
Limitations of Sums of Bounded Read Formulas
and ABPs

Purnata Ghosal1, B. V. Raghavendra Rao2

1 Department of Computer Science, University of Liverpool
purnata.ghosal@liverpool.ac.uk

2 Department of Computer Science and Engineering, IIT Madras, Chennai, India
bvrr@cse.iitm.ac.in

Abstract. Proving super-polynomial size lower bounds for various classes
of arithmetic circuits computing explicit polynomials is a very important
and challenging task in algebraic complexity theory. We study repre-
sentation of polynomials as sums of weaker models such as read once
formulas (ROFs) and read once oblivious algebraic branching programs
(ROABPs). We prove:
(1) An exponential separation between sum of ROFs and read-k formu-

las for some constant k.
(2) A sub-exponential separation between sum of ROABPs and syntactic

multilinear ABPs.
Our results are based on analysis of the partial derivative matrix under
different distributions. These results highlight richness of bounded read
restrictions in arithmetic formulas and ABPs.
Finally, we consider a generalization of multilinear ROABPs known as
strict-interval ABPs defined in [Ramya-Rao, MFCS2019]. We show that
strict-interval ABPs are equivalent to ROABPs up to a polynomial blow
up in size. In contrast, we show that interval formulas are different from
ROFs and also admit depth reduction which is not known in the case of
strict-interval ABPs.

1 Introduction

Polynomials are one of the fundamental mathematical objects and have wide
applications in Computer Science. Algebraic Complexity Theory aims at a clas-
sification of polynomials based on their computational complexity. In his seminal
work, Valiant [38] laid foundations of Algebraic Complexity Theory and popu-
larized arithmetic circuits as a natural model of computation for polynomials.
He proposed the permanent polynomial permn:

permn =
∑
π∈Sn

n∏
i=1

xiπ(i),

as the primary representative of intractability in algebraic computation. In
fact, Valiant[38] hypothesized that the complexity of computing permn by arith-
metic circuits is different from that of the determinant function.



2 Ghosal and Rao

A primary offshoot of Valiant’s hypothesis is the arithmetic circuit lower
bound problem: prove a super polynomial lower bound on the size of an arith-
metic circuit computing an explicit polynomial of polynomial degree. Here, an
explicit polynomial is one whose coefficients are efficiently computable. Baur and
Strassen [5] obtained a super linear lower bound on the size of any arithmetic
circuit computing the sum of powers of variables. This is the best known size
lower bound for general classes of arithmetic circuits.

Lack of progress in the lower bounds for general arithmetic circuits lead the
community to investigate restrictions on arithmetic circuits. Restrictions consid-
ered in the literature can be broadly classified into two categories: syntactic and
semantic. Syntactic restrictions considered in the literature include restriction
on fan-out i.e., arithmetic formulas, restriction on depth i.e., bounded depth
circuits [14,15,34], and the related model of algebraic branching programs. Se-
mantic restrictions include monotone arithmetic circuits [18,40,36], homogeneous
circuits [9], multilinear circuits [30] and non-commutative computation [26].

Grigoriev and Razborov [15] obtained an exponential lower bound for the size
of a depth three arithmetic circuit computing the determinant or permanent over
finite fields. In contrast, only almost cubic lower bound is known over infinite
fields [20]. Explaining the lack of progress on proving lower bounds even in the
case of depth four circuits, Agrawal and Vinay [1] showed that an exponential
lower bound for the size of depth four circuits implies Valiant’s hypothesis over
any field. This lead to intense research efforts in proving lower bounds for the
size of constant depth circuits. The reader is referred to an excellent survey by
Saptharishi et al. [33] for details.

A polynomial p ∈ F[x1, . . . , xn] is said to be multilinear if every monomial
in p with non-zero coefficient is square-free. An arithmetic circuit is said to
be multilinear if every gate in the circuit computes a multilinear polynomial.
Multilinear circuits are natural models for computing multilinear polynomials.
Raz [31] obtained super polynomial lower bounds on the size of multilinear
formulas computing the determinant or permanent. Further, he gave a super
polynomial separation between multilinear formulas and circuits [30]. In fact,
Raz [31] considered a syntactic version of multilinear circuits known as syntactic
multilinear circuits. An arithmetic circuit C is said to be syntactic multilinear,
if for every product gate g = g1 × g2 the sub-circuits rooted at g1 and g2 are
variable disjoint. The syntactic version has an advantage that the restriction can
be verified by examining the circuit, whereas the problem of testing if a circuit is
multilinear or not is equivelent to the polynomial identity testing problem. Fol-
lowing Raz’s work, there has been significant interest in proving lower bounds
on the size of syntactic multilinear circuits. Exponential separation of constant
depth multilinear circuits is known [11], while the best known lower bound for
unbounded depth syntactic multilinear circuits is only almost quadratic [2].

An Algebraic Branching Program (ABP) is a model of computation for poly-
nomials that generalizes arithmetic formulas, and were studied by Ben-Or and
Cleve [6], who showed that ABPs of constant width are equivalent to arithmetic
formulas. Nisan [26] proved exponential size lower bound for the size of an ABP



Bounded Read Formulas and ABPs 3

computing the permanent when the variables are non-commutative. It is known
that polynomial families computed by ABPs are the same as families of poly-
nomials computed by skew circuits, a restriction of arithmetic circuits where
every product gate can have at most one non-input gate as a predecessor [23].
Further, skew arithmetic circuits are known to characterize the complexity of
determinant [37]. Despite their simplicity compared to arithmetic circuits, the
best known lower bound for size of ABPs is only quadratic [21], [10]. Even with
the restriction of syntactic multilinearity, the best known size lower bound for
ABPs is, again, quadratic [16]. However, a super polynomial separation between
syntactically multilinear formulas and ABPs is known [13].

Proving super quadratic size lower bounds for syntactic multilinear ABPs
(smABPs for short) remains a challenging task. Given that there is no promis-
ing approach yet to prove super quadratic size lower bounds for smABPs, it is
imperative to consider further structural restrictions on smABPs and formulas
to develop finer insights into the difficulty of the problem. Following the works
in [27,29,28], we study syntactic multilinear formulas and smABPs with restric-
tions on the number of reads of variables and the order in which variables appear
in a smABP.

Models and Results: (1) Sum of ROFs: A read-once formula (ROF) is a for-
mula where every variable occurs exactly once as a leaf label. ROFs are syntac-
tic multilinear by definition and have received wide attention in the literature.
Volkovich [39] gave a complete characterization of polynomials computed by
ROFs. Further, Minahan and Volkovich [24] obtained a complete derandomiza-
tion of the polynomial identity testing problem on ROFs. While most of the
multilinear polynomials are not computable by ROFs [39], sum of ROFs, de-
noted by Σ · ROF is a natural model of computation for multilinear polynomi-
als. Shpilka and Volkovich showed that a restricted form of Σ · ROF requires
linear summands to compute the monomial x1x2 · · ·xn. Further, Mahajan and
Tawari [22] obtained a tight lower bound on the size of Σ · ROF computing an
elementary symmetric polynomial. Ramya and Rao [29] obtained an exponen-
tial lower bound on the number of ROFs required to compute a polynomial in
VP. In this article, we improve the lower bound in [29] to obtain an exponential
separation between read-k formulas and Σ ·ROF for a sufficiently large constant
k. Formally, we prove:

Theorem 1. There is a constant k > 0 and a family of multilinear polynomials
fPRY computable by n-variate read-k formulas such that if fPRY = f1+f2+· · ·+fs,
where f1, . . . , fs are ROFs, then s = 2Ω(n).

(2) Sum of ROABPs: A natural generalization of ROFs are read-once obliv-
ious branching programs (ROABPs). In an ROABP, a layer reads at most one
variable and every variable occurs in exactly one layer. Arguments in [26] imply
that any ROABP computing the permanent and determinant requires exponen-
tial size. Kayal et al. [19] obtain an exponential separation between the size of
ROABPs and depth three multilinear formulas. In [27], an exponential lower



4 Ghosal and Rao

bound for the sum of ROABPs computing a polynomial in VP is given. We
improve this bound to obtain a super polynomial separation between sum of
ROABPs and smABPs:

Theorem 2. There is a multilinear polynomial family f̂ computable by smABPs
of polynomial size such that if f̂ = f1 + . . . + fs, each fi ∈ F[x1, . . . , xn] being
computable by a ROABP of size poly(n), then s = exp(Ω(nε)) for some ε >
1/500.

(3) Strict-interval ABPs and Interval formulas: It may be noted that any
sub-program of a ROABP computes a polynomial in an interval {xi, . . . , xj}
of variables for some i < j. A natural generalization of ROABPs would be
to consider smABPs where every sub-program computes a polynomial in some
interval of variables, while a variable can occur in multiple layers. These are
known as interval ABPs and were studied by Arvind and Raja [4] who obtained
a conditional lower bound for the size of interval ABPs. Ramya and Rao [28]
obtained an exponential lower bound for a special case of interval ABPs known
as strict-interval ABPs. We show that strict-interval ABPs are equivalent to
ROABPs upto polynomial size:

Theorem 3. The class of strict-interval ABPs is equivalent to the class of
ROABPs.

Finally, we examine the restriction of intervals in syntactic multilinear for-
mulas. We show that unlike ROFs, interval formulas can be depth reduced (The-
orem 23).

Related Work: To the best of our knowledge, Theorem 1 is the first exponential
separation between bounded read formulas and Σ · ROF. Prior to this, only a
linear separation between bounded read formulas and Σ · ROF was known [3].

In [29], Ramya and Rao show an exponential lower bound for the sum of
ROFs computing a polynomial in VP. This already establishes that there are
explicit families of polynomials computable by quasi-polynomial size multilin-
ear polynomials requiring exponential size Σ · ROFs. Our result significantly
strengthens this since our hard polynomial is computable by bounded read for-
mulas. Mahajan and Tawari [22] obtain a tight linear lower bound for Σ · ROF
computing an elementary symmetric polynomial.

Kayal, Nair and Saha [19] obtain a separation between ROABPs and multilin-
ear depth three circuits. The authors define a polynomial, efficiently computed
by set multilinear depth three circuits, that has an exponential size ROABP
computing it. This polynomial can be expressed as a sum of three ROFs. Later,
Ramya and Rao [27] obtain a sub-exponential lower bound against the model
of Σ · ROABP computing the polynomial defined by Raz and Yehudayoff [32].
Dvir et al. [13] obtain a super-polynomial lower bound on the size of syntactic
multilinear formulas computing a polynomial that can be efficiently computed
by smABPs. We use the polynomial defined by [13] and adapt their techniques
to obtain a separation between smABPs and Σ · ROABP.



Bounded Read Formulas and ABPs 5

Organization of the Paper: Section 2 contains basic definitions of the models
of computations, concepts and explicit polynomials used in the rest of the pa-
per. The rest of the sections each describe results with respect to a particular
bounded-read model. Section 3 describes the lower bound on the Σ ·ROF model
and Section 4 describes the lower bound on the Σ ·ROABP model which follows
using the same arguments as in the work of Dvir et al. [13]. Section 5 shows that
strict-interval ABP is a fresh way to look at ROABPs since the two models are
equivalent. In Section 6 we see that Brent’s depth reduction result ([8]) holds
for the class of interval formulas.

2 Preliminaries

In this section, we present necessary definitions and notations. For more details,
reader is referred to excellent surveys by Shpilka and Yehudayoff [35] and by
Saptharishi et al. [33].

Arithmetic Circuits: Let X = {x1, . . . , xn} be a set of variables. An arithmetic
circuit C over a field F with input X is a directed acyclic graph (DAG) where
the nodes have in-degree zero or two. The nodes of in-degree zero are called
input gates and are labeled by elements from X ∪ F. Non-input gates of C are
called internal gates and are labeled from {+,×}. Nodes of out degree zero are
called output gates. Typically, a circuit has a single output gate. Every gate v
in C naturally computes a polynomial fv ∈ F[X]. The polynomial computed by
C is the polynomial represented at its output gate. The size of a circuit denoted
by size(C), is the number of gates in it, and depth is the length of the longest
root to leaf path in C, denoted by depth(C). An arithmetic formula is a circuit
where the underlying undirected graph is a tree.

Multilinear polynomials are polynomials such that in every monomial, the
degree of a variable is either 0 or 1. Multilinear circuits, where every gate in the
circuit computes a multilinear polynomial, are natural models of computation
for multilinear polynomials. For a gate v in a circuit C, let var(v) denote the
set of all variables that appear in the sub-circuit rooted at v. A circuit C is
said to be syntactic multilinear if for every product gate v = v1 × v2 in C, we
have var(v1) ∩ var(v2) = ∅. By definition, a syntactic multilinear circuit is also
multilinear.

An arithmetic formula F is said to be a read-once formula (ROF in short)
if every input variable in X labels at most one input gate in F . Polynomials
computed by ROFs are known as read-once polynomials.

Algebraic branching program (ABP in short) is a model for computation of
polynomials defined as analogous to the branching program model of computa-
tion for Boolean functions. An ABP P is a layered DAG with layers L0, . . . , Lm
such L0 = {s} and Lm = {t} where s is the start node and t is the terminal
node. Each edge is labeled by an element in X ∪F. The output of the ABP P is
the polynomial p =

∑
ρ is an s to t path wt(ρ), where wt(ρ) is the product of edge

labels in the path ρ. Further, for any two nodes u and v let [u, v]P denote the



6 Ghosal and Rao

polynomial computed by the sub-program Puv of P with u as the start node and
v as the terminal node. Let Xuv denote the set of variables that appear as edge
labels in the sub-program Puv. The size of an ABP P , denoted by size(P ) is the
number of nodes in P .

In a syntactic multilinear ABP (smABP), every s to t path reads any input
variables at most once. An ABP is oblivious if every layer reads at most one
variable. A read-once oblivious ABP (ROABP) is an oblivious smABP where
every variable can appear in at most one layer i.e., for every i, there is at most
one layer ji such that xi occurs as a label on the edges from Lji to Lji+1.

An interval on the set {1, . . . , n} with end-points i, j ∈ [n], can be defined
as I = [i, j], i < j, where I = {` | i, j ∈ [n], i ≤ ` ≤ j}. An interval of
variables Xij is defined such that Xij ⊆ {x` | ` ∈ I, I = [i, j]}, where I is an
interval on the set {1, . . . , n}. For an ordering π ∈ Sn, we define a π-interval
of variables, Xij ⊆ {xπ(i), xπ(i+1), . . . , xπ(j)}. In [4], Arvind and Raja defined a
sub-class of syntactically multilinear ABPs known as interval ABPs and proved
lower bounds against the same. Later, [28] defined a further restricted version
of interval ABPs, denoted by strict-interval ABPs, defined as follows.

Definition 4. ([28]) A strict interval ABP P is a syntactically multilinear ABP
where we have the following:

1. For any pair of nodes u and v in P , the indices of variables occurring in the
sub-program [u, v]P is contained in some π-interval Iuv called the associated
interval of [u, v]P ; and

2. for any pairs of sub-programs of the form [u, v]P , [v, w]P , the associatedπ-
intervals of variables are disjoint, i.e., Iuv ∩ Ivw = ∅.

It may be noted that in a strict interval ABP, intervals associated with each
sub-program need not be unique. We assume that the intervals associated are
largest intervals with respect to set inclusion such that condition 2 in the defi-
nition above is satisfied.

The Partial Derivative Matrix: We need the notion of partial derivative matrices
introduced by Raz [31] and Nisan [26] as primary measure of complexity for
multilinear polynomials. The partial derivative matrix of a polynomial f ∈ X
defined based on a partition ϕ : X → Y ∪ Z of the X into two parts. We follow
the definition in [31]:

Definition 5. (Raz [31]) Let ϕ : X → Y ∪Z be a partition of the input variables
in two parts. LetMY ,MZ be the sets of all possible multilinear monomials in the
variables in Y and Z respectively. Then we construct the partial derivative matrix
Mfϕ for a multilinear polynomial f under the partition ϕ such that the rows of
the matrix are indexed by monomials mi ∈ MY , the columns by monomials
sj ∈ MZ and entry Mfϕ(i, j) = cij, cij being the coefficient of the monomial
mi · sj in f . We denote by rankϕ(f) the rank of the matrix Mfϕ .

We call ϕ an equi-partition when |X| = n, n even and |Y | = |Z| = n/2.
Raz [31] showed the following fundamental property of rankϕ:



Bounded Read Formulas and ABPs 7

Lemma 6. Let g and h be multilinear polynomials in F[X]. Then, ∀ϕ : X →
Y ∪ Z, we have the following.

Sub-additivity: rankϕ(g + h) ≤ rankϕ(g) + rankϕ(h), and

Sub-multiplicativity: rankϕ(gh) ≤ rankϕ(g)× rankϕ(h).

Two Explicit Polynomials: Let fRY denote the family of multilinear polynomi-
als defined by Raz and Yehudayoff in [32]. The family fRY can be computed
by polynomial size syntactic multilinear circuits. Dvir et al. [13] defined a poly-

nomial family f̂ that can be computed by polynomial size smABPs and have
full-rank under a special type of partitions called arc-partitions. Further details
of the families fRY and f̂ are included in the appendix. Polynomials that exhibit
maximum rank of the partial derivative matrix under all or a large fraction of
equi-partitions can be thought of as high complexity or hard polynomials. We
need two such families found in the literature.

Raz and Yehudayoff [32] defined a multilinear polynomial in VP. To describe
this polynomial we denote an interval {a | i ≤ a ≤ j, a ∈ N}, i, j ∈ N by [i, j],
and consider the sets of variables X = {x1, . . . , x2n}, W = {wi,`,j}i,`,j∈[2n]. We
denote it as the Raz-Yehudayoff polynomial and define it as follows.

Definition 7 (Raz-Yehudayoff polynomial, [32]). Let us consider fij ∈
F[X,W ] defined over the interval [i, j]. For i ≤ j, the polynomial fij is defined
inductively as follows. If j − i = 0, then fij = 0. For |j − i| > 0,

fij = (1 + xixj)fi+1,j−1 +
∑

`∈[i+1,j−2]

wi,`,jfi,`f`+1,j ,

where we assume without loss of generality, lengths of [i, `], [` + 1, j] are even
and smaller than [i, j]. We define f1,2n as the Raz-Yehudayoff polynomial fRY.

Note that, fRY can be defined over any subset X ′ ⊆ X such that |X ′| is
even, by considering the induced ordering of variables in X ′ and considering
intervals accordingly. We denote this polynomial as fRY(X ′) for X ′ ⊆ X. Raz
and Yehudayoff showed:

Proposition 8. ([32]) Let G = F(W ) be the field of rational functions over the
field F and the set of variables W . Then for every equi-partition ϕ : X → Y ∪Z,
rankϕ(fRY) = 2n/2.

Dvir et al. [13] defined a polynomial that is hard i.e., full rank with respect to
a special class of partitions called arc-partitions. Suppose X = {x0, . . . , xn−1} be
identified with the set V = {0, . . . , n− 1}. For i, j ∈ V , the set [i, j] = {i, (i+ 1)
mod n, (i + 2) mod n, . . . , j} is called the arc from i to j. An arc pairing is a
distribution on the set of all pairings (i.e., perfect matchings) on V obtained
in n/2 steps as follows. Assuming a pairing (P1, . . . , Pt) constructed in t < n/2
steps, where P1 = (0, 1), [Lt, Rt] is the interval spanned by ∪i∈[t]Pi and the



8 Ghosal and Rao

random pair Pt+1 is constructed such that

Pt+1 =


(Lt − 2, Lt − 1) with probability 1/3,

(Lt − 1, Rt + 1) with probability 1/3,

(Rt + 1, Rt + 2) with probability 1/3,

and therefore, [Lt+1, Rt+1] = [Lt, Rt] ∪ Pt+1.
Given a pairing P = {P1, . . . , Pn/2} of V , there are exactly 2n/2 partitions

of X, by assigning ϕ(xi) ∈ Y and ϕ(xj) ∈ Z or ϕ(xi) ∈ Z and ϕ(xj) ∈ Y
independently for each pair (i, j) ∈ P. An arc partition is a distribution on all
partitions obtained by sampling an arc pairing as defined above and sampling
a partition corresponding to the pairing uniformly at random. We denote this
distribution on partitions by D. For a pairing P = {P1, . . . , Pn/2} let MP be

the degree n/2 polynomial
∏n/2
i=1(x`i + xri) where Pi = (`i, ri). Dvir et al. [13]

defined the arc full rank polynomial f̂ =
∑
P∈D λPMP , where λP is a formal

variable. Dvir et al. [13] showed:

Proposition 9. [13] The polynomial f̂ can be computed by a polynomial size

smABP and for every ϕ ∈ D, rankϕ(f̂) = 2n/2 over a suitable field extension G
of F.

Now that we are familiar with most of the definitions required for an under-
standing of the results in this paper, we proceed to discuss our results.

3 Sum of ROFs

In this section, we show that there is an exponential separation between syntactic
multilinear read-k formula and Σ · ROF. We begin with the construction of a
hard polynomial computable be a read-k formula for a large constant k.

A full rank Polynomial: Let X = {x1, . . . , xn} be the set of input variables of
the hard polynomial such that 4 | n. Let fRY(X ′) to denote the Raz-Yehudayoff
polynomial defined on the variable set X ′, where X ′ is an arbitrary subset of X
with |X ′| even.

Let r = Θ(1) be a sufficiently large integer factor of n such that r and n/r
are both even. For 1 ≤ i ≤ n/r, let Bi = {x(i−1)r+1, . . . , xir} and B denote the
partition B1 ∪B2 ∪ · · · ∪Bn/r of X. The polynomial fPRY is defined as follows:

fPRY=fRY(B1) · fRY(B2) · · · fRY(Bn/r). (1)

By definition of the polynomial fPRY, it can be computed by a constant-width
ROABP of polynomial size as well as by a read-k formula where k = 2O(r).

In order to prove a lower bound against a class of circuits computing the poly-
nomial fPRY, we consider the complexity measure of the rank of partial derivative
matrix. Like in [30] and many follow-up results, we analyse the rank of the par-
tial derivative matrix of fPRY under a random partition. The reader might have



Bounded Read Formulas and ABPs 9

already noticed that there are equi-partitions under which the rankϕ(fPRY) = 1.
Thus, we need a different distribution on the equi-partitions under which fPRY
has full rank with probability 1. In fact, under any partition ϕ, which induces
an equi-partition on each of the variable blocks Bi, we have rankϕ(fPRY) = 2n/2,
i.e., full rank. We define DB as the uniform distribution on all such partitions.
Formally, we have:

Definition 10. (Distribution DB) The distribution DB is the distribution on
the set of all equi-partitions ϕ̂ of X obtained by independently sampling an equi-
partition ϕi of each variable blocks Bi, for all i such that 1 ≤ i ≤ n/r. We
express ϕ̂ as ϕ̂ = ϕ1 ◦ . . . ◦ ϕn/r.

For any partition ϕ in the support of DB, we argue that the polynomial fPRY
has full rank:

Observation 1. For any ϕ ∼ DB, rankϕ(fPRY) = 2n/2 with probability 1.

Proof. Let us fix an equi-partition function ϕ̂ ∼ DB, ϕ̂ : X → Y ∪ Z. Let
t = r. Considering fRY(X ′) where |X ′| = t and t is even, we can prove the
partial derivative matrix of fRY(X ′) has rank 2n/2 under ϕ̂ by induction on t.
By definition of fRY, for t = 2 we have fRY = 0.

So, for the higher values of t, we see the term (1+x1xt) and f2,t−1 are variable
disjoint, where (1 + x1xt) has rank ≤ 2, and by the induction hypothesis, f2,t−1
has rank 2t/2−1. Also, by induction hypothesis, for any `, the ranks of partial
derivative matrices of f1,` and f`+1,t are 2`/2 and 2(t−`)/2 respectively.

When ϕ̂(x1) ∈ Y and ϕ̂(xt) ∈ Z, we set w1,`,t = 0 for all ` ∈ [2, t − 1]
and rankϕ̂(f1,t) = rankϕ̂(1 + x1xt) · rankϕ̂f2,t−1 = 2 · 2(t/2−1) = 2t/2. When
ϕ̂(x1) ∈ Y and ϕ̂(xt) ∈ Y , for an arbitrary ` ∈ [t] we set w1,`,t = 1 and we have
rankϕ̂(f1,t) = rankϕ̂(f1,`) · rankϕ̂(f`+1,t) = 2t/2, since ϕ̂ is an equi-partition.

By sub-additivity of rank, and since Bi, i ∈ [n/r] are disjoint sets of variables,
we have rankϕ̂(fPRY) =

∏
i∈[n/r] rankϕ̂(fRY(Bi)) =

∏
i∈[n/r] 2t/2 = 2tn/2r = 2n/2.

3.1 Rank Upper Bound on ROFs

In the following, we argue that the polynomial fPRY cannot be computed by sum
of ROFs of sub-exponential size. More formally,

Theorem 1. There is a constant k > 0 and a family of multilinear polynomials
fPRY computable by n-variate read-k formulas such that if fPRY = f1+f2+· · ·+fs,
where f1, . . . , fs are ROFs, then s = 2Ω(n).

We use the method of obtaining an upper bound on the rank of partial
derivative matrix for ROFs with respect to a random partition developed by
[29]. Though the argument in [29] works for an equi-partition sampled uniformly
at random, we show that their structural analysis of ROFs can be extended to
the case of our distribution DB. We begin with the notations used in [29] for the
categorisation of the gates in a read-once formula F . (In this categorisation, the
authors have only considered gates with at least one input being a variable.)



10 Ghosal and Rao

– Type- A: These are sum gates in F with both inputs variables in X.
– Type- B: Product gates in F with both inputs variables in X.
– Type- C: Sum gates in F where only one input is a variable in X.
– Type- D: Product gates in F where only one input is a variable in X.

Thus, type-D gates compute polynomials of the form h ·xi where xi ∈ X,h ∈
F[X \ {xi}] are the inputs to the type-D gate. Let a, b, c, d be the number of
gates of type-A, B, C and D respectively. Let a′′ be the number of Type A gates
that compute a polynomial of rank 2 under an equi-partition ϕ, and a′ be the
number of Type-A gates that compute a polynomial of rank 1 under ϕ such that
a = a′ + a′′.

The following is an adaptaion of Lemma 3.3 in [29] for our distribution DB.

Lemma 11. Let f ∈ F[X] be an ROP, and ϕ be an equi-partition sampled
uniformly at random from the distribution DB. Then with probability at least
1− 2−Ω(n), rankϕ(Mf ) ≤ 2n/2−Ω(n).

Proof. We first argue a rank upper bound for an arbitrary fi. Let Φi be the
formula computing fi with gates of the types described as above. Let ϕ̂ = ϕ1 ◦
. . . ◦ ϕn/r sampled from the distribution DB uniformly at random.

We use the Lemma 3.1 from [29] which concludes that type-D gates do not
contribute to the rank of a ROF.

Lemma 12. [29, Lemma 3.1] Let F be a ROF computing a read-once polynomial
f and ϕ : X → Y ∪Z be an partition function on n variables. Then, rankϕ(f) ≤
2a
′′+ 2a′

3 + 2b
3 + 9c

20 .

Intuitively, Lemma 12 can be applied to a ROF F under a distribution ϕ̂ ∼
DB as follows. If there are a large number of type D gates (say αn, for some
0 ≤ α < 1), then for any such equi-partition ϕ̂, rankϕ̂(f) ≤ 2(1−α)n/2. A type C
gate, too, contributes a small value (at most 2) to the rank compared to gates
of types A and B. Thus, without loss of generality, we assume that the number
of type C and D gates is at most αn. Now our analysis proceeds as in [29], only
differing in the estimation of a′′, a′ under an equi-partition ϕ̂ ∼ DB .

Let (P1, . . . , Pt) be a pairing induced by the gates of types A and B (i.e., the
two inputs to a gate of type A or B form a pair). There can be at most n/2 pairs,
but since we have αn gates of type C and D for some 0 ≤ α < 1, we assume
(1−α)n remaining type A and B gates. Therefore, for t = (n−αn)/2, t ≤ n/2,
we have the pairs P1, . . . , Pt induced by the type A and B gates in Φi.

Now, considering the division of X into B1, . . . , Bn/r, we can divide the
pairs into two sets depending on whether a pair lies entirely within a block
Bi, i ∈ [n/r] or the pair has its members in two different blocks Bi and Bj for
i, j ∈ [n/r], i 6= j. We define these two sets as W = {Pi | Pi = (x, y),∃`, x, y ∈
B`} for pairs lying within blocks and A = {Pi | Pi = (x, y),∃j, k, j 6= k, x ∈
Bj , y ∈ Bk} for pairs lying across blocks, where x, y are two arbitrary variables
in X.

Each pair Pi can be monochromatic or bichromatic under the randomly sam-
pled equi-partition ϕ̂ with the probability 1

2 . Presence of monochromatic edges



Bounded Read Formulas and ABPs 11

will give us a reduction in the rank of fi under ϕ̂. The analysis on W and A is
done separately as follows.

Analysing W , |W | > t/2: Let Bi1 , . . . , Bi` be the blocks containing at least one
pair from W , ` ≤ n/r. We want to estimate ` and count how many of these `
blocks have at least one monochromatic pair under ϕ̂ from W .

For each Bi, i ∈ [t], we define the Bernoulli random variable Xi such that,

Xi =

{
1, if ∃P ∈W, P = (x, y), x, y ∈ Bi,
0, otherwise.

Let Pr[Xi = 1] = Pr[∃P ∈W, P = (x, y), x, y ∈ Bi] = ε, for some ε > 0.
Then we have E[Xi] = ε, and for X = X1 + . . . + Xn/r, E[X ] = ε · n/r. By

the Chernoff’s bound defined in [25], we have,

Pr[X > 2εn/r] < exp(
−εn
3r

).

Now we estimate ε as follows:

ε = Pr[Xi = 1] = Pr[∃P ∈W, P = (x, y), x, y ∈ Bi]
= Pr[x, y ∈ Bi|∃P ∈W, P = (x, y)]

=
Pr[x, y ∈ Bi]

Pr[∃P ∈W, P = (x, y)]

≥ Pr[x, y ∈ Bi] since Pr[∃P ∈W, P = (x, y)] ≤ 1

=
1

r2
.

Therefore, Pr[X > 2εn/r] < exp(−εn3r ) ≤ exp(−Ω(n)), when r is a constant.
This implies that at least 2/r2 fraction of the blocks have a pair entirely within
them with probability 1−exp(−Ω(n)) and each of these pairs is monochromatic
under ϕ̂ with the constant probability 1/2. This gives an upper bound on the
rank of fi,

rankϕ̂(fi) ≤ 2n/2−n/r
3

= 2n/2−Ω(n).

Analysing A, |A| > t/2: Since each pair of variables in A lies across two blocks,
we create a graph G = (V,E) where each vi ∈ V represents the block Bi and
E = {(vi, vj) | (x, y) ∈ A, x ∈ Bi, y ∈ Bj , i 6= j}.

The graph G has maximum degree r since there can be at most r pairs with
one member in a fixed block Bi. If the edges in E form a perfect matching M ′

in G, then under ϕ̂, the edges in E can be either bichromatic or monochromatic.
We need to show there will be sufficient number of monochromatic edges to give
a tight upper bound for rankϕ̂(fi).

By a result in [7], any graph with maximum degree r has a maximal matching
of size m/(2r−1), where |E| = m. Since |A| ≥ t/2, m ≥ t/2 and hence the max-
imal matching is of size t/2(2r− 1) = Ω(n) when r is a suitable constant. With



12 Ghosal and Rao

probability 1/2, an edge in the maximal matching is bichromatic. Hence, ≤ t/2
number of the edges in the maximal matching are bichromatic with probability
1/2t/2 = O(exp(n−1)). So, with the high probability of 1 − O(exp(n−1)), more
than half of the edges in the maximal matching are monochromatic, thus giving
us the rank bound,

rankϕ̂(fi) ≤ 2n/2−t/2 = 2n/2−Ω(n).

Given an upper bound on the rank of ROFs under a random partition from
DB, we now proceed to prove the Theorem 1 by showing a lower bound on the
size of ROFs computing our hard polynomial fPRY.

Proof. (Proof of Theorem 1) By Observation 1, the upper bound on the rank of
ROFs given by Lemma 11 and the sub-additivity of rank, we have:

s · 2n/2−Ω(n) ≤ 2n/2 =⇒ s = 2Ω(n).

4 A separation between Sum of ROABPs and smABPs

In this section, we prove a sub-exponential lower bound against the size of sum
of read-once oblivious ABPs computing the hard polynomial constructed in [13].
This shows a sub-exponential separation between syntactically multilinear ABPs
and sum of ROABPs. We prove the following theorem in this section:

Theorem 2. There is a multilinear polynomial family f̂ computable by smABPs
of polynomial size such that if f̂ = f1 + . . . + fs, each fi ∈ F[x1, . . . , xn] being
computable by a ROABP of size poly(n), then s = exp(Ω(nε)) for some ε >
1/500.

Our aim is to give an upper bound on the maximum rank of ROABPs under
an arc partition. We refer to the rank of the coefficient matrix of the sum of
ROABPs against an arc-partition as the arc-rank. We analyze the arc-rank of
the sum of ROABPs against an arc-partition to give a lower bound on the size
of the sum necessary to compute f̂ .

Let us assume that n is even. In order to prove the lower bound, we need
to estimate an upper bound on the arc-rank computed by a ROABP. We define
the notion of F -arc-partition, F being a ROABP, as follows:

Definition 13. Let us consider an arc partition Q constructed from a ROABP
F in the following manner: Let the order of variables appearing in the ROABP
be xσ(1), xσ(2), . . . , xσ(n), where σ ∈ Sn is a permutation on n indices. Then,
Q = {(xσ(i), xσ(i+1)) | i ∈ [n], i is odd} is a F -arc-partition.

We assume 2K | n. Let S1, . . . , SK be a K-coloring of the variable set X,
where x1, . . . , xn are ordered according to the ROABP and for every i ∈ [k], Si
contains the variables x(i−1)n/K+1, . . . , xin/K according to that ordering. Then
S1, . . . , SK is a K-partitioning of the pairs in the F -arc-partition Q. So pairs



Bounded Read Formulas and ABPs 13

in Q are monochromatic, whereas the pairs (P1, . . . , Pn/2) on which a random
arc-partition Π sampled from D is based, might cross between two colors.

Our analysis for the ROABP arc-rank upper bound follows along the lines of
the analysis for the arc-rank upper bound given by [13] for syntactic multilinear
formulas. For this analysis we define the set of violating pairs for each color c,
Vc(Π), that is defined as: Vc(Π) = {Πt | |Πt ∪ Sc| = 1, t ∈ [n/2]}, where

Π1, . . . ,Πn/2 are pairs in Π. The quantity G(Π) = |{c | |Vc(Π)| ≥ n
1

1000 }|,
representing the number of colors with many violations, is similarly defined. We
use the following lemma directly from [13]:

Lemma 14. Let K ≤ n
1

100 , Π be the sampled arc-partition, and G(Π) be as
defined above. Then, we have, PrΠ∈D[G(Π) ≤ K/1000] ≤ n−Ω(K).

The following measure is used to compute the arc-rank upper bound for
ROABPs.

Definition 15. (Similarity function) Let ϕ be a distribution on functions S ×
S → N, such that S is the support of the distribution on arc-partitions, D. Let
P,Q be arc-partitions sampled independently and uniformly at random from D.
Then, ϕ(Q,P ) : S × S → N is the total number of common pairs between two
arc-partitions Q and P .

We assume Q to be the F -arc-partition for the ROABP F . For a pair that
is not common between Π and Q, we show both the variables in the pair is in
the same partition, Y or Z with high probability.

Theorem 16. Under an arc-partition Π sampled from D uniformly at random,
if p ∈ F[X] is the polynomial computed by a ROABP P , then, for the similarity
function ϕ and δ > 0,

PrΠ∼D[ϕ(Π,Q) ≥ n/2− nδ] ≤ 2−o(n).

Proof Outline: Our argument is the same as [13]. It is being included here for
completeness for the parameters here being somewhat different than [13].

In order to analyze the number of common pairs counted by ϕ, we consider
the K-coloring of F and show that under a random arc-partition Π, the number
of crossing pairs are large in number using Lemma 14. Then, we show, this
results in large number of pairs having both elements in Y . In order to identify
the colors with the high number of crossing pairs, a graphical representation of
the color sets is used.

Proof. [13] construct the graph H(Π), where each vertex is a color c such that

|Vc(Π)| ≥ n 1
1000 , and vertices c and d have an edge connecting them if and only

if |Vc(Π) ∩ Vd(Π)| ≥ n
1

1500 . We know for any two colors c, d ∈ [K], |Vc(Π) ∩
Vd(Π)| ≤ n 1

1000 . So, by definition of H(Π), the least degree of a vertex in H(Π)
is 1. Using this, [13] prove the following claim:



14 Ghosal and Rao

Claim. Let the size of the vertex set of H(Π), V (H(Π)), be M . For any subset
U of V (H(Π)) size N ≥M/2−1, there is some color hj+1, j ∈ [N −1] such that
in the graph induced on all vertices except {h1, . . . , hj}, the degree of hj+1 is at
least 1.

By Claim 4, we have U ⊆ V (H(Π)), U = {c1, . . . , cM/2−1} such that this is
the set of colors having high number of crossing pairs common with colors not
in U . Considering the colors sequentially, given Π, we first examine the pairs
crossing from color c1 to other colors, then c2 and so on. Therefore, to examine
the event Ei for color ci, we have to estimate PrΠ∼D[Ei | E1, . . . , Ei−1, Π].

Here, Ei is the event |Yci−|Sci |/2| ≤ n
1

5000 , equivalently expressed as |Sci |/2−
n

1
5000 ≤ Yci ≤ |Sci |/2− n

1
5000 . But for an upper bound, it suffices to analyze the

n
1

1500 crossing pairs from Sci to Scj instead of considering the entire set. Let
the subset of Yci constituted by one end of crossing pairs going to color cj
be Pij . Each element x in a crossing pair Pt = (x,w) is a binomial random

variable in a universe of size ≥ n 1
1500=s with probability 1/2 of being allotted to

the subset Y of the universe. This event is independent of how the ci colored
element of other crossing pairs Pt′ are allotted. So, |Bij | = bj is a hyper-geometric
random variable where Bij contains all such x ∈ Y . By the properties of a hyper-

geometric distribution, Prbj [bj = a] = O(s
−1
2 ) = O(n

−1
3000 ), where a is a specific

value taken by the size of Bij .
Applying the union bound over all colors cj for the crossing pairs, and taking

b =
∑
j∈U\{i} bj , we have:

Prb[s/2− n
1

5000 ≤ b ≤ |Sci |/2− n
1

5000 ] ≤ 2n
1

5000O(n
−1
3000 ) = n−Ω(1).

Therefore, PrΠ∼D[Ei | E1, . . . , Ei−1, Π] = n−Ω(δ).

We want an upper bound for Pr[|Yc − |Sc|/2| ≤ n
1

5000 ∀c ∈ [K]]. We have
calculated an upper bound for the colors in [K] that were highly connected to
each other in H(Π). So, we can now estimate the total probability as follows:

Pr[|Yc − |Sc|/2| ≤ n
1

5000 ∀c ∈ [K]]

= E[n−Ω(G(P )) | G(P ) > K/1000] + E[n−Ω(G(P )) | G(P ) ≤ K/1000]

= E[n−Ω(G(P )) | G(P ) > K/1000] + n−Ω(K) by Lemma 14

≤ n−Ω(K).

If we consider δ = 1/5000, then:

PrΠ∼D[ϕ(Π,Q) ≥ n/2− nδ] ≤ Pr[|Yc − |Sc|/2| ≤ n
1

5000 ∀c ∈ [K]] ≤ n−Ω(K)

Now, in Lemma 14, K ≤ n 1
1000 .

Hence, PrΠ∼D[rankϕ(M(pΠ)) ≥ 2n/2−n
δ

] ≤ 2−cn
1

1000 logn = 2−o(n).

Now, using the above Theorem 16, we can prove the lower bound on the size
of the sum of ROABP, s.



Bounded Read Formulas and ABPs 15

Proof. Since the polynomial f is such that each multiplicand is of the form
λe(xu + xv), if xu, xv are both mapped to the same partition Y or Z, it will
reduce the rank of the partial derivative matrix by half. Hence, we have the
following:

PrΠ∼D[rankϕ(M(fΠ)) ≥ 2n/2−n
δ

] = PrΠ∼D[ϕ(Π,Q) ≥ n/2− nδ],

for some suitable δ > 0.

Pr[rank(M(fΠ)) = 2n/2] ≤ Pr[∃i ∈ [s], rank(M((fi)Π)) ≥ 2n/2/s]

≤
s∑
i=1

Pr[rank(M((fi)Π)) ≥ 2n/2/s]

≤
s∑
i=1

Pr[rank(M((fi)Π)) ≥ 2n/2−n
δ

] for some δ > 0

≤ s · n−Ω(n
1

1000 )

=⇒ s = 2Ω(n
1

1000 logn) = 2Ω(n
1

500 ).

5 Strict-Interval ABPs

A strict-interval ABP, defined in [28] (See Definition 4), is a restriction of the
notion of interval ABPs introduced by [4]. In the original definition given by [28],
every sub-program in a strict-interval ABP P is defined on a π-interval of vari-
ables for some order π, however, without loss of generality, we assume π to
be the identity permutation on n variables. Therefore, an interval of variables
[i, j], i < j here is the set {xi, . . . , xj}. In this section we show that strict-interval
ABPs are equivalent to ROABPs upto a polynomial blow-up in size.

Theorem 3. The class of strict-interval ABPs is equivalent to the class of
ROABPs.

We start with some observations on intervals in [1, n] and the intervals in-
volved in a strict interval ABP. Let P be a strict-interval ABP over the variables
X = {x1, . . . , xn}. For any two nodes u and v in P , let Iu,v be the interval of
variables associated with the sub-program of P with u as the start node and v as
the terminal node. For two intervals I = [a, b], J = [c, d] in [1, n], we say I � J ,
if b ≤ c. Note that any two intervals I and J in [1, n] are comparable under � if
and only if either they are disjoint or the largest element in one of the intervals
is the smallest element in the other. This defines a natural transitive relation on
the set of all intervals in [1, n]. The following is a useful property of �:

Observation 2. Let I, J and J ′ be intervals over [1, n] such that I � J and
J ′ ⊆ J . Then I � J ′.

Proof. Let I = [a, b], J = [c, d] and J ′ = [c′, d′]. As I � J , we have b ≤ c.
Further, since J ′ ⊆ J , we have c ≤ c′ and d′ ≤ d. Therefore, b ≤ c′ and hence
I � J ′.



16 Ghosal and Rao

We begin with an observation on the structure of intervals of the sub-programs
of P . Let v be a node in P . We say v is an ascending node, if Is,v � Iv,t and a
descending node if Iv,t � Is,v.

Observation 3. Let P be a strict-interval ABP and v any node in P . Then, v
is either ascending or descending and not both.

Proof. Let I = Is,v and J = Iv,t. Since P is a strict-interval ABP, the intervals
I and J are disjoint and hence either I � J or J � I as required.

Consider any s to t path ρ in P . We say that ρ is ascending if every node in
ρ except s and t is ascending. Similarly, ρ is called descending if every node in ρ
except s and t is descending.

Lemma 17. Let P be a strict interval ABP and let ρ any s to t path in P . Then
either ρ is ascending or descending.

Proof. We prove that no s to t path in P can have both ascending and de-
scending nodes. For the sake of contradiction, suppose that ρ has both ascend-
ing and descending nodes. There are two cases. In the first, there is an edge
(u, v) in ρ such that u is an ascending node and v is a descending node. Let
I = Is,u, J = Iu,t, I

′ = Is,v and J ′ = Iv,t. Since Ps,u is a sub-program of Ps,v, we
have I ⊆ I ′, similarly J ′ ⊆ J . By the assumption, we have I � J and J ′ � I ′. By
Observation 2, we have I � J ′ and J ′ � I ′. By transitivity, we have I � I ′. How-
ever, by the definition of �, I and I ′ are incomparable, which is a contradiction.
The second possibility is u being a descending node and v being an ascending
node. In this case, J � I and I ′ � J ′. Then, by Observation 2, we have J ′ � I
as J ′ ⊆ J . Therefore, J � J ′ by the transitivity of �, a contradiction. This
completes the proof.

Lemma 17 implies that the set of all non-terminal nodes of P can be parti-
tioned into two sets such that there is no edges across. Formally:

Lemma 18. Let P be an interval ABP. There exist two strict-interval ABPs
P1 and P2 such that

1. All non-terminal nodes of P1 are ascending nodes and all non-terminal nodes
of P2 are descending nodes; and

2. P = P1 + P2.

Proof. Let P1 be the sub-program of P obtained by removing all descending
nodes from P and P2 be the sub-program of P obtained by removing all ascend-
ing nodes in P . By Lemma 17, the non-terminal nodes in P1 and P2 are disjoint
and every s to t path ρ in P is either a s to t path in P1 or a s to t path in P2

but not both. Thus P = P1 + P2.

Next we show that any strict-interval ABP consisting only of ascending or
only of descending nodes can in fact be converted into an ROABP.



Bounded Read Formulas and ABPs 17

Lemma 19. Let P be a strict-interval ABP consisting only of ascending nodes
or only of descending nodes. Then the polynomial computed by P can also be
computed by a ROABP P ′ of size polynomial in size(P ). The order of variables
in P ′ is x1, . . . , xn if P has only ascending nodes and xn, . . . , x1 if P has only
descending nodes.

Proof (Proof of Lemma 19). We consider the case when all non-terminal nodes
of P are ascending nodes. Let ρ be any s to t path in P . We claim that the edge
labels in ρ are according to the order x1, . . . , xn. Suppose that there are edges
(u, v) and (u′, v′) occurring in that order in ρ such that (u, v) is labelled by xi
and (u′, v′) is labelled by xj with j < i. Let I ′ = Is,u′ and J ′ = Iu′,t. Since
i ∈ I ′, j ∈ J ′ and I ′∩J ′ = ∅, it must be the case that J ′ � I ′ and hence u′ must
be a descending node, a contradiction. This establishes that P is an one ordered
ABP. By the equivalence between one ordered ABPs and ROABPs ([16], [17]),
we conclude that the polynomial computed by P can also be computed by a
ROABP of size polynomial in the size of P .

The argument is similar when all non-terminal nodes of P are descending.
In this case, we have i < j in the above argument and hence I ′ � J ′, making u′

an ascending node leading to a contradiction. This concludes the proof.

A permutation π of [1, n] naturally induces the order xπ(1), . . . , xπ(n). The
reverse of π is the order xπ(n), xπ(n−1), . . . , xπ(1). Since branching programs are
layered, any multilinear polynomial computed by a ROABP where variables
occur in the order given by π can also be computed by a ROABP where variables
occur in the reverse of π.

Observation 4. Let P be a ROABP where variables occur in the order of a per-
mutation π. The polynomial computed by P can also be computed by a ROABP
of same size as P that reads variables in the reverse order corresponding to π.

Proof. Let P ′ be the ROABP obtained by reversing the edges of P and swapping
the start and terminal nodes. Since P is a layered DAG, there is a bijection
between the set of all s to t paths in P and the set of all s to t paths in P ′,
where the order of occurrence of nodes and hence the edge labels are reversed.
This completes the proof.

The above observations immediately establish Theorem 3.

Proof (Proof of Theorem 3). Let P be a strict-interval ABP of size S computing
a multilinear polynomial f . By Lemma 18 there are strict interval ABPs P1

and P2 such that P1 has only ascending non-terminal nodes and P2 has only
descending non-terminal nodes such that f = f1 + f2 where fi is the polynomial
computed by Pi, i ∈ {1, 2}. By Lemma 19 and Observation 4, f1 and f2 can be
computed by a ROABPs that read the variables in the order x1, . . . , xn. Then
f1 + f2 can also be computed by an ROABP. It remains to bound the size of the
resulting ROABP. Note that size(Pi) ≤ S. A ROABP for fi can be obtained by
staggering the reads of Pi which blows up the size of the ABP by a factor of n
([16], [17]). Therefore size of the resulting ROABP is at most 2nS ≤ O(S2).



18 Ghosal and Rao

The notion of intervals of variables corresponding to every sub-program can
be applied to formulas in the form of Interval Formulas, where every sub-formula
corresponds to an interval. In the following section we explore such a model.

6 Interval Formulas

We saw that strict-interval ABPs have the same computational power as ROABPs
despite being seemingly a non-trivial generalization. It is naturally tempting to
guess that a similar generalization of ROFs might yield a similar result. However,
we observe that it is not the case.

We introduce interval formulas as a generalization of read-once formulas. An
interval on variable indices, [i, j], i < j, is an interval corresponding to the set
of variables Xij ⊆ X = {x1, . . . , xn}, where Xij = {xp | xp ∈ X, i ≤ p ≤ j}.
Polynomials are said to be defined on the interval [i, j] when the input variables
are from the set Xij . When there is no ambiguity, we refer to Xij as an interval
of variables [i, j]. Gates in a read-once formula F can also be viewed as reading
an interval of variables according to an order π on the variables i.e., there is a
permutation π ∈ Sn such that every gate v in F is a sub-formula computing a
polynomial on a π-interval of variables. Thus, interval formulas are a different
generalization of read-once formulas where every gate v in the formula F reads
an interval of variables in a fixed order. We define interval formulas as follows:

Definition 20. (Interval Formulas) An arithmetic formula F is an interval for-
mula if for every gate g in F , there is an interval [i, j], i < j such that g com-
putes a polynomial in Xij and for every product gate g = h1 × h2, the intervals
corresponding to h1 and h2 must be non-overlapping.

Thus, if a product gate g in F defined on an interval I = [i, j] takes inputs
from gates g1, . . . , gt, then the gates g1, . . . , gt compute polynomials on disjoint
intervals [i, j1], [j1 + 1, j2], . . . , [jt−1 + 1, j] respectively, where ∀p, jp < jp+1 and
i ≤ jp ≤ j. If g1, g2, defined on intervals I1, I2 are input gates to a sum gate g′,
then the interval I associated with g′ is I = I1 ∪ I2.

A quick observation is that interval formulas are different from ROFs:

Proposition 21. The set of all polynomials computable by interval formulas is
different from that of ROFs

Proof. By [39], the polynomial x1x2 +x2x3 +x1x3 is not an ROF. However, the
expression x1x2 + x2x3 + x1x3 is itself an interval formula.

In fact, interval formulas are universal, since any sum of monomials can be
represented by an interval formula. Our next observation is that the polynomial
fPRY defined in Section 3 can be computed by an interval formula.

Proposition 22. The polynomial family fPRY is computable by an interval for-
mula of polynomial size.



Bounded Read Formulas and ABPs 19

Proof. Recall that fPRY(X) = fRY(B1) · fRY(B2) · · · fRY(Bn/r). Since each of the
fRY(Bi) is a constant variate polynomial and the sum of product representation
of any multilinear polynomial is an interval formula by definition, we have that
fRY(Bi) is computable by an interval formula of constant size. This fPRY(X) has
a polynomial size interval formula.

It is not known if every ROF can be converted to a ROF of logarithmic depth.
However, we argue that interval formulas can be depth-reduced efficiently.

Theorem 23. Let f ∈ F[X] be a polynomial computed by an interval formula
F of size s and depth d. Then f can also be computed by an interval formula of
size poly(s) and depth O(log s).

We have the following depth reduction result for general arithmetic formulas
given by [8]:

Theorem 24. [8] Any polynomial p computed by an arithmetic formula of size
s and depth d, can be computed by a formula of size poly(s) and depth O(log s).

We know that this reduction preserves multilinearity. However, we don’t know
if Theorem 24 can be modified to preserve the read-k property. We show that the
depth reduction algorithm given by Theorem 24 preserves the interval property.

Proof (of Theorem 23). We know that the underlying structure of any arithmetic
formula is a tree. The proof by Brent crucially uses the fact that by the tree-
separator lemma [12], we are guaranteed that there exists a tree-separator node
g such that the sub-tree Φ of a formula Φ′ of total size s, rooted at the node g,
has size ≤ 2s/3.

The construction proceeds as follows. We replace the gate g by a new formal
variable y. Let the resulting polynomial computed by F be f ′(x1, . . . , xn, y),
where f(x1, . . . , xn) = f ′(x1, . . . , xn, g) under the new substitution y = g. As f ′

is linear in y, we have

f ′(x1, . . . , xn, y) = yf1(x1, . . . , xn) + f0(x1, . . . , xn),

where f0 = f ′ |y=0 and f1 = f ′ |y=1 −f ′ |y=0. Thus, f0, f1 can be computed by
multilinear formulas of size less than size(F ). Now, recursively obtaining small-
depth formulas for f1, f0, we obtain a O(log s) depth formula computing f .

However, the above construction does not necessarily preserve the interval
property, since the intervals of variables on which f0, f1 and g are defined, can
be overlapping. We overcome this problem by expressing f0, f1 as products of
polynomials over disjoint intervals, each of the intervals being disjoint to the
interval corresponding to g.

We assume, without loss of generality, that the interval formula F corre-
sponds to the interval [1, n]. Let the interval corresponding to g be Ig = [i, j], i <
j. Now, by definition of f1 and f0, they are defined on the same interval of vari-
ables. We consider the intervals I0, I1 such that I0∪I1 = [1, n]\[i, j], I0 = [j+1, n]
and I1 = [1, i − 1]. We express both f0, f1 as products of two polynomials on



20 Ghosal and Rao

I0 and I1 respectively. As f1 and g are multiplicatively related in F , we show
that f1 = f1,1 × f1,0 where f1,1 is a polynomial on the interval I1 and f1,0 is a
polynomial on the interval I0.

We consider the root to leaf (g) path ρ in the original formula F contain-
ing the node g. All the paths meeting ρ at a sum gate represent polynomials
additively related to y i.e., contributing towards the computation of f0 and not
f1. For f1, we will analyze only the paths meeting ρ at product gates. Let us
consider a product gate on ρ computing h1 × h2, such that h2 lies on ρ. Since
I is contained in the interval corresponding to h2, the interval corresponding to
h1, Ih1

must be either fully contained in I1 or I0.

Constructing an interval formula for f1: We ignore all sum gates on ρ computing
p1 + p2, with p2 on ρ, by substituting p1 to zero. The resulting formula is F ′. In
any product gate computing h1×h2, where h2 is on ρ, if Ih1

⊂ I0, we substitute
h1 by 1. We also substitute g by 1. The remaining formula F ′1 computes the
polynomial f (1).

We repeat this process above, but this time, we substitute h1 by 1 only
when Ih1

⊂ I1. This remaining formula F ′2 computes f (2). By definition of f1,
f1 = f (1) · f (2). The interval corresponding to F ′1 is contained in I1, the interval
corresponding to F ′2 is contained in I0.

Constructing an interval formula for f0: We ignore all product gates on ρ com-
puting h1 × h2, with h2 on ρ, by substituting h1 by 1. The resulting formula is
F̂ .

In any sum gate computing p1+p2, where p2 is on ρ, if Ip1 ⊂ I0, we substitute

p1 by 0. We also substitute g by 0. The remaining formula F̂1 computes the
polynomial p(1).

We repeat this process from the beginning, but substitute p1 by 0 only when
Ip1 ⊂ I1. This remaining formula F̂2 computes p(2). By definition of f0, f0 =

p(1) + p(2). The interval corresponding to F̂1 is contained in I1, the interval
corresponding to F̂2 is contained in I0.

Hence, we obtain f = f (1)f (2)g + p(1) + p(2). The recursive relation for
calculating depth is as follows: depth(F ) = depth(g) + 2 =⇒ depth(s) =
depth(2s/3) + 2, which yields a total depth of O(log s) for F .

References

1. Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four.
In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA, pages 67–75. IEEE Computer
Society, 2008. doi:10.1109/FOCS.2008.32.

2. Noga Alon, Mrinal Kumar, and Ben Lee Volk. Unbalancing sets and an almost
quadratic lower bound for syntactically multilinear arithmetic circuits. Comb.,
40(2):149–178, 2020. doi:10.1007/s00493-019-4009-0.

https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1007/s00493-019-4009-0


Bounded Read Formulas and ABPs 21

3. Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Derandomizing
polynomial identity testing for multilinear constant-read formulae. In Proceedings
of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011,
San Jose, California, USA, June 8-10, 2011, pages 273–282. IEEE Computer So-
ciety, 2011. doi:10.1109/CCC.2011.18.

4. Vikraman Arvind and S. Raja. Some lower bound results for set-multilinear
arithmetic computations. Chicago J. Theor. Comput. Sci., 2016, 2016. URL:
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html.

5. Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor.
Comput. Sci., 22:317–330, 1983. doi:10.1016/0304-3975(83)90110-X.

6. Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant
number of registers. SIAM J. Comput., 21(1):54–58, 1992. doi:10.1137/0221006.

7. Therese C. Biedl, Erik D. Demaine, Christian A. Duncan, Rudolf Fleischer, and
Stephen G. Kobourov. Tight bounds on maximal and maximum matchings. Dis-
cret. Math., 285(1-3):7–15, 2004. doi:10.1016/j.disc.2004.05.003.

8. Richard P. Brent. The parallel evaluation of general arithmetic expressions. J.
ACM, 21(2):201–206, 1974. doi:10.1145/321812.321815.

9. Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory,
volume 7 of Algorithms and computation in mathematics. Springer, 2000.

10. Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. A quadratic
lower bound for algebraic branching programs. In Shubhangi Saraf, editor, 35th
Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken,
Germany (Virtual Conference), volume 169 of LIPIcs, pages 2:1–2:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.
2.

11. Suryajith Chillara, Christian Engels, Nutan Limaye, and Srikanth Srinivasan. A
near-optimal depth-hierarchy theorem for small-depth multilinear circuits. In
Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 934–945. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00092.

12. Fan RK Chung. Separator theorems and their applications. Forschungsinst.
für Diskrete Mathematik, 1989. URL: http://www.math.ucsd.edu/~fan/mypaps/
fanpap/117separatorthms.pdf.

13. Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating
multilinear branching programs and formulas. In Howard J. Karloff and Toniann
Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing Con-
ference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 615–624.
ACM, 2012. doi:10.1145/2213977.2214034.

14. Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3
arithmetic circuits. In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth
Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May
23-26, 1998, pages 577–582. ACM, 1998. doi:10.1145/276698.276872.

15. Dima Grigoriev and Alexander A. Razborov. Exponential lower bounds for depth
3 arithmetic circuits in algebras of functions over finite fields. Appl. Algebra Eng.
Commun. Comput., 10(6):465–487, 2000. doi:10.1007/s002009900021.

16. Maurice J. Jansen. Lower bounds for syntactically multilinear algebraic branch-
ing programs. In Edward Ochmanski and Jerzy Tyszkiewicz, editors, Mathe-
matical Foundations of Computer Science 2008, 33rd International Symposium,
MFCS 2008, Torun, Poland, August 25-29, 2008, Proceedings, volume 5162 of
Lecture Notes in Computer Science, pages 407–418. Springer, 2008. doi:10.1007/
978-3-540-85238-4\_33.

https://doi.org/10.1109/CCC.2011.18
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1137/0221006
https://doi.org/10.1016/j.disc.2004.05.003
https://doi.org/10.1145/321812.321815
https://doi.org/10.4230/LIPIcs.CCC.2020.2
https://doi.org/10.4230/LIPIcs.CCC.2020.2
https://doi.org/10.1109/FOCS.2018.00092
http://www.math.ucsd.edu/~fan/mypaps/fanpap/117separatorthms.pdf
http://www.math.ucsd.edu/~fan/mypaps/fanpap/117separatorthms.pdf
https://doi.org/10.1145/2213977.2214034
https://doi.org/10.1145/276698.276872
https://doi.org/10.1007/s002009900021
https://doi.org/10.1007/978-3-540-85238-4_33
https://doi.org/10.1007/978-3-540-85238-4_33


22 Ghosal and Rao

17. Maurice J. Jansen, Youming Qiao, and Jayalal Sarma. Deterministic black-box
identity testing $pi$-ordered algebraic branching programs. In IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2010, December 15-18, 2010, Chennai, India, pages 296–307, 2010.
doi:10.4230/LIPIcs.FSTTCS.2010.296.

18. Mark Jerrum and Marc Snir. Some exact complexity results for straight-line com-
putations over semirings. J. ACM, 29(3):874–897, 1982. doi:10.1145/322326.

322341.

19. Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once
oblivious algebraic branching programs (roabps) and multilinear depth three cir-
cuits. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theo-
retical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans,
France, volume 47 of LIPIcs, pages 46:1–46:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.46.

20. Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An almost cubic lower
bound for depth three arithmetic circuits. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-
15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.33.

21. Mrinal Kumar. A quadratic lower bound for homogeneous algebraic branch-
ing programs. Comput. Complex., 28(3):409–435, 2019. doi:10.1007/

s00037-019-00186-3.

22. Meena Mahajan and Anuj Tawari. Sums of read-once formulas: How many sum-
mands are necessary? Theor. Comput. Sci., 708:34–45, 2018. doi:10.1016/j.tcs.
2017.10.019.

23. Guillaume Malod and Natacha Portier. Characterizing valiant’s algebraic complex-
ity classes. J. Complex., 24(1):16–38, 2008. doi:10.1016/j.jco.2006.09.006.

24. Daniel Minahan and Ilya Volkovich. Complete derandomization of identity test-
ing and reconstruction of read-once formulas. ACM Trans. Comput. Theory,
10(3):10:1–10:11, 2018. doi:10.1145/3196836.

25. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. doi:

10.1017/CBO9780511813603.

26. Noam Nisan. Lower bounds for non-commutative computation (extended ab-
stract). In Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the
23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Or-
leans, Louisiana, USA, pages 410–418. ACM, 1991. doi:10.1145/103418.103462.

27. C. Ramya and B. V. Raghavendra Rao. Lower bounds for special cases of syntactic
multilinear abps. In Lusheng Wang and Daming Zhu, editors, Computing and
Combinatorics - 24th International Conference, COCOON 2018, Qing Dao, China,
July 2-4, 2018, Proceedings, volume 10976 of Lecture Notes in Computer Science,
pages 701–712. Springer, 2018. doi:10.1007/978-3-319-94776-1\_58.

28. C. Ramya and B. V. Raghavendra Rao. Lower bounds for multilinear order-
restricted abps. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Ka-
toen, editors, 44th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of
LIPIcs, pages 52:1–52:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.MFCS.2019.52.

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.296
https://doi.org/10.1145/322326.322341
https://doi.org/10.1145/322326.322341
https://doi.org/10.4230/LIPIcs.STACS.2016.46
https://doi.org/10.4230/LIPIcs.ICALP.2016.33
https://doi.org/10.1007/s00037-019-00186-3
https://doi.org/10.1007/s00037-019-00186-3
https://doi.org/10.1016/j.tcs.2017.10.019
https://doi.org/10.1016/j.tcs.2017.10.019
https://doi.org/10.1016/j.jco.2006.09.006
https://doi.org/10.1145/3196836
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1145/103418.103462
https://doi.org/10.1007/978-3-319-94776-1_58
https://doi.org/10.4230/LIPIcs.MFCS.2019.52


Bounded Read Formulas and ABPs 23

29. C. Ramya and B. V. Raghavendra Rao. Lower bounds for sum and sum of products
of read-once formulas. ACM Trans. Comput. Theory, 11(2):10:1–10:27, 2019. doi:
10.1145/3313232.

30. Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing,
2(6):121–135, 2006. doi:10.4086/toc.2006.v002a006.

31. Ran Raz. Multi-linear formulas for permanent and determinant are of super-
polynomial size. J. ACM, 56(2):8:1–8:17, 2009. doi:10.1145/1502793.1502797.

32. Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic cir-
cuits. Comput. Complex., 17(4):515–535, 2008. doi:10.1007/s00037-008-0254-0.

33. Ramprasad Saptharishi, Suryajith Chillara, and Mrinal Kumar. A survey of lower
bounds in arithmetic circuit complexity. Technical report, TIFR, Mumbai, India,
2016. URL: https://github.com/dasarpmar/lowerbounds-survey/releases.

34. Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of
characteristic zero. Computational Complexity, 10(1):1–27, 2001. URL: http:

//dx.doi.org/10.1007/PL00001609, doi:10.1007/PL00001609.
35. Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results

and open questions. Foundations and Trends® in Theoretical Computer Science,
5(3—4):207–388, 2010. URL: http://dx.doi.org/10.1561/0400000039, doi:10.
1561/0400000039.

36. Srikanth Srinivasan. Strongly exponential separation between monotone VP and
monotone VNP. ACM Trans. Comput. Theory, 12(4):23:1–23:12, 2020. doi:10.

1145/3417758.
37. Seinosuke Toda. Classes of arithmetic circuits capturing the complexity of comput-

ing the determinant. IEICE Transactions on Information and Systems, 75(1):116–
124, 1992.

38. Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

39. Ilya Volkovich. Characterizing arithmetic read-once formulae. ACM Trans. Com-
put. Theory, 8(1):2:1–2:19, 2016. doi:10.1145/2858783.

40. Amir Yehudayoff. Separating monotone VP and VNP. In Moses Charikar and
Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
425–429. ACM, 2019. doi:10.1145/3313276.3316311.

https://doi.org/10.1145/3313232
https://doi.org/10.1145/3313232
https://doi.org/10.4086/toc.2006.v002a006
https://doi.org/10.1145/1502793.1502797
https://doi.org/10.1007/s00037-008-0254-0
https://github.com/dasarpmar/lowerbounds-survey/releases
http://dx.doi.org/10.1007/PL00001609
http://dx.doi.org/10.1007/PL00001609
https://doi.org/10.1007/PL00001609
http://dx.doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039
https://doi.org/10.1145/3417758
https://doi.org/10.1145/3417758
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1145/2858783
https://doi.org/10.1145/3313276.3316311

	Limitations of Sums of Bounded Read Formulas and ABPs

