Scheduling to Minimize Total Response Time

Cliff Stein

Columbia University

Why teach Scheduling to Minimize Total Response Time"

e It is the most important algorithmic problem in the world

Why teach Scheduling to Minimize Total Response Time"

e It is the most important algorithmic problem in the world

In reality
e It is a basic algorithmic problem.
e It is a special case of many practical problems.

e It will give us the opportunity to study several different algorithic tech-
niques, and show several ways of attacking the same problem.

Non-Preemptive Min-Sum Scheduling

Consider the following basic scheduling problem
e 1 machine
e . jobs, job ; has
— release date 7

— processing time p;

e A non-preemptive schedule assigns each job to a time interval of size p;
ending at time () .

e Flow (response) time F; =C; —r,

e Objective: minimize) ; }; (min-sum)

Example

jl1 23 4

0 236
6 12 4

Tj

pj

jl1 23 4
rj/0 23 6
pj 6124

One schedule

0

flow times

total flow time = 24

Example

13

Example

jl1 23 4
rj/0 23 6
pj 6124

One schedule

0 6 7 9 13

flow times 6 5 6

total flow time = 24

A better schedule

0 3 5 10 16

flow times 1 2 4 16

total flow time = 23

What do we Know About this Problem?

® Response time is a common metric in many applications.

e Used especially in operating systems, and other real-time systems.

What about algorithms?

If all release dates are 0: EASY

Input:

2 3 4 5 6 7 8

N
9 10 11 16 17 18 19

Proof that SPT is optimal

Cl1+C2+C3+C4+C5 =42

D> F =30
= p2+(p2+pa) + (p2+ps+ps)
+(p2 + pa + ps + p1) + (P2 + ps + ps + 1+ p3)
= Dpa+4ps+3ps +2p1 + p3

15

16

17

18

19

If we allow preemption: EASY

Use SRPT, Shortest Remaining Processing Time First
jl12 34
0 236
6124

Ty
Dj

Non preemptive schedule

0 3 5 10 16

flow times 1 2 4 16

total flow time = 23

Preemptive schedule

0 3 5 10 14

flow times 1 2 10 8

total flow time = 21

Back to the original problem

e 1 machine
e n jobs, job j has
—release date 7

— processing time p;

Approximation Algorithms

A p -approximation algorithm (for a minimization problem) is an algo-
rithm which, in polynomial time, finds a solution whose value is no more
than p times the value of the optimal solution.

A polynomial time approximation scheme (PTAS) is an algorithm that,
for any fixed ¢ >0, is a 1+ ¢ -approximation algorithm.

BAD NEWS:

No o(y/n) approximation for non-preemptively scheduling to minimize
total flow time unless P=NP [Kellerer, Tautenhahn & Woeginger 96].

Two approaches to this problem:

1. Change the objective

2. Change the comparison rules

First attack:

Change the objective to average completion time

e Well-studied, basic measure

—in theory and in practice

— approximation algorithms and exact solutions

e Measures, in some sense, average response and “fairness”

Disadvantages:
e It is not flow time , F;, =C;—1r;.

e It is not stretch , F)/p, .

Note: Exact optimization of) F, and) (, are equivalent, approxima-
tion is not.

3 algorithms for) C;

e 2 -approximation
e Randomized ¢/(e¢ — 1) -approximation

e Polynomial time approximation scheme
((1+ ¢)-approximation)

1‘7“j‘20j

[Phillips, Stein, Wein ’95]

Sample input:

j|1 2345
rjj01 13 8
pj|6 35 11

Step 1: Find the optimal preemptive schedule via Shortest Remaining
Processing Time algorithm. [Baker ’74]

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Y Cf=4+5+9+11+16=4p

(Clearly > C7 <OPT)

2-approximation algorithm

Sample input:

D (00 m MT
<t ™ - M _ H
- I
S <Y 0 m I
2 DGJ

N

Step 2: Non-preemptively sched
in the preemptive schedule, res

Y CN=4+47+94 14420 =54

Proof of 2-approximation

Lemma: For each job, C’yN < ZC’jP .

Proof: Take the preemptive schedule, and when job j completes, insert
the job
non-preemptively.

preemptive

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

In this schedule, the completion time of a job at most doubles!

Turn into a valid schedule

preemptive

-

i

\\\

Ol

non-preemptive added

non-preemptive

non-preemptive

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

10

So, we have a valid schedule and the completion time of each job at most

doubled.

Proof with symbols

e Index the jobs by CJP

e Let 7“; = maX1g/f§j{7“k}

Two lower bounds:
P /
o (i >,

P J
® Cj =) 41Dk

After time r;- , all of jobs 1 through ; are available, so:

J
N /
Y <ty m
k=1

P P
cr + ¢

_ o1P
= 20}

For whole schedule:

(Generalization

Recap of algorithm for 1 machine, release dates

1. Solve the preemptive schedule to obtain preemptive completion times

cr.

2. Schedule the jobs in the order given by C]P . respecting release dates.

General Framework

1. Solve a relaxation of the given problem in order to obtain an ordering
on the jobs.

2. Schedule the jobs according to the ordering, respecting constraints.

We will see other examples of this framework shortly.

Can we get a better bound

No deterministic on-line algorithm can do better than a factor of 2 [Vest-
gens ’95]!

Need randomization or off-line algorithms.

Alpha points

([Hall et. al. ’96, Phillips, Stein, Wein 95, Goemans ’97, Chekuri et. al.

'97])
Alpha point: Let (% be the earliest time at which ap; of job j has
completed.

Idea: Schedule in order of o points.

Sample input:
jlri |p
1/0 |100
2981

Schedules:

preemptive (200)

alpha=1 (298)

alpha=1/2 (201)

98 99 100101 199

0

Intuition: a-points can avoid “bad” case.

Scheduling by a-points

Schedule-by-«
1. Choose « € [0, 1]

2. Solve the preemptive schedule to obtain preemptive completion times

s
3. Schedule the jobs in the order given by (7', respecting release dates.

Theorem: Schedule-by-«a is a (1 + é)-approximation algorithm.

Analysis of Schedule by o

Theorem: Schedule-by-«a is a (1 + é)-approximation algorithm.

Proof: (Similar to 2-approximation)
e Index the jobs by (7

e Let 7*; = maxi<k<;j{7k}

Two lower bounds:
P /
o (i =,

P J
o C] Z @Zkzlp/{:

After time r/] , all of jobs 1 through ; are available, so:

Scheduling by a-points

Schedule-by-a
1. Choose « € [0, 1]

2. Solve the preemptive schedule to obtain preemptive completion times

s
3. Schedule the jobs in the order given by (7 , respecting release dates.

Theorem: Schedule-by-«a is a (1 + é)-approximation algorithm.

Best o to choice is 1, yielding a 2-approximation!

Analysis is tight

For any «a, there is an input for which the algorithm produces a schedule
that is 1+é off from optimal. Sample input:

J Ty Dj
1 0 B
2 aB—-2|1
3...x|aB+1

preemptive

alpha
OPT I
aB-2
0 oB-1 aB+1 aB+1+€ B+1+¢ (1+oB-1

(14«

The many small jobs have complete at roughly TB =1+ é times OPT.

Insight for improvement

For any a, there is an input that can be as bad as 1+$
BUT

for any input, most o’s yield significantly better schedules.

S
STRaH

preemptive

1+1/o0 approx

OPT

1/o. approx

oaB-2
0 oB-1 aB+1 aB+1+¢€ B+1+¢ (1+o)B—-1

Randomize to avoid worst case

Schedule-by-random-«

1. Choose « € [0,1] according to some probability distribution.

2. Solve the preemptive schedule to obtain preemptive completion times

«
cs

3. Schedule the jobs in the order given by (7', respecting release dates.

Sketch of Analysis

e Let 5,(7) denote the set of jobs which complete exactly a g-fraction of
their processing before C’f) , in the preemptive schedule.

o Lot p(S)(9) = Y ce 1 -

e Let 7; be the idle time before C]P .

Lower bound:

0<6<1
= Ti+ > Bp(Si(B)+ Y Bp(Si(B))
0<pf<a a<p<1

Upper bound:
CY<Ti+) Bp(Si(8)+(1+a) Y p(Si(B))

0<f<a a<f<1

Theorem:
If we choose o from a p.d.f f(«), then Schedule-by-random-«a is a

71 _
1 + max / jLLﬁf(oz)aloz
approximation algorithm. (approximation ratio is an expected value.)

Analysis Continued

Corollary: If we choose f(a)= % , then Schedule-by-random-«o 1is an
— ~ 1.58 -
approximation algorithm and it runs in O(nlogn) time.

e Can derandomize algorithm by choosing all n — 1 combinatorially dis-
tinct a-points.
(O(n*logn) time.)

e Is the resulting algorithm (Best-a) any better?

Analysis Continued

Corollary: If we choose f(a)= % , then Schedule-by-random-«o 1is an

&

4 ~ 1.58 -approximation algorithm and it runs in O(nlogn) time.

e Can derandomize algorithm by choosing all combinatorially distinct a-
points. (O(n?logn) time.)

e Is the resulting algorithm (Best-a) any better

NO, in the worst case

Theorem: No Ordering Rule that starts with the optimal preemptive
(SRPT) schedule can do better than ¢/(¢ — 1) [Torng, Uthaisombut "99].

Experimental Results

([Savelsberg, Uma, Wein, ’98])

arrival rate = 2
schedule — by — C} shecedule — by — fired — « best — a
Mean | Std.Dev. | Max | Mean | Std.Dev. Max | Mean | Std.Dev. | Max
1.360 0.186 1.781 | 1.271 0.105 1.480 | 1.114 0.049 1.199
1.351 0.190 1.842 | 1.250 0.111 1.455 | 1.101 0.044 1.179
1.400 0.196 1.833 | 1.262 0.119 1.549 | 1.147 0.094 1.407
1.307 0.119 1.530 | 1.210 0.076 1.359 | 1.086 0.021 1.140
1.247 0.111 1.515 | 1.205 0.082 1.352 | 1.084 0.035 1.152
1.262 0.120 1.518 | 1.187 0.068 1.289 | 1.100 0.070 1.276
1.341 0.207 1.810 | 1.246 0.141 1.622 | 1.129 0.089 1.367
1.305 0.154 1.645 | 1.238 0.120 1.548 1.095 0.057 1.258
1.287 0.147 1.612 | 1.173 0.096 1.303 | 1.079 0.053 1.198

—
s
s
&

e e e P P P PN PN PN
W[W| N D DO = = =
WIN| W W N~

~— | — | — [~ |~ | — | — | — |~ —

Table 1: 50 jobs > w;F;. Performance of Cj-based heuristics, compared to C;-based lower bound.

(n,a) Schedule-by-C} Schedule-by-Fixed-a Best-a

Mean | Std.Dev. | Max | Mean | Std.Dev. | Max | Mean | Std.Dev. | Max
() | 1.271 0.144 1.729 | 1.184 0.092 1.495 | 1.066 0.047 1.282
(50,5) | 1.107 0.045 1.245 | 1.073 0.032 1.197 | 1.018 0.013 1.071
(100,2)
(100,5)

1.268 0.125 1.786 | 1.190 0.096 1.686 | 1.071 0.043 1.271
1.079 0.030 1.152 | 1.056 0.018 1.104 | 1.014 0.010 1.055

Table 2: Performance of algorithms applied to solution of C-relaxation for) w; F;. We report on ratio of algorithm performance to z;-relaxation
lower bound.

General Framework on other problems

General Framework

1. Solve a relaxation of the given problem in order to obtain an ordering
on the jobs.

2. Schedule the jobs according to the ordering.

Problems:

e Only polynomial time solvable problem is one machine, release dates
and preemption.

e Multiple machines create more complicated orderings

® Precedence constraints

Solutions
e All can be handled via various relaxations including:

— One machine relaxations

— A variety of linear programs

e Judicious use of ordering rules such as a-points, idependetly chosen a’s
for each job, rules about assigning jobs to machines.

One Example — 1|r;,prec|) C;

Use a linear programming relaxation[Hall et. al. 96, Dyer Wolsey '91]
Variables: y; =1 if job j completes at time ¢

n T
3" 1,
j=1 t=1
subject to

T
Zyjtzl j=1...n jobs run
=1
yit =0 if ¢t <r;+p;
n t—l—pj—l
Z Z Yjs < 1 t=1...T machine

t+pk

t
Zyjsz Zyks if j - k,t=1...T —p;, prec
s=1 s=1

LP is lower bound, but how do we get ordering?

Example

Sample input:

=
<.

=W N S

o O O O
l—lwl—ll\:;@

Solution to LP:

(1/2 point) 2 I 4

Variables: {

Y21 = Y12 = Y22 = Y43 = Y14 == Y35 = Y45 = Y37 = 2

Algorithm and Analysis

General Framework

1. Solve the LP relaxation of the given problem to obtain 1/2-points, the
earliest point at which half of processing is done.

2. Schedule the jobs according to the ordering for the 1/2-points, respecting
release dates.

e release dates are obeyed
e precedence constraints are obeyed
e 5.33-approximation (better approx. is possible)

e non-polynomial size can be handled

There are many other O(1) approximation algorithms for

’ Problem | non-PTAS | PTAS |
1r;|>C; 1.58[1] yes
1|T’j |ijCj 169[2} yes
1|r;, pmtn| Y w;C; 4/3[3] yes
Plr;|> w;C; 2[4] yes
Pr;, pmtn |37 w;C; 2[4] yes
Rm|r;|> w;C; 2[5] yes
Rm/|r;, pmtn| > w;C; 3[5] yes
Rm| ‘ZU)J'C]' 3/2[6] yes
R | Ty | Z Oj 214 no
1] < | > w;C; 2[7 1no
1r;, < > w;Cj el3 1no
Pl <> w;C; 4[8 1no

Chekuri et. al., 1997
Goemans et. al., 1999
Schulz, Skutella, 1999
Schulz, Skutella, 1997
Skutella, 1999

Skutella, 1999

Chekuri, Motwani, 1999

. Munier Queyranne, Schulz, 1998
. Hall, et. al. , 1997

10. Goemans, 1997

11. Chakrabarti et. al., 1997

© XSO H

Can we do better?

Yes, there is a PTAS for the 1 machine problem, and several related prob-
lems.

One negative result: [Hoogeveen, Schuurman, Woeginger ’98] Unless
P = NP , there is no PTAS for:

® R|r;|C;

o RS u,C,

® Plprec,p; =1]>_C;

PTAS

A PTAS for 1|r;| > C, , with running time
O(nlogn + 2row(1/a)y

(Present algorithm of Karger and Stein other algorithms, results obtained
by [Afrati, Bampis, Chekuri, Kenyon, Khanna, Milis, Queyranne, Skutella,
Sviridenko])
Highlights

e Simple algorithm — rounding, enumeration, and Shortest processing
time (SPT).

e Enumeration is only at end of schedule.

e ¢ term is additive not multiplicative.

Approach:

e Give a series of transformations, each increasing) C; by at most a
1+ ¢ factor. (Blowing up the schedule by a 1+ e-factor is “free”.)

® Resulting instance is solvable by SPT and enumeration.

(14 ¢)* =14 O(e), for constant k

Transformation 1: Geometric Rounding

We can round release dates and processing times to be powers of 1+ ¢ .

This simplifies things:
e Let R, =(1+¢)" be the release dates.

e Define intervals [, = [R,, R, 1) .
(Note that |[,|= R, — R, =€R, .)

Observations:
e Fewer decision points (release dates)

e Could also round up completion times ;. This yields a problem of
packing jobs to intervals.

Intuition: SPT is often good

If no job happens to be running at any release date, SPT is optimal.

I

2

Proof In this case, SRPT = SPT. SRPT is the optimal preemptive sched-
ule, and this is no more than the optimal non-preemptive schedule.

If no job has much remaining processing time at any release date, SPT
is nearly optimal.

1 1+ (1+¢) ° (1+¢) °

R

1 2 3

Goal: We want jobs to be small relative to the interval in which they run.

What if all jobs were really small

Small job definition. A job j is small in interval x if p;, <¢|l,| .

Lemma If in the optimal schedule, all jobs are small when they run, then
SPT is (1 + ¢) -optimal.

Proof Run SRPT, the optimal preemptive schedule. Schedule jobs where
they first run, this can be accomplished by blowing up intervals by a 1+ ¢
-factor.

<.sIX

| 1 |
I I
I

X X+1

IX (1+€) IX+1 (1+€)

Transformation 2: Making jobs smaller

Lemma We can set r; to be max{r;,ep;} .

Proof Multiply all C; by 1+¢€ . (This just blows up time by a 1+¢
factor.) Now, job j starts no earlier than

Ci(l+€)—p; >pj(l+€)—p; > ep;.

So we can increase its release date. O

Cl C2 (3 C4

(1+e)C4

(1+e) C1 (1+e)C2 (14+e)C3

Note This implies that if job j runs in interval 2z , then

1 1

Smaller jobs don’t cross many intervals

Lemma Jobs can’t cross more than s=1log, (1+ %) intervals.

Proof If job j runs in interval z , then

1
Dj < ?’]J‘

Since interval sizes are geometrically increasing, after going out s inter-
vals, there is enough total size to hold the entire job, i.e.

- 1
k=0

Status

We have
p; < 6_2‘].7:’-

Can we get
pj S Gllx‘(?

We can make (most) jobs really small

We define a threshhold ¢ =¢OPT .
No more than ¢ ' jobs have C; >t

Lemma Thereis a 1+ O(¢) -optimal schedule in which for each job j, either
® j is small when it runs, or

e j runs after t.

Proofidea: Let £k =log ., (}4) . We move each large job forward £ intervals.

Since 1
and {
‘],/1;+/<:| Z _4‘]:1;‘7
€
then
Py < 62“:1:4—/{"

the jobs are now small in the interval they run, and % “fit” in the new
interval expanded by (1 +¢).

Moving forward large jobs

(1+e)1 -y

Making jobs small (cont)

Problem: We have blown up processing times of these jobs too much (}1
factor).

Solution: True, but the total increase in processing time is small relative
to OPT.

I I t OPT

X x+k

o L
3‘

I t I e OPT \ OPT

X x+k

no new jobs here

e Largest new completion time is about
et =SOPT.

e There can be at most ¢ ' jobs that move forward into an interval. Thus
they contribute a total of ¢€OPT.

Making jobs small (cont)

e Completion times of jobs moved forward form a geometric series:

— = ¢ OPT
Z et ‘ i +€ * (1+€)?

— 2OPT (1 + E)

j moved forward

€

= O(eOPT)

e Additional complication: [, may be full, so job may have to move s
intervals later. This only loses a constant factor, which can be added to
solution.

w

. =2 N A S~

Simple Algorithm

. Guess OPT, t = e'OPT.
. For each job, set r; = max{r;, ep;}, rounded up to a power of (1 +e¢).

. If j is large in the interval containing r;, set r; to the minimum R, so
that p; is small in interval I,.

. Round processing times up to a power of (1 +¢).

. Guess which + jobs will complete after time ¢. (Call them B).

. Run SPT on J-B.

. Enumerate schedules for the jobs in B.

Running time is O(e "l(nlog n)neq)

Better Algorithm

1. For each job, set r; = max{r;,ep;}, rounded up to a power of (1 +¢).

2. If j is large in the interval containing r;, set r; to the minimum R, so

that p; is small in interval I,.
3. Round processing times up to a power of (1 + ¢).
4. Run SPT on the modified instance, until there are }7 jobs remaining.

5. Enumerate schedules for these remaining jobs, output best one.

Running time is O(¢ " + (nlogn))

3 .
Note: Can decrease dependence on ¢ to about 2'/“ , with more careful
enumeration.

Comments

1. Simple algorithm.
2. Nice dependence on ¢. Any chance it is practical?

3. Is any PTAS practical?

Some hope: Some results by [Hepner Stein, 2002] suggest that a modifica-
tion of the algorithm is competetive for certain sized-inputs and moderate
values of ¢ (say 10%).

Back to original sum of flow time objective

e If we focus solely on worst-case analysis, we should give up and go home

What do we do if we want to solve this problem?

e If we focus solely on worst-case analysis, we should give up and go home

We have to look beyond traditional worst case analysis

e Is may be needlessly pessimistic.

e It has failed to differentiate between algorithms whose performance is
observed empirically to be rather different.

e We really want to solve these problems.

NP-completeness proof

Reduction from 3-partition (Given 3n numbers zi,...,73, , can they be
partitioned into n sets, each summing to B =) x;/n

Sample Yes instance:

NP-completeness proof

Reduction from 3-partition (Given 3n numbers zi,...,73, , can they be
partitioned into n sets, each summing to B =) x;/n

Sample Yes instance:

Create a scheduling instance with gaps of size B5 .

B B B B

e Partition is yes iff the jobs can be fit in the intervals
e Total flow time is small iff the jobs can fit in the intervals

e If total flow time is not small, it is really big (by ./n factor),

Observations

Observation : NP-completeness is not “robust.” A slight perturbation

of the data destroys the proof (the entire /n factor) disappears. (We’ll
return to this)

Observation: (a slight digression)

e If we change our objective to > C;=> F;+ > r; , optimal solutions
don’t change and the problem has a PTAS [Afrati et. al., 1999], and a
simple ¢/(e — 1) -approximation [Chekuri, Motwani, Natarajan, Stein,
1997]

e Maybe if your algorithm doesn’t exploit the fact that > () is a silly
metric, it’s ok ...

End of digression

Analysis Technique

We want a worst-case analysis that identifies the case when hard in-
stances are destroyed by small perturbations and where hard instances are
“contrived” or ‘“unnatural”

Analysis Technique

We want a worst case analysis that identifies the case when hard in-
stances are destroyed by small perturbations, and where hard instances
are “contrived” or “unnatural”

One example: Smoothed analysis [Spielman, Teng, 2001]

e Worst Case Complexity: max, T (z)

e Average case complexity: average T'(r)

e Smoothed complexity : max, average,T'(x + er)

Pictures from Dan Spielman’s smoothed analysis web page:

B

8

2 2

2

Resource Augmentation

e Compare my algorithm using extra resources (faster/more machines) to
an optimal algorithm that does not get the extra resources

e A s-speed p-approximation algorithm finds a schedule with objective
at most p times OPT using a machine that is s times faster.

e Introduced explicitly in [Kalyanasundaram, Pruhs 2000] for on-line pre-
emptive scheduling problems

e Applied to non-preemptive problems (and named) in [Phillips, Stein,
Torng, Wein 1997]

e Used frequently in last 10 years, especially in on-line and scheduling
problems.

Other related ideas: pseudoapproximation, etc.

Thesis

Resource augmentation, using a small amount of additional resources is
a natural way to analyze scheduling problems

e Identifies when worst cases are specially tuned to the speed of the ma-
chine (maybe exact values of speed are artificial)

e It is often reasonable to buy/allocate more resources.
e Machines are getting faster at rates of a constant factor per year.

e A 2-speed algorithm is one that does as well as the optimal off-line did
18 months ago

How might speed help

Consider the hard instance:

Now speed up the machine slightly (20%)

B B B B
All of a sudden, the problem becomes easy.

Summary: For this instance, if you speed the machine up by a few percent,
a polynomial time algorithm can improve the flow time by O(n!/?) factor.

Comclusion: This observation and other similar ones give hope.

State of Results (one year ago):

e Previously no O(1) -speed approximation algorithms were known for
minimizing flow time non-preemtively on one machine.

e Only logarithmic speed algorithms. [Phillips, Stein, Torng, Wein 1997]
® The logarithimic speed algorithms

— are unnatural,

— have too large a speed needed.

Our Results

Input: 1 machines, jobs have

— release date 7
— processing time p;
— (possible) deadline d;

— weight w;

Schedule is non-preemptive, assigns completion times (), . Other func-
tions are:

— Flow time F; =C; —r;

— Tardiness 7; = max{C; —d,;,0}

— Throughput U; = [C; < d|]

Our Results

Input: 1 machines, jobs have

— release date 7
— processing time p;
— (possible) deadline d;

— weight w;

New Results

[Bansal, Chen, Kandehar, Pruhs, Schieber, Stein 2007]

Schedule is non-preemptive, assigns completion times ;. Other func-
tions are:

— Flow time F;, =C; —r;

— Tardiness 7 = max{C; —d;,0}

— Throughput U; = [C; < ¢/

Results We give the first O(1) -speed O(1) -approximation algorithms
for

— Weighted Flow Time () w,F;)

— Total Tardiness (> 7))

— Broadcast Scheduling Version of Weighted Flow Time (> w;F})

— Throughput Maximization (> U;) (exact value of objective)

— Weighted Tardiness () w;7;) (using extra machines also)

Bonus Feature: Unified approach to different metrics

Broadcast Scheduling

— Requests arrive at a time r; for a particular z; and may have a
weight w; .

— At each integer time step, one item 1’ is broadcast, and all requests
for which z; =2’ are satisfied.

Input:

response
times

0

Solution

Technical Details

General approach:

— Formulate an IP
— Solve the LP-relaxation
— Round the LP-relaxation

Technical Details

General approach:

— Formulate an IP We augment a time-indexed formulation with a new
set of constraints

— Solve the LP-relaxation We use some of the problem structure to
approximately solve the exponential-sized LP in polynomial time

— Round the LP-relaxation We use a careful rounding procedure that
uses the extra speed crucially

Because the rounding procedure doesn’t move jobs too much, we can
handle other objectives (tardiness, throughput) with small modifica-
tions.

Time Indexed LP

Variables 1z, denote whether job ; starts at time t.

Consider the well-known exact IP formulation

min D jes Wik
s.t.
DT = 1 ViedJ
Zje] Zrzre(t—pj,t] Ljr <1 Vt € Z
Fyo= ., (t+pj—rjz Vj€J
T, Fy > 0 VieJteZ

T, integer VieJtelkZ

Time Indexed LP

Variables z;, denote whether job ;j starts at time t.

Consider the LP relaxation

min D jes Wik
s.t.
DT = 1 Vi€ J
ZjeJ ZT:Te(t—pj,t] i <1 Vt € Z
Fy = >, (t+pj—rjzy VjeJ
T, £y > 0 Vie JteZ
zje, F; integer VieJtel

Fractional Version: Schedules a job multiple times using a fraction of
the machine

input

schedule from lp—relaxation

Bad News about the LP relaxation

— The LP, on a constant speed processor, has a super-constant integral-
ity gap

— For the LP schedule, there are inputs such that the optimal non-
preemptive flow time, given 1 speed-s machine with s=o(n'/?) is
polynomially larger than the optimal LP flow time given one unit
speed machine. [PSTW]

A suggestive example

n jobs, unit processing time, gap of sqrt(n) between them

1 job, processing time n

Optimal non-preemptive (IP) schedule Two possibilities:

— Run big job in last half of schedule, it has flow time O(n*?)

— Run big job in first half of schedule, it delays /n jobs by ©O(n) each,
for a total flow time of O(n??) .

A suggestive example

n jobs, unit processing time, gap of sqrt(n) between them

1 job, processing time n

Optimal LP schedule

SIS SRSy
— Small jobs have constant flow time

— Big job has flow time of O(n) .
— Total flow time is O(n) .

Extra speed doesn’t help here

n jobs, unit processing time, gap of sqrt(n) between them

1 job, processing time n

Optimal non-preemptive (IP) schedule Two possibilities:

— Run big job in last half of schedule, it has flow time O(n%?)

— Run big job in first half of schedule, it delays /n jobs by ©(n) each,
for a total flow time of ©O(n??) .

n jobs, unit processing time, gap of sqrt(n) between them

1 job, processing time n

Same argument with extra speed (up to constants).
Gap is O(n'?) . Need a stronger LP.

New Idea

— We will add constraints to the IP so that it is no longer exact (will
be off by a factor of 2)

— But, this stronger IP will be easier to round and will not have the
gap

What happens in any (including our) rounding algorith

— You solve the LP and each job is placed in multiple places, in multiple
pieces.

input

schedule from lp—relaxation

first stage of rounding

T

e The LP “tells” you to run two jobs at the same time

® You need to run one after the other, and need to “charge” the additional
time incurred by one to something.

What happens in any rounding algorithm

® You solve the LP and each job is placed in multiple places, in multiple
pieces.

e The LP “tells” you to run two jobs at the same time

® You need to run one after the other, and need to “charge” the additional
time incurred by one to something.

Recall: Let (; be completion time S5; be start time.

Fj = Cj—rj
= (Sj+pj) -7,
= (5j = 1)) +p

® So we can charge either against processing time, or elapsed time.

e What if both are small?

New Constraints

Idea: If job k& starts at time ¢ , and runs in the interval [= [t 1+ p;] ,
then any job released during interval / must start after interval [.

job 1 runs here

job 2 released here T

job 2 idle time

min s wF,
s.t.

Dt Tt

Zje] ZT:TE(t—pj,t] Ljr

Ly

Ljts FJ

The flow time of a job

The New LP

_— ViedJ
<1 Vt €7
1
=5 (;(tﬂ?j —)2t
o+ Y Y. (trpe—rjan | Vi€
k:Ck’1>Cj*1 te[rj—pp+1r;]
> 0 VieJtel

may be counted twice, so this is not an exact IP.

Intuition for why new constraint helps

e Consider a big job J; and a small job J, that the LP wants to run at
the same time.

e Let ¢ be the time that the LP schedules .J,, ¢’ the time that the LP
completes .J;

e Suppose we want to move J, to run after .J; . (the additional speed
will help it fit in)

— Already accumulated flow time in LP = (t — ;) +p;
— Additional flow time from rounding = ¢ — (¢ + p;)

job 1 runs here t

t increase in flow time
2 from rounding

We need to charge the additional flow time of .J, to something. In the
traditional time indexed LP, we can charge against:

® Processing time of ./, .

e Contribution to LP objective from .J;

Intuition for why new constraint helps

e Already accumulated flow time in LP = (¢ — 1) +p;

e Additional flow time from rounding = ¢ — (¢t + p;)

job 1 runs here t’

t increase in flow time
r2 from rounding

We need to charge the additional flow time of J;, to something.

traditional time indexed LP, we can charge against:
® Processing time of J, .
e Contribution to LP objective from .J;

If either of these are large relative to ¢ — (¢ +p;) , we are fine.

Note: Another case is when .J; runs before J;.

In the

Intuition

e If additional flow time ¢ — (f +p;) is small relative to either (¢t —1r;) or
p; then the rounding only increases .J, ’s flow time by a constant

Problem case

job 1 runs here t

2t increase in flow time
from rounding

e Problem with original time-indexed LP when a job runs near its release
date and p; is small.

e New LP includes a term whose magnitude is exactly ¢ — (t+p;) , and
so we can charge increase against this.

Algorithm

A A

. The original instance .J is modified to create a new instance J. In J
the job sizes are rounded down so that the possible job sizes form a
geometric sequence, in multiples of a parameter 3 > 1

A

. From J, a linear program LP is created. An integer solution to LP
can be interpreted as an aligned schedule. An aligned schedule is one in
which each job with size p is started at a time that is an integer multiple
of p. The optimal solution to LP will be a lower bound on OPT

. The linear program LP is then solved. An arbitrary solution is then
converted into a canonical solution that essentially favors jobs which
are released earlier.

. The solution of LP is randomly rounded into a pseudo-schedule. In a
pseudo-schedule each job is run exactly once, but more than one job
may be running at each time.

. Using some additional speed, this pseudo-schedule is converted into a
feasible schedule for J.

. Finally, again using some additional speed, a feasible schedule for J is
produced.

Details: Running Time

Running Time: The rounding and alligning allow the LP to be solved in
polynomial time giving up a 1+ o(1) factor.

Method: Geometric rounding, plus a grouping of consecutive intervals in
which nothing interesting happens gives a polynomial sized-LP.

Details: Rounding to a pseudoschedule:

e Jobs are in classes based on similar processing times.

e For each class independently

— Within a class, order jobs by larger weight first , breaking ties by
earlier release date, breaking ties by index.
— For each class, pick a random offset « € [0,1) at random.

— Schedule a job whenever total LP processing time reaches a,a + 1, as, . ..

The pseudoschedule has the following properties:
1. Each job j € J is scheduled exactly once

2. No two jobs from the same class C; are scheduled in the same aligned
B'-interval.

3. Consider any aligned ['-interval for 0 < i < k. The total size of all the
. i+1
jobs in classes (Cy,...,C; scheduled in this interval is at most (' + i

| p—1
B2+ 4y)-

Details: Converting pseudoschedule to Schedule

e Rounding is done by shrinking jobs (extra speed) by a factor of (2 + ﬁ%l)
and then using the holes to pack jobs that are simultaneous in the
pseudoschedule.

e The earlier intuition dealt with two job sizes, we have to deal with
multiple job sizes.

Details: Converting pseudoschedule to Schedule

First, look at the jobs in each class, alligned (5 = 2 here)

Details: Converting pseudoschedule to Schedule

Distinguish between early (red) jobs, those whose release date is before
the big job, and other later (blue) jobs.

: -

N

Details: Converting pseudoschedule to Schedule

e Schedule early jobs by postorder traversal
e Schedule big job

e Schedule late jobs by preeorder traversal

N

NI | | B IEER EE

Details: Converting pseudoschedule to Schedule

Claim The schedule produced is feasible and has a flow time at most twice
the expected flow time of the pseudoschedule.

Details: making the algorithm polynomial time

Issue: The time-indexed LP has an exponential number of variables and
constraints.

min Zjej ijj
s.t.
DTt = 1 VjeJ
ZjGJ ZTITE(t—pj,t] ij S 1 \V/t c 7.
1
Fy =3 (;(tﬂj — 7)1
+p; + Z Z (t + P — Tj)gjk;t ViedJ
kO >Crt o telrmppt L)
xj, [> 0 Vie Jtel

Ideas for making the LP polynomial sized

Unweighted flow time: We will reduce size of LP while increasing objective
function by 1+ o(1) factor.

o Let p,.=max;p; .
e Each job j runs somewhere in the interval L; = [r;, 7, + npuax -

e Let L —=U;L; be the set of all times a job might possibly run in any
optimal schedule.

o |L| < npax -
e Round all processing times to integer multiples of p.,.1 = Puax /7’ .

e In optimal schedule, each job’s completion time is increased by at most

NPsmall -

e total flow is increased by 7n°pg.1 < poa/n < Fopr/n .

e Similarly, we can round up each release date to be a multiple of py,.1 ,
with the same increase in total flow.

Sketch of ideas for making the LP polynomial sized

Weighted flow time: We will reduce size of LP while increasing objective
function by factor of 2.

e Recall that jobs are in classes based on processing time rounded to a

power of 2.

e Recall that we can align intervals to be multiples of processing times
rounded to a power of 2.

e We can’t just round as before, because a small processing time job can
have a very large weight.

Definition: An aligned (' -interval I of the form [/ + zp;, 7 + (v + 1)p]
for some job ; contains an interesting time if one of the following holds:

e r is an integer power of 2, or
e / contains the release time of a job, or

e there is a variable of the form z;,, for a job k€ (; for [<i: where
either o or 0 is properly contained in [.

Ideas:

e Intervals that are not interesting can be merged, and only a factor of 2
is lost in the objective. Call the associated varibles smeared . intervals.

e Call the remaining variables regular .
e Smeared intervals are either identical or disjoint.
® Reexpress LP in terms of these new variables.

e Can show inductively that there are only a polynomial number of such
variables.

Recap

Results We give the first O(1) -speed O(1) -approximation algorithms for
e Weighted Flow Time () w;F})
e Total Tardiness () 7))
e Broadcast Scheduling Version of Weighted Flow Time (> w,F})
e Throughput Maximization (> U,) (exact)
e Weighted Tardiness () w;7;) (using extra machines also)

Additional Results

e Our new LP cannot achieve an O(1) approximation using speed < 2

e Can achieve O(*l‘ggg) -machine 1+ O(¢) -speed O(1) -approximation
polynomial-time algorithm.

Open Questions

e Better constants (We have constants around 10 or so)
e Other minsum problems
e Multiple machines

e Other ways to deal with hard-to-approximate problems

