called bad cycle covers. Let G denote the set of all good cycle covers
of GN and B denote the set of all the bad cycle covers.

Claim. All the cycle covers of GN have the same sign. Moreover, the sum of
weights of good cycle covers equals fm(Y).

Proof. Recall the graphs R1, . . . ,R∆ that we created from P1, . . . ,P∆.
Consider any path π from si to ti in Ri. The first edge of π must be from si

to a vertex belonging to the first block, and the last edge of π must be from a
vertex belonging to the last block to the vertex ti. All intermediate edges must
connect adjacent blocks. So, the number of edges in π is one more than the
number of blocks in Ri. Therefore all paths from si to ti in Ri have the same
number of edges, say pi.

Consider any path Π from s1 to t∆. For any 2 ≤ i ≤ ∆, the vertex si must
belong to Π (because deleting si disconnects the graph into two components,
where s1 and t∆ belong to different components). This means Π can be viewed
as a composition of the paths π1, π2, . . . , π∆, where πi is a path from si to ti for
all 1 ≤ i ≤ ∆. This path πi is also a path in Ri, so it has length pi. Therefore
the path Π has length p1 + p2 + · · ·+ p∆, which we call q, say. In all, any path
from s1 to t∆ has the same length q.

Let Ĉ = 〈C1, C2, · · · , Ck〉 be a cycle cover of GN , and consider a cycle of the

cycle cover Ĉ that α1 belongs to, say C1. The only incoming edge to α1 is via
t∆, and the only edge outgoing from α1 is to α2. This means the edges (t∆, α1)
and (α1, α2) belong to C1. The only outgoing edge from α2 is to α3, and the
only outgoing edge from α3 is to s1. Therefore, the edges (α2, α3) and (α3, s1)
also belong to C1. So, C1 contains a path from t∆ to s1 via α1, α2 and α3. The
remaining part of C1 is a path from s1 to t∆. This path does not use the vertices
α1, α2, and α3, so it is also a path in R. As shown before, any such path from s1
to t∆ has length q = p1 + p2 + · · ·+ p∆. Therefore C1 is a cycle of length q + 4.

Consider a cycle Cj 6= C1 in the cycle cover Ĉ. This cycle cannot use the
vertices α1, α2 and α3. Furthermore, if Cj is not a loop, then it is a cycle in R,

9 As ∆ is a power of 2, it is easy to note that adding three new vertices will always
make the total number of vertices of graph GN a multiple of 4.

Variants of the Determinant Polynomial and the VP-completeness 13

which contradicts the fact that R is a DAG. Therefore Cj is a loop. In all, the

cycle cover Ĉ has exactly one cycle C1 of length q+4 passing through α1, α2, and
α3, and N − q− 4 loops covering the vertices not present in the cycle C1. Either
way, the sign of any cycle cover Ĉ is fixed. It is also easy to see from the above
discussion that there is a one-to-one correspondence between a path Π from s1
to t∆ in R and cycles covers of GN .

We will now show that the good cycle covers of GN have a one-to-one corre-
spondence with the parse trees of Ũm.

Let T be any parse tree of Ũm. For any vertex u corresponding to a × gate
of Ũm, such that ul is the left child and ur is the right child of u in T , split
the edge (u, ur) into (u, zu) and (zu, ur) and delete edge (u, zu). This splits T
into ∆ paths Q1, Q2, · · · , Q∆, where Qi belongs to Ri for each i ∈ [∆]. These ∆
paths (when concatenated appropriately) trace out a path Π in DN . This path
can be completed into a cycle C1 in GN . This cycle C1 along with self-loops on
all the other vertices outside of C1, forms a cycle cover Ĉ of GN . Note that, the
way this cycle cover was created, for each u in a binary block of Vp, either both

edges of Couple(u) are present in Ĉ or neither edge of Couple(u) is present in

Ĉ. Therefore Ĉ is a good cycle cover. It is easy to see that the cycle cover has
weight equal to the monomial computed by T in Ũm.

For the converse, we show that a good cycle cover of GN can be traced back
to a unique parse tree of Ũm. Let Ĉ = 〈C1, C2, · · · , Ck〉 be a good cycle cover of
GN . Let C1 be the big cycle and the rest of the cycles in the cover be self-loops.
Let E1 denote the edges that C1 shares with graphs P1,P2, . . . ,P∆. As this is a
good cycle cover, for each vertex u in C1 for which Couple(u) is defined, edges
(u, u`) and (zu, ur) are both present in C1. We will identify zu with u for all such
vertices. This will give rise to a unique parse tree of Um. ut

Remark 2. To be able to sum over only the good cycle covers, we need a mech-
anism to ensure that either both or none of the edges in Couple(u) are selected

in any cycle cover Ĉ. In Valiant’s work [12] for instance, this is ensured by using
an iff graph gadget. If we can come up with such a gadget (in the determinant
setting) then we will be able to show that Detn is VP-complete, thereby showing
VP= VBP. We ensure coupling using the stack symbols.

4.3 VP-hardness of StackDetn(X) Step 3

We would like to modify the graph GN so that we filter out good cycle cov-
ers, while killing all the bad cycle covers. We achieve this using stack symbols.
Specifically, we create a stack graph HN from GN to achieve this.
Construction of HN . For a vertex u for which Couple(u) is defined, we set
φ((u, u`)) = Push(su) and φ((zu, ur)) = Pop(su). For all the other edges, φ is set
to No-op.

Claim. Consider the stack graph HN constructed as above.
- The sum of signed weights of stack-realizable cycle covers in HN equals the

14 P. Chaugule et. al

x1 x1 x2 x3 x2 x3

× × ×

+ +

×

s1

t1

x1 x1

s2

t2

x2 x3

s3

t3

x2

s4

t4

x3

Fig. 2. Graphs P1, . . . ,P∆ and R1, . . . ,R∆.

signed sum of weights of cycle covers in G, i.e. equal to fm(Y).
- The sum of signed weights of stack-realizable clow sequences that are not cycle
covers equals 0.

Proof. Part 1. From the proof of Claim in Section 4.2, we have that there is a
bijection between parse trees of Ũm and good cycle covers of GN . To prove the
first part of the claim, we will show that there is a bijective map from a good
cycle covers of GN to stack-realizable cycle covers of HN .

We start with some notations. Let Ĉ be a good cycle cover in GN . Let TĈ be

the unique parse tree corresponding to Ĉ. Let Ĉ = 〈C1, . . . , Ck〉 and C1 be the long
cycle, while all other Cis be self-loops. (Any good cycle cover has this structure
as we established in the proof of Claim in Section 4.2.) Let UĈ = {u1, . . . , uτ}
be the subset of vertices in C1 for which Couple is defined. Note that the output
gate, let us call it u∗, of TĈ belongs to UĈ .

We say that a vertex u ∈ UĈ has rank k, denoted as rank(u), if it appears at
distance 2k − 1 from the leaves in TĈ . (Note that, vertices in UĈ appear at only
odd distance from the leaves in TĈ .)

For u ∈ UĈ such that rank(u) = 1, u` and ur are leaves, i.e. nodes correspond-
ing to input gates. For a vertex u in UĈ such that rank(u) > 1, let u` and ur be
its two children in TĈ . Let u′ be u`’s unique child in TĈ and let u′′ be the unique
child of ur in TĈ . Note that u′, u′′ ∈ UĈ and rank(u′) = rank(u′′) = rank(u)−1.

Let ΠĈ be the unique path traced out by C1 in R. (Recall, R is the graph
obtained by concatenating Ri for i ∈ [∆] as described in the construction.)

For a vertex u ∈ UĈ , such that rank(u) = 1, we use Π[u] to denote the
subpath of ΠĈ from u to ur. Given the structure of the subtree rooted at u in
TĈ , and assuming that ur appears in Ri+1 for some i ∈ [∆ − 1], we get that
Π[u] = (u, u`) · (u`, θi) · (θi, zu) · (zu, ur). (Recall that θi was the vertex obtained
by identifying ti of Ri with si+1 of Ri+1 for i ∈ [∆− 1].)

On the other hand, for u ∈ UĈ and rank(u) > 1 such that ur appears in Ri+1

for some i ∈ [∆ − 1], we use Π[u] to denote the subpath of Π corresponding to
the entire subtree rooted at u in TĈ . Specifically, for the given the structure of
the subtree rooted at u in TĈ , Π[u] = (u, u`) · (u`, u′) · Π[u′] ·(θi, zu) · (zu, ur) ·

Variants of the Determinant Polynomial and the VP-completeness 15

(ur, u
′′) ·Π[u′′]. We will now prove the following statement.

For any u ∈ UĈ , Seq[Π[u]] is stack-realizable in HN . (1)

If we are able to show this, then in particular for u∗ ∈ UĈ we will get that
Π[u∗] is stack-realizable. This will then imply that (s1, u

∗) ·Π[u∗] · (θ∆, t∆) is also
stack-realizable, because both (s1, u

∗) and (θ∆, t∆) are No-op edges.
We prove (1) by induction on rank(u). Suppose rank(u) = 1 and say ur ∈

Ri+1, then as noted above, Π[u] = (u, u`) · (u`, θi) · (θi, zu) · (zu, ur). From our
function φ defined for HN , we see that Seq[Π[u]] = Push(su)�No-op�No-op
�Pop(su). Therefore it is stack-realizable.

Suppose rank(u) = k > 1 and say that ur ∈ Ri+1. In this case, as noted
above, we have Π[u] = (u, u`) · (u`, u′) ·Π[u′] ·(θi, zu) · (zu, ur) · (ur, u′′) ·Π[u′′].
From this, we see that Seq[Π[u]] = Push(su)�No-op�Seq[Π[u′]] �No-op�
Pop(su) �No-op�Seq[Π[u′′]]. As rank(u′), rank(u′′) < k, by induction hypoth-
esis we have that Seq[Π[u′]] and Seq[Π[u′′]] are stack-realizable. Therefore, we
get that Seq[Π[u]] is also stack-realizable.

It is not hard to argue that bad cycle covers of GN get mapped to cycle
covers of HN , which are not stack-realizable by a similar argument.

Part 2 Recall that in the proof of Claim in Section 4.2 we showed that any
cycle cover of GN consists of one big cycle and a collection of self-loops. Similarly,
it is easy to see that in HN any clow sequence has a certain structure: except for
one clow, which will be of length ≥ p + 4, all other clows in the clow sequence
are self-loops.

We first note that this unique long clow will contain the vertex α1. Suppose
it does not contain α1, then no other clow in the clow sequence can cover α1

(as all other clows are self-loops and α1 does not have a self-loop on it). But
suppose α1 is not covered by any clow in the clow sequence, then the degree of
such a clow sequence is strictly less than |V |.

Under the ordering in which vertex α1 gets the lowest number, say 1, the
long clow will be the first clow in the sequence, say C1 and α1 will be its head.

We will adopt ideas from [6] in order to argue that the sum of weights of stack-
realizable clow sequences which are not cycle covers is 0 in HN . Like in [6], we
define an involution on the signed clow sequences. (Recall that an involution is a
bijective map ψ such that ψ2 is identity.) The map ψ will have the property that

any stack-realizable clow sequence Ĉ which is not a cycle cover, is paired off with
another stack-realizable clow sequence Ĉ′ which is again not a cycle cover and the
monomials corresponding to Ĉ and Ĉ′ are the same, but sign(Ĉ′) = −sign(Ĉ).
For clow sequence Ĉ which is a cycle cover, the map ψ maps it to itself, i.e. it is
identity for cycle covers.

Let Ĉ be a stack-realizable clow sequence, which is not a cycle cover. We start
walking along the edges of C1 starting from the head. One of the following two
cases will happen first.

– Case 1. Either we will encounter a vertex v in C1 such that there exists a
Ci ∈ Ĉ for i > 1, such that Ci is a self-loop at vertex v.

16 P. Chaugule et. al

– Case 2. Or we will encounter a vertex u that has β ≥ 1 self-loops in C1.

First note that, if Ĉ is not a cycle cover then one of the two cases must occur.
Suppose Case 1 occurs. In this case, consider Ĉ′ obtained from Ĉ by merging

cycle Ci with C1, by attaching it at v in C1. We will define ψ of Ĉ to be this Ĉ′.
It is easy to see that if Ĉ is a stack-realizable clow sequence, then so is Ĉ′. Both
have the same set of edges. And Ĉ′ has one less component than Ĉ, i.e. their
signs are opposite.

On the other hand, suppose Case 2 occurs. In this case, consider Ĉ′ obtained
from Ĉ by detaching one of the β-many self-loops from u and adding that as a
separate cycle in Ĉ′. To observe that Ĉ′ thus obtained is a stack-realizable clow
sequence, we first note that there is no other clow in Ĉ′ with the same head as
this newly added self-loop. This is easy to see, because if say there was already
a clow in Ĉ′ with u as its head, then we would have been in Case 1 above.

We also observe that if Ĉ is stack-realizable, then detaching a self-loop, which
is a No-op edge, will ensure that Ĉ′ is also stack-realizable. Here again, Ĉ and Ĉ′
have the same set of edges and Ĉ has one less component than Ĉ′, i.e. they have
opposite signs.

Note that in both the cases above, if ψ(Ĉ) = Ĉ′ then ψ(Ĉ′) = Ĉ. Hence, we
have the desired involution. ut

If we now show an ordering of the vertices of graph HN such that the function
φ in graph HN can be exactly mapped to the function Φ as defined in Defini-
tion 8 then the VP-hardness immediately follows. It is easy to show that such
an ordering always exist.

Ordering of the vertices of graph HN We will now show that there is an
ordering of the vertices of HN , which gives a graph Gn = (V,E,Σ, Φ) as defined
in Definition 8 and a labelling function L as defined in Definition 8, such that
fm(Y) can be obtained as a projection of StackDetn(X) defined with respect to
Gn, which finishes the proof.

We now come up with such an ordering. We start by ordering vertices
θ1, . . . , θ∆−1 and α1, α2 and α3. Note that these vertices must appear in any cy-
cle, which is not a self-loop. If we start traversing any such cycle from α1, then we
will visit these vertices in the following order 〈α1, s1, θ1, . . . , θ∆−1, t∆, α3, α2, α1〉.
We number these vertices in the reverse order, i.e. α1 gets numbered 1, α2 gets
2, α3 is numbered 3, t∆ is numbered 4 and so on till s1 is numbered ∆ + 4.
This numbering ensures that all the edges that appear between these vertices
get No-op label on them.

Now, let u1, u2 . . . , uτ be the vertices for which Couple is defined. Let Couple(ui)
= {(ui, ui`), (zui , uir)}. For every i ∈ [τ], let the four vertices ui, ui`, zui , uir be
numbered as 4(i− 1) + 1 + (∆+ 4), 4(i− 1) + 2 + (∆+ 4), 4(i− 1) + 3 + (∆+ 4)
and 4(i−1)+4+(∆+4) respectively10. It is easy to check that such an ordering
always gives distinct numbers to all the vertices of the graph and this ordering
is consistent with Φ from Definition 8.

10 It is not too hard to see that ∆+ 4 is a multiple of 4. (As ∆ is a power of 2.)

Variants of the Determinant Polynomial and the VP-completeness 17

The labelling function L retains the labels of all the edges of HN as they are.
For any two vertices u, v in HN , such that there is no edge in HN between u
and v, we add such an edge in Gn, but set L((u, v)) = 0. This labelling function
now ensures that when we consider the StackDetn polynomial with respect to
Gn we obtain fm(Y).

5 VNP-Hardness of the CountDetn(X)

In this section we first show that CountDetn(X) is hard for VNP.We show the
VNP-hardness in two cases 11. We will first show that the permanent polyno-
mial 12 can be computed as a projection of CountDetn(X). This will prove that
CountDetn(X) is VNP-hard over fields of characteristic 6= 2. To show it’s hard-
ness over fields of characteristic 2, we will show that it can compute another
polynomial, namely EC∗m, as a projection, where n = poly(m). This polynomial
was shown to be VNP-complete over fields of characteristic 2 in [4].

5.1 Details regarding VNP-hardness of CountDetn(X) when char 6= 2

We will first show that the Permanent polynomial can be computed as a pro-
jection of CountDetn(X). This will prove that CountDetn(X) is VNP-hard over
fields of char 6= 2.

Let Y = {y1,1, y1,2, . . . , ym,m}. We will show that Permm(Y) can be obtained
as a projection of CountDetn(X), where n = poly(m). To prove this, we create
a counter graph HN , such that N = poly(m) and the following properties hold.

– All the counter-realizable cycle covers in HN have the same sign.
– Moreover, the sum of the weights of the counter-realizable clow sequences

which are cycle covers, equals Permm and the sum of the signed weights of
the counter-realizable clow sequences which are not cycle covers = 0.

Then by simple re-ordering of the vertices of HN and adding edges to make it a
complete graph Gn, as in the definition of CountDetn(X), we get that Permm(Y)
can be obtained as a projection of CountDetn(X).

In order to describe the construction ofHN , we first create 2m smaller counter
graphs, W1, . . . ,Wm and R1, . . . , Rm. For each i ∈ [m], Wi = (V wi , E

w
i , Σ

w
i , φ

w
i)

is as follows.

– V wi = {swi , twi }∪{ui,1, . . . , ui,m}∪{vi,1, . . . , vi,m}. Ewi =
⋃
j∈[m]{(swi , ui,j)}∪⋃

j∈[m]{(vi,j , twi)} ∪
⋃
j∈[m]{(ui,j , vi,j)}. Σw

i = {αi,1, αi,2, . . . , αi,m}.
11 Note that the VNP-hardness can also possibly be shown in a single step via con-

structing a RABP Rn which computes a polynomial family Pn (known to be hard
for VNP for all fields) and converting it to a counter graph Gn such that CountDetn
defined over Gn computes Pn. However, constructing an RABP Rn (and convert-
ing it then to a counter graph Gn) such that the function φ in Gn getting exactly
mapped to the function Φ defined in Definition 10 is not immediate. Therefore, we
show the hardness in two steps.

12 Recall that Permm(Y) =
∑
σ: permutation of [m]

∏
i∈[m] yi,σ(i).

18 P. Chaugule et. al

– For each j ∈ [m], φwi ((ui,j , vi,j)) = Write(αi,j). φ
w
i is No-op for all other

edges in Ewi .

Similarly, for each i ∈ [m], Ri = (V ri , E
r
i , Σ

r
i , φ

r
i) can be described as follows.

– V ri = {sri , tri }
⋃
{ai,1, . . . , ai,m}

⋃
{bi,1, . . . , bi,m}. Eri =

⋃
j∈[m]{(sri , ai,j)} ∪

⋃
j∈[m]{(bi,j , tri)}∪⋃

j∈[m]{(ai,j , bi,j)}.Σr
i = {α1,i, α2,i, . . . , αm,i}. For each j ∈ [m], φri ((ai,j , bi,j)) =

Read(αj,i). φ
r
i is No-op for all other edges in Eri .

Let H ′N be the graph formed by identifying twi with swi+1 for 1 ≤ i ≤ m−1 and
by identifying twm with sr1 and also identifying tri with sri+1 for 1 ≤ i ≤ m−1. We
also add labels on the edges of H ′N . We define L((ui,j , vi,j)) = yi,j for i, j ∈ [m].
For all other edges, L is set to 1. We first make the following observation about
H ′N .

Claim. For each monomial inM in Permm(Y), there is a unique counter-realizable
path π from sw1 to trm in H ′N such that

∏
e∈π L(e) =M.

For any counter-realizable path π from sw1 to trm in H ′N ,
∏
e∈π L(e) corresponds

to a unique monomial of Permm(Y).

Proof. From our construction ofH ′N , it is easy to see that the vertices tw1 , t
w
2 , . . . , t

w
m

and the vertices tr1, t
r
2, . . . , t

r
m−1 are all cut-vertices in H ′N , and deleting any one

of them disconnects the vertices sw1 and trm. This means any path π from sw1 to trm
passes through the vertices twi for 1 ≤ i ≤ m and tri for 1 ≤ i ≤ m−1. Therefore,
π can be viewed as a composition of the 2m paths πw1 , π

w
2 , . . . , π

w
m, π

r
1, π

r
2, . . . , π

r
m

in that order, where πwi is the subpath of π between swi and twi for 1 ≤ i ≤ m,
and πri is the subpath of π between sri and tri for 1 ≤ i ≤ m. In fact, for any such
2m paths, their composition (in that order) is a path from sw1 to trm in H ′N .

We now proceed with the proof of the claim. Any monomialM in Permm(Y)
is of the form

∏m
i=1 yi,σ(i), where σ is a permutation of [m]. The path π is

constructed as follows: take πwi to be the path swi , u
w
i,σ(i), v

w
i,σ(i), t

w
i , and πri

to be the path sri , u
r
i,σ−1(i), v

r
i,σ−1(i), t

r
i , both for 1 ≤ i ≤ m. Consider the se-

quence of counter operations along π, other than the No-op operations. The
only edges that have such operations are the edges (uwi,σ(i), v

w
i,σ(i)) for 1 ≤ i ≤ m

and (uri,σ−1(i), v
w
i,σ−1(i)) for 1 ≤ i ≤ m. This implies that the counter opera-

tions encountered in π are Write(α1,σ(1)), Write(α2,σ(2)), . . . , Write(αm,σ(m)),
Read(ασ−1(1),1), Read(ασ−1(2),2), . . . ,
Read(ασ−1(m),m) in that order. Now, σ is a permutation of [m], so the pairs
(σ−1(j), j) for 1 ≤ j ≤ m are a permutation of the pairs (j, σ(j)) for 1 ≤ j ≤ m.
Therefore, the m symbols read are exactly the m symbols written, possibly
in a different order. Since the write operations all come before the read op-
erations, this sequence of counter operations is indeed a counter-realizable se-
quence. Moreover, the only edges that have labels other than 1 are the edges
(uwi,σ(i), v

w
i,σ(i)) for 1 ≤ i ≤ m, and these edges have labels yi,σ(i). Therefore,

π is a counter-realizable path from sw1 to trm in H ′N computing the monomial∏
e∈π L(e) =

∏m
i=1 yi,σ(i) =M.

Variants of the Determinant Polynomial and the VP-completeness 19

Conversely, let π be a counter-realizable path from sw1 to trm in H ′N . For each
1 ≤ i ≤ m, the path πwi is a path from swi to twi . Any such path clearly is of the
form swi , u

w
i,fi
, vwi,fi , t

w
i for some 1 ≤ fi ≤ m. Similarly, for each 1 ≤ i ≤ m, the

path πri is a path from sri to tri of the form sri , u
r
gi,i
, vrgi,i, t

r
i for some 1 ≤ gi ≤ m.

We represent the jis and kis using two functions f, g : [m] → [m] defined
as f(i) = ji for all i ∈ [m] and g(i) = ki for all i ∈ [m]. From the previ-
ous paragraph, the sequence of counter operations along π other than No-op is
Write(α1,f(1)), Write(α2,f(2)), . . . , Write(αm,f(m)), Read(αg(1),1), Read(αg(2),2), . . . ,
Read(αg(m),m) in that order. This sequence is counter-realizable, because π is a
counter-realizable path.

For each 1 ≤ j ≤ m, the operation Read(αg(j),j) appears in the sequence of
counter operations. This means Write(αg(j),j) is an operation earlier in the se-
quence. The only such write operation appearing in the sequence is Write(αg(j),f(g(j))),
so f(g(j)) = j. Similarly, for each 1 ≤ j ≤ m, the operation Write(αj,f(j)) ap-
pears in the sequence of counter operations, which means Read(αj,f(j)) appears
later in the sequence. The only such read operation appearing in the sequence
is Read(αg(f(j)),f(j)), so g(f(j)) = j. Therefore f(g(j)) = g(f(j)) = j for all
j ∈ [m], so f and g are both permutations of [m] and are inverses of each other.
We rewrite f as σ and g as σ−1. The monomial computed by π is, therefore,∏
e∈π L(e) =

∏m
i=1 yi,σ(i), which is a monomial of Permm(Y). ut

We now construct the graph HN from graph H ′N . If m is odd, then we add a
vertex α and edges (α, sw1) and (trm, α) and ifm is even, then we add three vertices
α1, α2, α3 and edges (α1, s

w
1) (α2, α1), (α3, α2) and (trm, α3). This ensures that,

N = 4n for some parameter n, where N is the number of vertices in HN . We set
the weights of all the extra added edges as 1 and label it with No-op. We now add
self-loops on all the vertices with weight 1 except the α vertices. All the self-loop
edges have the label of No-op on it. Consider the counter graph HN constructed
as above, we will argue that the sum of weights of counter-realizable cycle covers
in HN equals the Permm(Y) and the sum of signed weights of counter-realizable
clow sequences that are not cycle covers equals 0. Without loss of generality, we
assume that m is odd. Similarly, we can extend our arguments for even m.

We already know from our claim that there exists a bijection between the
set of monomials in Permm(Y) and the set of counter-realizable paths between
sw1 to trm in graph H ′N . It is therefore sufficient to show a bijection between the
set of counter-realizable paths between sw1 to trm in graph H ′N and the set of all
counter-realizable cycle covers of graph HN . We also argue that the sign of every
cycle cover of graph HN is same (w.l.o.g., we assume it to be positive). Since, α

is a vertex in HN without any self loop, any cycle cover Ĉ = 〈C1, C2, C3, . . . , Ck〉
of HN must cover α with some cycle, w.l.o.g., we call it C1 which have both
the edges (α, sw1) and (trm, α), and all other cycles in Ĉ are self-loops on all the
vertices which are not covered in cycle C1. It is easy to observe that the length
of any cycle in HN which uses vertex α is always equal to 6m+2. Therefore, the
total number of vertices of graph HN which are not covered in this long cycle
and which will get covered by self loops in any cycle cover is N − 6m − 2. It
immediately follows that the sign of every cycle cover of graph HN is same.

20 P. Chaugule et. al

We now show a bijection between the set of all counter-realizable cycle covers
of graph HN and the set of counter-realizable paths between sw1 to trm in graph

H ′N . It is easy to see that a cycle cover Ĉ = 〈C1, C2, C3, . . . , Ck〉 of HN is counter-
realizable iff the long cycle which uses the vertex α is counter-realizable, w.l.o.g.,
we call the long cycle C1. It is easy to note that, for any counter-realizable
cycle cover Ĉ = 〈C1, C2, C3, . . . , Ck〉, the cycle C1 must be formed by an edge
(α, sw1), followed by a unique counter-realizable directed path P between sw1 to
trm (of graph H ′N), followed by an edge (trm, α). Also, for every counter-realizable
directed path P from sw1 to trm (of graph H ′N), one can form a unique counter-
realizable long cycle (and therefore a counter-realizable cycle cover) in HN where
the long cycle is (α, sw1), followed by directed path P between sw1 to trm, followed
by (trm, α). This finishes the first part of our argument.

We now argue that the signed sum of all counter-realizable clow sequences
of graph HN which are not cycle covers is equal to 0. We now argue that there
exist no clow sequence in graph HN which does not contain the vertex α in any
of its clow. Suppose there exist some clow which does not contain α then we
consider the graph formed by deleting the vertex α in HN , in such a graph, the
only closed walks possible are single-loops on each vertex of such a graph. But
the total degree of such a clow sequence can never be equal to N , therefore, such
a clow sequence is not a valid clow sequence. Let us assume that α is the least
numbered vertex in HN , say, numbered with 1. Since, α is a vertex without a
self-loop, any clow involving α must have edges (α, sw1) and (trm, α). It is easy to

see that in HN , any counter-realizable clow sequence, say, Ĉ = 〈C1, C2, . . . , Ck〉
satisfies the property that except the first clow C1 (which involves the vertex α),

all other clows in the clow sequence Ĉ are self-loops. α1 will be the head of C1. It
is crucial to note that since all self–loops in graph HN are labelled with No-op,
the clow sequence Ĉ is counter-realizable iff the first clow C1 is counter-realizable.

We can now use similar ideas discussed in part 2 of the previous claim to
show that there always exists an involution ψ on the set of counter-realizable
clow sequences of graph HN such that ψ will map any counter-realizable cycle
cover to itself and for any counter-realizable clow sequence which is not a cycle
cover, say Ĉ, there exist another counter-realizable clow sequence which is not a
cycle cover, Ĉ′ such that ψ(Ĉ) = Ĉ′ and ψ(Ĉ′) = Ĉ and the monomials associated

with both Ĉ and Ĉ′ are same but their signatures are opposite.

Obtaining Gn from HN . To obtain Gn from this HN , we need to give an ordering
on the vertices that is consistent with Definition 10 and ensure that Gn is a
complete graph. Ensuring the latter is easy. We add all the missing edges and
set L value for them to 0.

To describe the ordering, let us first assume that m is odd. When m is even,
the ordering can be worked out similarly. We first introduce some notation. For
1 ≤ i ≤ m−1 let us denote the vertex obtained by fusing twi with swi+1 by θi. Let
us denote the vertex obtained by fusing twm with sr1 by θm. Also for 1 ≤ i ≤ m−1,
let us denote the vertex obtained by fusing tri with sri+1 by θ′i.

Variants of the Determinant Polynomial and the VP-completeness 21

The ordering can now be described as follows. Vertex α is set to 1 and the
vertex trm is set to 2. The vertices θ′1 to θ′m−1 are numbered in reverse order, i.e.
θ′m−1 is set to 3, θ′m−2 to 4 and so on up to θ′1 is set to m+ 1. We also number
the vertices θ1 to θm in reverse order starting from 2m+ 1 down to m+ 2. We
number the vertex sw1 as 2m+ 213

Now, let us assume that the symbols in Σ are ordered in some arbitrary
order, say a1, . . . , am2 . In HN , let E be defined as {e | φ(e) 6= No-op}. From our
construction of HN , no two edges in E share any endpoints. Also for each ai ∈ Σ,
there is a unique edge with Write(ai) on it and a unique edge with Read(ai) on
it. We now fix the following ordering: the tail of the edge with Write(ai) on it is
assigned 4(i− 1) + 1 + (2m+ 2) and its head is assigned 4(i− 1) + 2 + (2m+ 2),
the tail of the edge with Read(ai) on it is assigned 4(i− 1) + 3 + (2m + 2) and
finally, its head is assigned 4(i− 1) + 4 + (2m+ 2).

5.2 Details regarding VNP-hardness of CountDetn(X) when char = 2

Over characteristic 2, Permm is known to be easy. Therefore, to prove VNP-
hardness over characteristic 2, we use a different VNP-hard polynomial, which
was shown to be VNP-hard over characteristic 2 fields in a work of Hrubes [4].
The polynomial is based on the algebraic variant of the well-known Edge Cover
problem. We start by defining the polynomial.

Definition 16. Let m =
(
τ
2

)
for some parameter τ . Let G = (V,E) be a com-

plete undirected graph on τ vertices, i.e. V = [τ] and E = {(i, j) | 1 ≤ i < j ≤ τ}
and let edge e = (i, j) be labelled with yi,j.
EC∗m(Y) =

∑
E′⊆E,E′ is an edge cover

∏
(i,j)∈E′,i<j yi,j

In [4], the above polynomial was shown to be VNP-hard. We will show that we
can write EC∗m(Y) as a projection of CountDetn(X), where n = poly(m).

For this, we will define m + 1 counter graphs, W,R1, . . . , Rm, which when
interconnected appropriately will give us another counter graph HN , where N =
poly(m) and it has the following two properties.

– All the counter-realizable clow sequences in HN have the same sign.
– Moreover, the sum of the weights of the counter-realizable clow sequences

which are cycle covers equals EC∗m and the sum of the weights of the counter-
realizable clow sequences which are not cycle covers = 0.

Construction of W . For each edge (i, j) ∈ E such that 1 ≤ i < j ≤ τ ,
we add a directed path ρi,j = 〈(si,j , i), (i, j), (j, ti,j)〉 in W . We will call si,j the
source of ρi,j and ti,j the sink of ρi,j . We arrange these paths in a linear order
ρ1,2, . . . , ρ1,τ , ρ2,3, . . . , ρ2,τ , . . . ρτ−1,τ one after the other. Addtionally, we do the
following. We rename s1,2 as s1 and tτ−1,τ as tτ

– Add edges from s1 to all the other sources, i.e. ∀1 ≤ i < j ≤ τ , add edge
(s1, si,j).

13 For an odd m, note that 2m+ 2 is always a multiple of 4.

22 P. Chaugule et. al

– Add edges from the sink of all the paths to tτ , i.e. ∀1 ≤ i < j ≤ τ , add
(ti,j , tτ).

– Also add edges from sink of a path to the sources of all the paths that come
after it in the above order.

– We define φ((si,j , i)) = Write(αi,j) and φ((j, ti,j)) = Write(αj,i) for all
i ≤ 1 < j ≤ τ . We also define φ((s1, 1)) = Write(α1,2) and φ((τ, tτ)) =
Write(ατ,τ−1) For all the other edges we set φ to be No-op. We also assign
L((i, j)) = yi,j .

Let π be any path from s1 to tτ in W . We will say that an edge (i, j) of G is
traversed in π if ρi,j is in π, i.e. all the three edges in ρi,j are traversed in π. It
is easy to see the following property holds.

Observation 2 Let S ⊆ E, then there is a path πS in W such that it traverses
exactly the set of edges in S. Moreover, if S is an edge cover then for each vertex
i ∈ [τ] we would have at least one edge (i, j) ∈ S such that upon traversing the
path πS we would have done Write(αi,j) and Write(αj,i) for that edge.

Construction of R1, . . . , Rτ . We have one graph Ri for each vertex i ∈ [τ].
This graph will allow for reading the symbols αi,j for all j 6= i. For each i ∈ [τ],
we describe Ri = (Vi, Ei, Σi, φi). Here, Vi =

⋃
j∈[τ]\{i}{ai,j} ∪

⋃
j∈[τ]\{i}{bi,j}.

Let min and max denotes the minimum and maximum number in [τ] \ {i}.
Ei = {(ai,j , bi,j) | j ∈ [τ] \ {i}} ∪ {(ai,min, ai,j′) | j′ ∈ [τ] \ {i} and j′ > min}
∪ {(bi,j , bi,max) | j ∈ [τ] \ {i} and j < max} ∪

⋃
k∈[τ]\{i}{(bi,k, ai,j)|j > k}.

φ((ai,j , bi,j)) = Read(αi,j), where j 6= i and φ for all the other edges is No-op.
We relabel ai,min as a∗i and we relabel bi,max as b∗i . We observe the following

about Ri.

Observation 3 – Let π be any path from a∗i to b∗i . There exists at least one
j ∈ [τ], j 6= i such that we encounter Read(αi,j) along π.

– Let S ⊆ [τ] \ {i}, there exists a path from a∗i to b∗i , say πS, that encounters
exactly the set {Read(αi,j) | j ∈ S} along it.

Construction of HN . We now interconnect W and R1, . . . , Rτ to create the
graph HN as follows. We add an edge from tτ to a∗1. We also add edges from b∗i
to a∗i+1 for 1 ≤ i ≤ τ −1. Finally, we add an edge from b∗τ to s1 and self-loops on
all nodes other than b∗τ and s1. We first observe the following properties about
HN .

Claim. Let Π be any counter-realizable path from s1 to b∗τ in HN . The product
of the Y variables along Π, corresponds to a unique monomial in EC∗m(Y).

Conversely, if M is a monomial in EC∗m then there is a unique counter-
realizable path Π in HN from s1 to b∗τ such that the product of Y variables
along Π equals M.

Proof. Let Π be a counter-realizable path from s1 to b∗τ in HN . Clearly, Π
is obtained by concatenating the following paths and edges in this order: π0 ·

Variants of the Determinant Polynomial and the VP-completeness 23

(tτ , a
∗
1) · π1 · (b∗1, a∗2)π2 . . . ·(b∗τ−1, a∗τ) · πτ , where π0 is a directed path from s1 to

tτ in W and πi is a directed path from a∗i to b∗i in Ri for 1 ≤ i ≤ τ .
By part 1 of Observation 3, we know that for each i ∈ [τ], πi must encounter

Read(αi,j) for at least one j 6= i. As the path is counter-realizable, there will
not be any read operation that does not have a corresponding write operation
before it. Let S be a subset of edges of G that are traversed in π0.

As all reads must find a corresponding write along π0, we have that for
each vertex i, there must be at least one edge (i, j) in S, which results into
Write(αi,j) and Write(αj,i) along π0. Therefore, S must be an edge cover. Hence
the monomial obtained by taking product of the Y variables along the path gives
rise to a monomial EC∗m.

Conversely, let M be a monomial in EC∗m. Then M corresponds to a subset
of edges S of E that forms an edge cover of G. By Observation 2 we know that
there exists a unique path in W that traverses exactly the set of edges in S.
Let us call this path πS . As S is an edge cover, we know that for each i in the
vertex set of G, there exists at least one j 6= i such that Write(αi,j) occurs in
πS . For i ∈ [τ], let Ui = {αi,j | j ∈ [τ] \ {i} and Write(αi,j) occured along πS}.
We know that |Ui| ≥ 1 for i ∈ [τ]. From the second part of Observation 3 we
know that we can uniquely append πS with paths πU1

, πU2
, . . . πUτ , where πUi is

the unique path between a∗i and b∗i that traverses the set Ui. Therefore the path
πS · (tτ , a∗1) · πU1 · (b∗1, a∗2)πU2 . . . ·(b∗τ−1, a∗τ) · πUτ is a counter-realizable path and
the product of the Y variables along it gives rise to the monomial M. ut

Consider the counter graph HN as defined in Section 5.2. We will argue that
the sum of weights of counter-realizable cycle covers in HN equals the EC∗m(Y)
and the sum of signed weights of counter-realizable clow sequences which are
not cycle covers equals 0. We already know from Claim 5.2, that there exists
a bijection between the set of monomials in EC∗m(Y) and the set of counter-
realizable paths between s1 to b∗τ in graph HN . It is therefore sufficient to show
that there exists a bijection between the set of counter-realizable paths between
s1 to b∗τ in graph HN and the set consisting of all counter-realizable cycle covers
of graph HN . Since, we are working on fields of characteristic 2, sign of every
cycle cover of graph HN is positive.

We now show a bijection between the set of all counter-realizable cycle covers
of graph HN and the set of counter-realizable paths between s1 to b∗τ in graph

HN . It is easy to note that any cycle cover Ĉ = 〈C1, C2, C3, . . . , Ck〉 of HN must
use the edge (b∗τ , s1), this is because, if it does not use this edge, then there is no

way to cover vertices s1 and b∗τ by any other cycle in cycle cover Ĉ in graph HN .

We assume that C1 is the cycle in cycle cover Ĉ which uses the edge (b∗τ , s1). It is
also easy to note that all the vertices which are not covered in C1 must be covered
by self-loops on each of them in cycle cover Ĉ, that is, in other words, all cycles
in the cycle cover Ĉ, except C1 are all self-loops. This is because, after deleting
vertices b∗τ and s1, the only cycles left in graph HN are self-loops. It is easy to

see that for any counter-realizable cycle cover Ĉ = 〈C1, C2, C3, . . . , Ck〉, the cycle
C1 must be formed by an edge (b∗τ , s1), followed by a unique counter-realizable
directed path P between s1 to b∗τ of graph HN . Also, for every counter-realizable

24 P. Chaugule et. al

directed path P between s1 to b∗τ , one can form a unique counter-realizable long
cycle (and therefore a counter-realizable cycle cover) in HN where the long cycle
is formed by an edge (b∗τ , s1), followed by a unique counter-realizable directed
path P between s1 to b∗τ of graph HN . This finishes the first part of our argument.

We now prove that the sum of signed weights of all counter-realizable clow
sequences of graph HN which are not cycle covers is equal to 0. We first show
that there exist no clow sequence in graph HN without using the vertex s1 in
any of its clow. For the sake of contradiction, let us assume that there exists
a clow sequence Ĉ′ = 〈C′1, C′2, C′3, . . . , C′k〉 which does not use vertex s1. We now
consider the graph formed by deleting the vertex s1 in HN , in such a graph, the
only closed walks possible are single-loops on each vertex of such a graph. It is
easy to see that the total degree of Ĉ′ is always less than N , therefore, Ĉ′ is not a
valid clow sequence. Let us assume that s1 is the least numbered vertex in HN ,
say, numbered with 1.

Since, s1 is a vertex without a self-loop, any clow which uses s1 must have
the edge (b∗τ , s1). It is easy to see that any counter-realizable clow sequence, say,

Ĉ = 〈C1, C2, . . . , Ck〉 consists of the big cycle C1 (which uses the vertex s1) and

all other clows in Ĉ are self-loops. s1 will be the head of C1. It is crucial to note
that since all self–loops in graph HN are labelled with No-op, the clow sequence
Ĉ is counter-realizable iff the clow C1 is counter-realizable.

Using similar ideas discussed above, it can be shown that there exists an
involution ψ defined on the set of all counter-realizable clow sequences of graph
HN , such that the function ψ maps every counter-realizable clow sequence which
is also a cycle cover to itself and for any counter-realizable clow sequence Ĉ, which
is not a cycle cover, there exists a counter-realizable clow sequence Ĉ′ which is
also not a cycle cover such that the monomials associated with both Ĉ and Ĉ′
are same but with opposite signatures, also, ψ(Ĉ) = Ĉ′ and ψ(Ĉ′) = Ĉ.

Ordering of the vertices of HN To finish the proof we also show that we can
give a complete ordering of the vertices of HN consistent with Definition 10
and turn it into a complete graph to obtain Gn to fit the dscription of Gn as in
Definition 10. To make it a complete graph, simply add all the missing edges and
assign L for the newly added edges to 0. To get the ordering, fix any arbitrary
ordering for the set Σ, the stack alphabet of HN , say a1, a2, . . . , a|Σ|. In HN ,
let E be defined as {e | φ(e) 6= No-op}. From our construction of HN , no two
edges in E share any endpoints. Also for each ai ∈ Σ, there is a unique edge with
Write(ai) on it and a unique edge with Read(ai) on it. We now fix the following
ordering: the tail of the edge with Write(ai) on it is assigned 4(i− 1) + 1 and its
head is assigned 4(i− 1) + 2, the tail of the edge with Read(ai) on it is assigned
4(i− 1) + 3 and finally, its head is assigned 4(i− 1) + 4.

Observation 4 It is worth noting that another plausible (and probably more
natural) way to define the polynomial family in Definition 8 (and Definition 10,
respectively) is to consider only the stack-realizable cycle covers (counter-realizable
cycle covers, respectively) instead of the stack-realizable clow sequences (counter-
realizable clow sequences, respectively) in the overall summation. In case of such

Variants of the Determinant Polynomial and the VP-completeness 25

a variant of StackDetn(X), the VP-hardness immediately follows whereas the
VP-upperbound is not known. However, in case of such a variant of CountDetn(X),
both VNP-upperbound and VNP-hardness follows.

References

1. Chaugule, P., Limaye, N., Varre, A.: Variants of homomorphism polynomials com-
plete for algebraic complexity classes. In: Computing and Combinatorics - 25th In-
ternational Conference, COCOON. LNCS, vol. 11653, pp. 90–102. Springer (2019)

2. Durand, A., Mahajan, M., Malod, G., de Rugy-Altherre, N., Saurabh, N.: Homo-
morphism polynomials complete for vp. In: LIPIcs-Leibniz International Proceed-
ings in Informatics. vol. 29 (2014)

3. Engels, C.: Dichotomy theorems for homomorphism polynomials of graph classes.
Journal of Graph Algorithms and Applications 20(1), 3–22 (2016)

4. Hrubes, P.: On hardness of multilinearization, and VNP completeness in charac-
teristics two. Electronic Colloquium on Computational Complexity (ECCC) 22,
67 (2015), http://eccc.hpi-web.de/report/2015/067

5. Mahajan, M., Saurabh, N.: Some complete and intermediate polynomials in alge-
braic complexity theory. Theory of Computing Systems 62(3), 622–652 (2018)

6. Mahajan, M., Vinay, V.: Determinant: Combinatorics, algorithms, and complexity.
Tech. rep. (1997)

7. Mengel, S.: Characterizing arithmetic circuit classes by constraint satisfaction
problems. In: ICALP. pp. 700–711. Springer (2011)

8. Mengel, S.: Arithmetic branching programs with memory. In: International Sym-
posium on Mathematical Foundations of Computer Science. pp. 667–678. Springer
(2013)

9. Prasad Chaugule, Nutan Limaye, S.P.: Variants of the deter-
minant polynomial and the VP-completeness (October 2020),
https://eccc.weizmann.ac.il/report/2020/152/, [Online; posted 07-October-2020]

10. Raz, R.: Elusive functions and lower bounds for arithmetic circuits. In: Proceedings
of the fortieth annual ACM symposium on Theory of computing. pp. 711–720.
ACM (2008)

11. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends R© in Theoretical Computer Science 5(3–
4), 207–388 (2010)

12. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing. pp. 249–261. STOC ’79 (1979)

