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Preliminaries



A certain asymmetry

Grammar vs logic

I “It is true that A” corresponds to True(A).

I “It is false that A” corresponds to True(¬A)
as opposed to False(A).

The Frege Point:
We clearly need assertion and negation as primitives,
thus primitive rejection is redundant.

The term is coined in Peter Geach (1965) Assertion.



Who takes rejection seriously

Timothy Smiley (1996) Rejection.

Assertion and rejection as primitive notions.

Meta-linguistic notation ∗A for “A is rejected” (not a connective).

Formula A by itself is read as “A is asserted”.

A kind of natural deduction for classical logic.

Motivates bilateralism, see Ian Rumfitt (2000) ‘Yes’ and ‘no’



A typical example

Nelson’s logic N4 with strong (constructible) negation ∼.
D. Nelson (1949) Constructible falsity
A. Almukdad, D. Nelson (1984) Constructible falsity and
inexact predicates

How does it take rejection seriously
i) relational semantics with two forcing relations;

ii) twist-structure algebraic semantics;

iii) some two-sorted sequent and display calculi;

iv) `N4A↔ B is not a congruence but
`N4(A↔ B) ∧ (∼ A↔∼ B) is.



2-Intuitionistic logic



Bi-intuitionistic logic

Bi-intuitionistic logic BiInt — a conservetive extension of Int with
co-implication −<.

C. Rauszer (1974) Semi-boolean algebras and their
applications to intuitionistic logic with dual operations

Although BiInt is very natural semantically, proof theory is a problem:
I Most sequent calculi are either very non-standard or don’t have

cut elimination.

I There is no natural deduction system for BiInt (there is a
non-standard one by Luca Tracnhini).

I Most natural proof theoretic framework for BiInt seems to be
display calculi.



2-intuitionistic logic

2Int — a variant of bi-intuitionistic logic motivated by providing a
natural deduction system for bi-intuitionistic connectives.

H. Wansing (2013) Falsification, natural deduction
and bi-intuitionistic logic

The idea is to add rejection conditions for every connective as duals
of assertion conditions for their duals.

Assertion/rejection of ∧,∨,→,>,⊥ can be treated as in N4.



Natural deduction for 2Int

From proofs to refutations via dualization

A 7→ A .

Dualize all rules of intuitionistic natural deduction

> ⊥
⊥
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Natural deduction for 2Int

[A] is a discharged assumption about assertion,
JAK is a discharged assumption about rejection.

A ∨ B

[A]

...
C

[B]

...
C

C
A ∧ B

JAK
...
C

JBK
...
C

C

A A→ B
B

A B −< A
B

[A]

...
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A→ B

JAK
...
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Natural deduction for 2Int

Q: how do we refute implicative formulas?
A: like in Nelson’s logics.

A B
A→ B

A→ B
A

A→ B
B

Q: how do we assert co-implicative formulas?
A: dualize.

A B
A −< B

A −< B
A

A −< B
B



Two consequence relations of 2Int

Assertion-based consequence Γ : ∆ `+N2Int A:

B B ∈ Γ
...

C C ∈ ∆
...

A

Intuitively: “if all formulas in Γ are proved and
all formulas in ∆ are refuted, then A is proved”.

Rejection-based consequence Γ : ∆ `−N2Int A:

B B ∈ Γ
...

C C ∈ ∆
...

A

Intuitively: “if all formulas in Γ are proved and
all formulas in ∆ are refuted, then A is refuted”.



Two consequence relations of 2Int

Assertion-based consequence Γ : ∆ `+N2Int A:

B B ∈ Γ
...

C C ∈ ∆
...

A

Intuitively: “if all formulas in Γ are proved and
all formulas in ∆ are refuted, then A is proved”.

Rejection-based consequence Γ : ∆ `−N2Int A:

B B ∈ Γ
...

C C ∈ ∆
...

A

Intuitively: “if all formulas in Γ are proved and
all formulas in ∆ are refuted, then A is refuted”.



Semantics for 2Int



2Int-models

A 2Int-frame is a partially ordered setW = 〈W ,≤〉.

A 2Int-model µ = 〈W, v+, v−〉 is a 2Int-frame together with two
valutations satisfying intuitionistic heredity :

x ∈ vδ(p) and x ≤ y implies y ∈ vδ(p), δ ∈ {+,−}.

Remark: these models are exactly the same as N4-models, except...



Two forcing relations

For a 2Int-model µ = 〈W ,≤, v+, v−〉 and x ∈W put

µ, x �+ A→ B ⇐⇒ ∀y ≥ x (µ, y �+ A⇒ µ, y �+ B);

µ, x �− A→ B ⇐⇒ µ, x �+ A and µ, x �− B;

µ, x �+ A −< B ⇐⇒ µ, x �+ A and µ, x �− B;

µ, x �− A −< B ⇐⇒ ∀y ≥ x (µ, y �− B ⇒ µ, y �− A);

For a set of formulas, Γ, put:

µ, x �+ Γ ⇐⇒ µ, x �+ A for all A ∈ Γ;

µ, x �− Γ⇐⇒ µ, x �− A for all A ∈ Γ;



Two negations

We can define intuitionistic negation ¬A := A→ ⊥

µ, x �+ ¬A ⇐⇒ ∀y ≥ x : µ, y 2+ A;

µ, x �− ¬A⇐⇒ µ, x �+ A;

and dual intuitionistic negation �A := > −< A

µ, x�+ �A ⇐⇒ µ, x �− A;

µ, x�− �A⇐⇒ ∀y ≥ x : µ, x 2− A.

Observe that
i) dual negation �acts as a switch from assertion to rejection;

ii) negation ¬ acts as a switch from rejection to assertion.



Semantics for 2Int

Two semantic consequence relations

Γ : ∆ �+N2Int A if for any 2Int-model µ = 〈W,≤, v+, v−〉

∀x ∈W (µ, x �+ Γ and µ, x �− ∆ =⇒ µ, x �+ A).

Γ : ∆ �−N2Int A if for any 2Int-model µ = 〈W ,≤, v+, v−〉:

∀x ∈W (µ, x �− Γ and µ, x �− ∆ =⇒ µ, x �− A).

Completeness [Wansing2013]

Γ : ∆ `+N2Int A⇐⇒ Γ : ∆ �+N2Int A;

Γ : ∆ `−N2Int A⇐⇒ Γ : ∆ �−N2Int A.



Replacement for 2Int

Remark: 2Int shares N4’s problems with replacement.

Weak replacement for 2Int:

A↔ B �A↔�B
C[A]↔ C[B]

,

Positive replacement for 2Int:

A↔ B , where C is −<-free.
C[A]↔ C[B]

.



Replacement for 2Int

Put A >−< B := (A −< B) ∨ (B −< A).

Dual weak replacement for 2Int:

A >−< B ¬A >−< ¬B
C[A] >−< C[B]

,

Dual positive replacement for 2Int:

A >−< B
, where C is→-free.

C[A] >−< C[B]
.



Change of perspective



Internalizing attitudes

A signed formula is just A+, A−, where A is a formula.

A+ corresponds to “A is asserted”.

A− corresponds to “A is rejected”.

Use Ā, B̄, C̄ for signed formulas;

Use Γ̄, ∆̄ for sets of signed formulas.



A simple correspondence

For a set of formulas, Γ, put

Γ+ = {A+ | A ∈ Γ} Γ− = {A− | A ∈ Γ}.

For a set of signed formulas, Γ̄, put

Γ̄+ := {A | A+ ∈ Γ̄} Γ̄− := {A | A− ∈ Γ̄}.

From pairs of sets of formulas to sets of signed formulas:

Γ : ∆ 7→ Γ+ ∪∆−.

From sets of signed formulas to pairs of sets of formulas:

Γ̄ 7→ Γ̄+ : Γ̄−.



Rewriting consequence relations of 2Int

Step 1: identify antecedent with a set of signed formulas;

Step 2: shift the sign from turnstile onto formula in the consequent.

Γ : ∆ `+N2Int A Γ : ∆ `−N2Int A

↓ ↓

Γ+ ∪∆− `s
N2Int A+ Γ+ ∪∆− `s

N2Int A−

↘ ↙

Γ̄ `s
N2Int Ā

Result: a single consequence relation on signed formulas.

Remark: can do the same with semantic consequence.



Some familiar looking properties

Reflexivity:
If Ā ∈ Γ̄, then Γ̄ `s

N2Int Ā.

Monotonicity:
If Γ̄ `s

N2Int Ā and Γ̄ ⊆ ∆̄ then ∆̄ `s
N2Int Ā.

Transitivity:
If Γ̄ `s

N2Int B̄ for all B̄ ∈ ∆̄ and ∆̄ `s
N2Int Ā then Γ̄ `s

N2Int Ā.

Compactness:
If Γ̄ `s

N2Int Ā then ∆̄ `s
N2Int Ā for some finite ∆̄ ⊆ Γ̄.

Structurality:
If Γ̄ `s

N2Int Ā then {s(B̄) | B̄ ∈ Γ̄} `s
N2Int s(Ā)

for any substitution s.

Here, s(Aδ) := (s(A))δ.



Replacement theorems



Signed equivalences and subformulas

Equivalence of signed formulas

Ā ≡ B̄ ⇐⇒ Ā `s
N2Int B̄ and B̄ `s

N2Int Ā.

Define B̄ � Ā — “B̄ is an occurrence of a signed subformula in Ā”:
i) Ā � Ā;

ii) if (B ◦ C)δ � Ā, then Bδ,Cδ � Ā ◦ ∈ {∧,∨}, δ ∈ {+,−};
iii) if (B → C)+ � Ā, then B+,C+ � Ā;

iv) if (B → C)− � Ā, then B+,C− � Ā;

v) if (B −< C)+ � Ā, then B+,C− � Ā;

vi) if (B −< C)− � Ā, then B−,C− � Ā.



Signed replacement

Theorem.
Suppose ε ∈ {+,−} and pε � Ā, then if Bε and Cε are
equivalent, then so are Ā(Bε) and Ā(Cε):

Bε ≡ Cε

Ā(Bε) ≡ Ā(Cε)
.

Ā(B) is the result of replacing corresponding p with B.

Ā(C) is the result of replacing corresponding p with C.

Intuition: we can replace signed formulas by equivalent signed
formulas as long as we respect the attitudes (signs).

Remark: weak replacement, positive replacement and their duals all
follow from signed replacement.



A Hilbert-style calculus that
takes rejection seriously



Idea

Natural deduction for 2Int consists of
I natural deduction rules for intuitionistic logic (assertion);
I their duals (rejection);
I interplay rules.

Q. Can we replace first two with Hilbert-style calculi for intuitionistic
and dual intuitionistic logic to get Hilbert-style calculus for both
assertion and rejection?

A. Kind of.



Signed Hilbert-style calculus H2Int

Initial axioms of H2Int:
I intuitionistic axioms with plus sign;
I duals of intuitionistic axioms with minus sign.

Modus ponens and its dual:

A+ (A→ B)+

B+
,

(B −< A)− A−

B−
.

Interplay rules:

A+ B−

(A −< B)+
,

(A −< B)+

B− ,

A+ B−

(A→ B)−
,

(A→ B)−

A+
.



Signed Hilbert-style calculus H2Int

Additional axioms of H2Int:

(A −< B)↔ (A∧ �B)+, (A→ B) >−<(B ∨ ¬A)−,

�(A→ B)↔ (A∧ �B)+, ¬(A −< B) >−<(B ∨ ¬A)−,

�(A −< B)→ (�B →�A)+, (¬A −< ¬B) −<¬(B → A)−.

A kind of signed canonical models method gives us

Theorem.

Γ̄ `s
H2Int Ā ⇐⇒ Γ̄ �s

2Int Ā.



General framework



Signed consequence relations

A signed consequence relation is a relation

`s ⊆ P(For sL)× For sL

where For sL are all signed L-formulas, satisfying

Reflexivity: if Ā ∈ Γ̄, then Γ̄ `s Ā.

Monotonicity: if Γ̄ `s Ā and Γ̄ ⊆ ∆̄ then ∆̄ `s Ā.

Transitivity: if Γ̄ `s B̄ for all B̄ ∈ ∆̄ and ∆̄ `s Ā then Γ̄ `s Ā.

It is compact , if Γ̄ `s Ā then ∆̄ `s Ā for some finite ∆̄ ⊆ Γ̄;

and structural , if Γ̄ `s Ā implies s(Γ̄) `s s(Ā) for any substitution s.



Wansing’s approach

Wansing develops two-consequence relations approach to taking
rejection seriously, which

leads us to understanding a logic not as a pair (L,`) consist-
ing of a language and a consequence relation, but as a triple
(L,`,`d ) consisting of a language, a consequence relation,
and a dual consequence relation [...]

where ` corresponds to assertion and `d to rejection.

H. Wansing (2017) A more general general proof theory.

Signed consequences generalize this approach since

Γ ` A :⇐⇒ Γ+ `s A+; Γ `d A :⇐⇒ Γ− `s A−.



Bochman’s biconsequences

Biconsequences are relations `b ⊆ (ForL)4, satisfying some
properties, where

Γ1 : Γ2 `b ∆1 : ∆2

holds “if all propositions from Γ1 are true and all proposition from Γ2
are false, then either one of the proposition from ∆1 is true or one of
the propositions from ∆2 is false”.

A. Bochman (1998) Biconsequence relations.

Since we know how to encode a pair of sets of formulas into a set of
signed formulas, biconsequences are to signed consequence what
Scott consequence relations are to Tarskian consequence relations.



Unilateral components

With any signed consequence `s we associate its

positive component `+:

Γ `+ A :⇐⇒ Γ+ `s A+;

negative component `−:

Γ `− A :⇐⇒ Γ− `s A−.

Both components are Tarskian consequence relations.



Nelson’s logic bilaterally



Axiomatics

N4 is the positive fragment of intuitionistic logic +

∼ (A ∧ B)↔∼ A∨ ∼ B; ∼∼ A↔ A;

∼ (A ∨ B)↔∼ A∧ ∼ B; ∼ (A→ B)↔ A∧ ∼ B.

Unilateraly its positive fragment coincides with the positive fragment
of intuitionsitic logic.

One can think of ∼ as internalizing rejection:

(∼ A)+ ≡ A− and (∼ A)− ≡ A+.



Bilateral natural deduction for N4 (∧)

A+ B+
(i∧+)

(A ∧ B)+
(A ∧ B)+

(e∧+)
A+

(A ∧ B)+
(e∧+)

B+

A−
(i∧−)

(A ∧ B)−
B−

(i∧−)
(A ∧ B)−

(A ∧ B)−

[A−]

...
C̄

[B−]

...
C̄

(e∧−)
C̄



Bilateral natural deduction for N4 (→ and ∼)

[A+]

...
B+

(i →+)
(A→ B)+

A+ (A→ B)+
(e→+)

B+

A+ B−
(i →−)

(A→ B)−
(A→ B)−

(e→−)
A+

(A→ B)−
(e→−)

B−

A−
(i ∼+)

∼ A+
∼ A+

(e ∼+)
A−

A+
(i ∼−)

∼ A−
∼ A−

(e ∼−)
A+



Positive fragment of Nelson’s logic

Denote this system by N4s. Then we can naturally define `s
N4.

The positive component of `s
N4 is the usual consequence of N4.

Let PN4s be N4s minus rules for ∼ (a bilateral positive fragment).

Then, e.g.,
A+,B− `s

PN4 (A→ B)+.

Bilaterally, positive fragment of N4 still has meaningful rejection.



Compositionality and
definitional equivalence



Compositionality

Q. For an n-ary connective f what does

assertion A(f (p1, . . . ,pn)) and rejection R(f (p1, . . . ,pn))

depend upon?

General compositionality : on all of the

A(p1), R(p1), . . . , A(pn), R(pn).

Polarized compositionality : for each pi chose one of

A(pi ) or R(pi ).

according to a polarity function.



Polarity

For instance, in N4
A(A→ B) depends on A(A) and A(B);
R(A→ B) depends on R(A) and A(B).

Polarity α maps n-ary connective f and a sign δ ∈ {+,−} into

α(f , δ) = 〈α(f , δ,1), . . . , α(f , δ,n)〉,

where α(f , δ, i) ∈ {+,−}.

Intuitively, say,
α(f ,+,1) = −

means that to assert f (p1, . . . ,pn) we need to know how to reject p1.



Polarity for N4

Polarity can be naturally defined for all systems with strong negation
and for 2Int.

For instance, for N4 one can put:

α(∧,+) := 〈+,+〉; α(∧,−) := 〈−,−〉;
α(∨,+) := 〈+,+〉; α(∨,−) := 〈−,−〉;
α(→,+) := 〈+,+〉; α(→,−) := 〈+,−〉;
α(∼,+) := 〈−〉; α(∼,−) := 〈+〉.



On the way to definitional equivalence

Let us fix two language-polarity-signed consequence triples:

〈L1, α1,`s
1〉, 〈L2, α2,`s

2〉

A general base (L1,L2)-translation θ maps any n-ary connective
f ∈ L1 and a sign δ ∈ {+,−} to a L2-formula

θδ(f )(p1, . . . ,p2n).

A polarized base (L1,L2)-translation θ maps any n-ary connective
f ∈ L1 and a sign δ ∈ {+,−} to a L2-formula

θδ(f )(p1, . . . ,pn).



General structural translations

Let θ be a general base (L1,L2)-translation. let

For a sign δ ∈ {+,−} and an L1 formula A define a L2-formula Θδ(A):
I Θδ(p) := p and
I Θδ(f (A1, . . . ,An)) :=

θδ(f )(Θ+(A1), Θ−(A1), . . . , Θ+(An), Θ−(An)).

Finally, Θs(Aδ) := (Θδ(A))δ. Then

Θs : For sL1 → For sL2

is a general (structural signed) (L1,L2)-translation.



Polarized structural translations

Let θ be a polarized base (L1,L2)-translation. let

For a sign δ ∈ {+,−} and an L1 formula A define a L2-formula Θδ(A):
I Θδ(p) := p and
I Θδ(f (A1, . . . ,An)) :=

θδ(f )(Θα1(f ,δ,1)(A1), . . . ,Θα1(f ,δ,n)(An)).

Finally, Θs(Aδ) := (Θδ(A))δ. Then

Θs : For sL1 → For sL2

is a polarized (structural signed) (L1,L2)-translation.



Definitional equivalence

Signed consequences `s
1 and `s

2 are definitionally equivivalent w.r.t.
general/polarized translations, if
I there is a general/polarized (L1,L2)-translation Θs;

I there is a general/polarized (L2,L1)-translation Λs;

I Γ̄ `s
1 Ā ⇐⇒ Θs(Γ̄) `s

2 Θs(Ā);

I ∆̄ `s
2 B̄ ⇐⇒ Λs(∆̄) `s

1 Λs(B̄);

I Ā a`s
1ΛsΘs(Ā);

I B̄ a`s
2ΘsΛs(B̄).



Slightly informal facts

Fact 1: both notions generalize usual definitional equivalence.

Fact 2: general is more general than polarized.

Fact 3: both come with their own problems.



One example

Bilattice connective ⊗

A⊗ B ↔ A ∧ B; ∼ (A⊗ B)↔∼ (A ∨ B);

is definable in ({∧,∨}-fragment of) N4.

Polarity for ⊗:

α(+,⊗) = 〈+,+〉; α(−,⊗) = 〈−,−〉.

Then the polarized definition is:

Θ+(A⊗ B) := Θ+(A) ∧Θ+(B);

Θ−(A⊗ B) := Θ−(A) ∨Θ−(B).

Unilaterally, one can needs additional constants neither and both to
define ⊗ in N4.



N4 and 2Int are definitionally equivalent

Defining −< in N4:

Θ+(A −< B) := Θ+(A) ∧Θ−(B);

Θ−(A −< B) :=∼ (∼ Θ−(B)→∼ Θ−(A)).

Defining ∼ in 2Int:

Λ+(∼ A) := > −< Λ−(A);

Λ−(∼ A) := Λ+(A)→ ⊥.



Polarized problems

In practice, polarized definition covers most natural cases.

But, what if there is a connective f (p1, . . . ,pn) such that, say,

A(f (p1, . . . ,pn))

depends both on A(p1) and on R(p1)?

Strong implication A⇒ B := (A→ B) ∧ (∼ B →∼ A) is such a
connective.

Strong implication can be defined
I unilaterally;
I bilaterally wrt general definitions;
I but not bilaterally wrt polarized definitions.



Trivial definitions

Suppose we want to keep a connective in place by giving it a trivial
definition.

In the polarized setting that is easy:

Θδ(f (A1, . . . ,An) = f (Θα(δ,f ,1)(A1), . . . ,Θα(δ,f ,n)(An)).

But in the general setting it is entirely unclear.

The definition of an n-ary connective is a formula of 2n variables.

So, for instance,

θ+(→)(p1,p2,p3,p4) = p1 → p2;

θ−(→)(p1,p2,p3,p4) = p1 → p4.



Defining strong negation

Clearly, in polarized setting one can define strong negation ∼ s.t.

∼ A+ a`sA−; ∼ A− a`sA+.

As long as we have formulas B and C s.t.

B(A)+ a`sA−; C(A)− a`sA+.

Moreover, under some (semantically phrased) conditions concerning
compositionality signed consequences can be conservatively
expanded by the strong negation.



Thank you!
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