
Rank-Pairing Heaps

Robert Tarjan, Princeton University & HP Labs

Joint work with Bernhard Haeupler and

Siddhartha Sen, ESA 2009

1

Heap (Priority Queue) Problem

Maintain a set (heap) of items, each with a real-valued key,

under the operations

Find minimum: find the item of minimum key in a heap

Insert: add a new item to a heap

Delete minimum : remove the item of minimum key

Meld: Combine two item-disjoint heaps into one

Decrease key: subtract a given positive amount from the key
of a given item in a known heap

Goal: O(log n) for delete min, O(1) for others

Related Work

Fibonacci heaps achieve the desired bounds (Fredman
& Tarjan, 1984); so do

• Peterson’s heaps (1987)

• Høyer’s heaps (1995)

• Brodal’s heaps (1996), worst-case

• Thin heaps (Kaplan & Tarjan, 2008)

• Violation heaps (Elmasry, 2008)

• Quake heaps (Chan, 2009)

Not pairing heaps:

(loglog n) time per key decrease, but good in practice

Heap-ordered modelHalf-ordered model

Half-ordered model

Half-ordered model

Half-ordered tree: binary tree, one item per node, each
item less than all items in left subtree

Half tree: half-ordered binary tree with no right subtree

Link two half trees:

O(1) time, preserves half order

5

10

A B

10

A

5

B

+

Heap: a set (circular singly-linked list) of half trees, with
minimum root first on list

Find min: return minimum

Insert: Form a new one-node tree, combine with
current set of half trees, update the minimum

Meld: Combine sets of half trees, update the minimum

Delete min: Remove minimum root (forming new half
trees); Repeatedly link half trees, form a set of the
remaining trees

How to link? Use ranks: leaves have rank zero,
only link trees whose roots have equal rank,
increase winner’s rank by one:

All rank differences are 1: a half tree of rank k is a
perfect binary tree plus a root:

2k nodes, rank = lg n

+

k

k - 1

k

k - 1 k

k - 1 k - 1

k + 1

Vuillemin’s binomial
queues!

Delete minimum

Delete min

Each node on right path becomes a new root

Link half trees of equal rank
Array of buckets, at most one per rank

Delete min

Delete min

Link half trees of equal rank
Array of buckets, at most one per rankForm new set of half trees

“multipass”

Delete min

Form new set of half treesFind new minimum in O(log n) time

Keep track of minimum during links
Find minimum in O(log n)

additional time

Delete min: lazier linking

“one-pass”

Form new set of half trees

Delete min: lazier linking

Amortized Analysis of Lazy Binomial
Queues

 = #trees

Link: O(1) time, = -1, amortized time = 0

Insert: O(1) time, = 1

Meld: O(1) time, = 0

Delete min: if k trees after root removal, time is
O(k), potential decreases by k/2 – O(log n)

 O(log n) amortized time

Decrease key?

Application: Dijkstra’s shortest path algorithm, others

Method: To decrease key of x, detach its half tree,
restructure if necessary

(If x is the right child of u, no easy way to tell if half
order is violated)

u

x

y

u

y

x

How to maintain structure?

All previous methods, starting with Fibonacci
heaps, change ranks and restructure

Some, like Quake heaps (Chan, 2009) and Relaxed heaps
(Driscoll et al., 1988), do not restructure during key decrease,
but this just postpones restructuring

But all that is needed is rank changes:

Trees can have arbitrary structure!

Rank-Pairing Heaps = rp-heaps

Goal is
SIMPLICITY

19

Node Ranks

Each node has a non-negative integer rank

Convention: missing nodes have rank -1
(leaves have rank 0)

rank difference of a child =
rank of parent - rank of child

i-child: node of rank difference i
i,j-node: children have rank differences i and j

Convention: the child of a root is a 1-child

1

Rank Rules

Easy-to-analyze version (type 2):
All rank differences are non-negative

If rank difference exceeds 2, sibling has rank difference 0

If rank difference is 0, sibling has rank difference at least 2

Simpler but harder-to-analyze version (type 1):
If rank difference exceeds 1, sibling has rank difference 0

If rank difference is 0, sibling has rank difference ≥ 1

1 12 21 0≥ 2 ≥ 20

11 0≥ 1 ≥ 10

Tree Size (type 2)

If nk is minimum number of descendants of a
node of rank k,

n0 = 1, nk = nk-1 + nk-2 : Fibonacci numbers

nk ≥ k, =

k log n

2

51

2

0102

10

Decrease key

x

u

0 6

6 0

8

0

1

k - 1

1 1

k

1

y

Detach half treeRestore rank rule

8

0

u
0 2

6
u

1 1

6

u

0 5

u k - 1

u

0-children block
propagation of rank
decreases from
sibling’s subtree

Amortized Analysis

Potential of node = sum of rank differences of children - 1
+1 if root (= 1)
-1 if 1,1-node (= 0)

Link is free:

One unit pays for link

Insert needs 1 unit, meld none

+
1

(+1) (+1) (+1)

(0)

1 1

1 1

Delete min

rank k

Each 1,1 needs potential 1,

adding at most k in total.

Delete min takes O(log n) amortized time

1

1 unit
needed

1

0≥ 2

12

Decrease Key

Successive rank decreases are non-increasing

At most two 1,1’s occur on path of rank decreases –
1,1 becomes 0, j : prev decrease >1, next decrease = 1
1,1 becomes 1,2 : terminal

Give each 1,1 one extra unit of potential

Each rank decrease releases a unit to pay for decrease:
rank diffs of both children decrease by k, rank diff of

parent increases by k

121

064

5110

5131

7171

2

2

010

10

Decrease key

9

0 6

6 0

8

0

1

k - 1

1 1

k

1

Detach half treeRestore rank rule

8

0

0 2

61 1

60 5

k - 11

Type-1 rp-heaps

Max k lg n

Analysis requires a more elaborate potential
based on rank differences of children and
grandchildren

Same bounds as type-2 rp-heaps, provided we
preferentially link half trees from disassembly

