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Theory vs. Practice

Natural Science

“Science is divided into natural and unnatural.”
Vladimir Steklov, mathematician

“No Sir, into social and anti-social.”
Sergei Platonov, historian

Common Ground: Scientific Method
Make an observation.
Form a hypothesis or theory.
Make a prediction.
Verify by experiment.

Useful theory.
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Scientific Method and Algorithms

Current technology, practical problem, previous experience.
Modeling.
Algorithm design and analysis.
Experimental evaluation or practical use.

Remarks
Some algorithms are never implemented.
Some algorithms are never analyzed.
Scientific method includes both analysis and experimentation.
Leads to better algorithms.

Mathematics of algorithms vs. algorithm engineering vs.
algorithm science: algorithm research via the sceintific method.
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Outline

1 Recent Shortest Path Algorithms

2 Transit Node Algorithm

3 Highway Dimension and Shortest Path Covers (SPCs)

4 Computing SPCs

5 VC-Dimension

6 Work in Progress
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Shortest Paths: Recent Developments

Continent-sized road networks have 10s of millions intersections.

Dijkstra’s algorithm: ≈ 5 s

Recent work
Arc flags [Lauther 04, Köhler et al. 06, Bauer & Delling 08].
A∗ with landmarks [Goldberg & Harrelson 05].
Reach [Gutman 04, Goldberg et al. 06].
Highway hierarchies [Sanders & Schultes 05].
Contraction hierarchies [Geisberger et al. 08].
Transit nodes [Bast et al. 06].
DIMACS Shortest Paths Implementation Challenge (2005–2006).

Greatly improved performance: < 1 ms, ≈ 0.1 s on a mobile device.
Only a few hundred intersections searched.
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Definitions and Model

Input
Graph G = (V, E) (intersections, road segments), |V| = n,
|E| = m.
Weight function ` (length, transit time, fuel consumption, ...).
Static problem, G and ` incorporate all modeling information.

Query (multiple times for the same input network)
Given origin s and destination t, find optimal path from s to t.
Exact algorithms help modeling and debugging.

Algorithms with preprocessing
Two phases: practical preprocessing and real-time queries.
Preprocessing output not much bigger than the input.
Preprocessing may use more resources than queries.
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Transit Node (TN) Algorithm

[Bast et al. 06]

For a region, there is a small set of nodes such that all sufficiently long
shortest paths out of the region pass a node in the set.
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TN Preprocessing

Basic concepts

Divide a map into regions (a few thousand).
For each region, optimal paths to far away places pass
through one of a small number of access nodes (≈ 10 on
the average).
The union of access nodes is the set of transit nodes
(≈ 10 000).

Empirical observation: small number of access/transit nodes.

Preprocessing Algorithm
Find access nodes for every region.
Connect each vertex to its access nodes.
Compute all pairs of shortest paths between transit nodes.
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TN Query

Long-range query algorithm
The shortest path has the form
s – access(s) – access(t) – t

Table look-up for the
(access(s), access(t)) node
pairs.

Remarks

Very fast: 10× 10 table look-ups per long-range query.
Local queries: another method or hierarchical approach.
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Theoretical Results

Practice

Intuitive and practical algorithms, but...
Why do they work well on road networks?
What is a road network (formally)?

Theory [Abraham, Fiat, Goldberg & Werneck ’10]

Define highway dimension (HD).
Good time bounds for transit nodes, highway hierarchies,
and reach algorithms assuming HD is small.
Analysis highlights algorithm similarities.
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Definitions and Theoretical Results

Definitions and assumptions

Constant maximum degree.
Bv,r denotes the set of vertices within distance r from v.
`(P) denotes the length of P.
Assume shortest paths are unique.
h denotes highway dimension.
Network diameter D.

Theoretical Results
Polynomial-time preprocessing.
Query time polynomial in h and log D (“polylog”).
Space overhead factor polynomial in h and log D.
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Highway Dimension Motivation

For a region, there is a small set of nodes such that all sufficiently long
shortest paths out of the region pass a node in the set.
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Highway Dimension Definition

Locally, a small set of vertices hits all long SPs.

Highway dimension (HD) h

∀ r ∈ <, ∀u ∈ V, ∃S ⊆ Bu,4r, |S| ≤ h, such that
∀ v, w ∈ Bu,4r,

if P is an SP with `(P(v, w)) > r and P(v, w) ⊆ Bu,4r,
then P(v, w) ∩ S 6= ∅.
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Shortest Path Covers

All SPs in a range can be hit by a sparse set.

(r, k) Shortest path cover ((r, k)-SPC):
A set C such that

∀ SP P : r < `(P) ≤ 2r ⇒
P∩ C 6= ∅ and
∀u ∈ V, |C∩ Bu,2r| ≤ k

Constants 4 (HD definition) and 2 (SPC definition) are related.
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HD vs. SPC

Theorem
If G has HD h, then ∀ r ∃ an (r, h)-SPC.

Proof:

Show S∗, the smallest set hitting all SPs
P : r < `(P) ≤ 2r, is an (r, h)-SPC.
Suppose |S∗ ∩ Bv,2r| > h.
Consider Bv,4r, it contains a set H with |H| ≤ h that
hits all SPs P : `(P) > r.
H hits all SPs P : r < `(P) ≤ 2r hit by S∗ ∩ Bv,2r.
Replacing S∗ ∩ Bv,2r by H gives a smaller set S∗.

Finding S∗ is NP-hard. Efficient construction?

Andrew V. Goldberg (MSR-SVC) Highway and VC Dimensions 6/30/10 15 / 22



HD vs. SPC

Theorem
If G has HD h, then ∀ r ∃ an (r, h)-SPC.

Proof:

Show S∗, the smallest set hitting all SPs
P : r < `(P) ≤ 2r, is an (r, h)-SPC.
Suppose |S∗ ∩ Bv,2r| > h.
Consider Bv,4r, it contains a set H with |H| ≤ h that
hits all SPs P : `(P) > r.
H hits all SPs P : r < `(P) ≤ 2r hit by S∗ ∩ Bv,2r.
Replacing S∗ ∩ Bv,2r by H gives a smaller set S∗.

Finding S∗ is NP-hard. Efficient construction?

Andrew V. Goldberg (MSR-SVC) Highway and VC Dimensions 6/30/10 15 / 22



Computing Approximate SPCs

Greedy approximation for S∗ gives an O(log n) factor
approximation.
Approximation independent of n?

Theorem
Suppose we have a poly-time, (c log h) approximation algorithm for
hitting set. If G has HD h, then for any r we can construct, in
polynomial time, an (r, O(h log h))-SPC.

Proof: Similar to the previous proof. Maintain a hitting set S. If for
some v, |S∩ Bv,2r| > c log h, compute a hitting set for the SPs in Bv,4r of
size at most c log h and get a smaller hitting set S.

Connection to VC-dimension [Vapnik & Chervonenkis 71]
[Brönnimann & Goodrich 95]: O(hd log(hd)) hitting sets for set systems
of VC-dimension d.
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VC-Dimension

Base set X, collection of subsets R, set system (X,R).
For Y ⊆ X, Y|R = (Y, {Z∩ Y|Z ∈ R}).
R shatters Y if Y|R = 2Y.
(X,R) has VC-dimension d if d is the smallest integer such that no
d + 1 subset of X can be shattered.
A hitting set intersects all sets in R.

Example (points and half-planes)
X is a plane, R is the set of all half-planes, VC-dimension is 3.
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VC-Dimension and Shortest Paths

X is the set of vertices.
R contains the sets of vertices on SPs P : r < `(P) ≤ 2r.
VC-dimension of (X,R) is at most two.

Theorem
[Brönnimann & Goodrich 95]: If h is the optimal hitting set size and d is
VC-dimension, then we can find an O(hd log(hd)) hitting set in
polynomial time.

Corollary
For an HD h graph, we can efficiently compute an O(h log h)-size
hitting set for SPs P : r < `(P) ≤ 2r.
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BG Algorithm Outline

Algorithm has a learning flavor
1 Start with all vertices having weight one.
2 Pick a random weighted set S of size (ch log h).
3 If S is a hitting set halt.
4 Find an SP P that is not covered, double vertex weights on P.
5 Goto 2.

Remarks

The algorithm can be derandomized.
Not the first algorithm for SPC one would think of.
Currently, our best SPC algorithm uses these ideas.
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Work in Progress

Implications and refinement of theory
Practical SPC algorithms for big networks.
Computing HD of real maps.
Alternative HD definitions.
Improved algorithms explicitly based on SPCs.
Other practical applications of SPCs.
Other theoretical applications of HD (e.g., Steiner Tree
construction).

Scientific method
From practice to theory to practice.
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Thank You!

SPA (Shortest Path Algorithms) project page
http://research.microsoft.com/en-us/projects/SPA/
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Questions?

1 Recent Shortest Path Algorithms

2 Transit Node Algorithm

3 Highway Dimension and Shortest Path Covers (SPCs)

4 Computing SPCs

5 VC-Dimension

6 Work in Progress
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