Highway and VC Dimensions: from Practice to Theory and Back

Andrew V. Goldberg

Microsoft Research - Silicon Valley
http://research.microsoft.com/~goldberg/

Joint work with
Ittai Abraham, Daniel Delling, Amos Fiat, and Renato Werneck

Theory vs. Practice

Natural Science

- "Science is divided into natural and unnatural." Vladimir Steklov, mathematician

Theory vs. Practice

Natural Science

- "Science is divided into natural and unnatural." Vladimir Steklov, mathematician
- "No Sir, into social and anti-social." Sergei Platonov, historian

Theory vs. Practice

Natural Science

- "Science is divided into natural and unnatural." Vladimir Steklov, mathematician
- "No Sir, into social and anti-social." Sergei Platonov, historian

Common Ground: Scientific Method

- Make an observation.
- Form a hypothesis or theory.
- Make a prediction.
- Verify by experiment.

Theory vs. Practice

Natural Science

- "Science is divided into natural and unnatural." Vladimir Steklov, mathematician
- "No Sir, into social and anti-social." Sergei Platonov, historian

Common Ground: Scientific Method

- Make an observation.
- Form a hypothesis or theory.
- Make a prediction.
- Verify by experiment.

Useful theory.

Scientific Method and Algorithms

- Current technology, practical problem, previous experience.
- Modeling.
- Algorithm design and analysis.
- Experimental evaluation or practical use.

Scientific Method and Algorithms

- Current technology, practical problem, previous experience.
- Modeling.
- Algorithm design and analysis.
- Experimental evaluation or practical use.

Remarks

- Some algorithms are never implemented.
- Some algorithms are never analyzed.
- Scientific method includes both analysis and experimentation.
- Leads to better algorithms.

Scientific Method and Algorithms

- Current technology, practical problem, previous experience.
- Modeling.
- Algorithm design and analysis.
- Experimental evaluation or practical use.

Remarks

- Some algorithms are never implemented.
- Some algorithms are never analyzed.
- Scientific method includes both analysis and experimentation.
- Leads to better algorithms.

Mathematics of algorithms vs. algorithm engineering vs. algorithm science: algorithm research via the sceintific method.

Outline

(9) Recent Shortest Path Algorithms
(2) Transit Node Algorithm
(3) Highway Dimension and Shortest Path Covers (SPCs)
(4) Computing SPCs
(5) VC-Dimension
(6) Work in Progress

Shortest Paths: Recent Developments

Continent-sized road networks have 10s of millions intersections.
Dijkstra's algorithm: $\approx 5 \mathrm{~s}$

Shortest Paths: Recent Developments

Continent-sized road networks have 10s of millions intersections.
Dijkstra's algorithm: ≈ 5 s

Recent work

- Arc flags [Lauther 04, Köhler et al. 06, Bauer \& Delling 08].
- A^{*} with landmarks [Goldberg \& Harrelson 05].
- Reach [Gutman 04, Goldberg et al. 06].
- Highway hierarchies [Sanders \& Schultes 05].
- Contraction hierarchies [Geisberger et al. 08].
- Transit nodes [Bast et al. 06].
- DIMACS Shortest Paths Implementation Challenge (2005-2006).

Shortest Paths: Recent Developments

Continent-sized road networks have 10s of millions intersections.
Dijkstra's algorithm: ≈ 5 s

Recent work

- Arc flags [Lauther 04, Köhler et al. 06, Bauer \& Delling 08].
- A^{*} with landmarks [Goldberg \& Harrelson 05].
- Reach [Gutman 04, Goldberg et al. 06].
- Highway hierarchies [Sanders \& Schultes 05].
- Contraction hierarchies [Geisberger et al. 08].
- Transit nodes [Bast et al. 06].
- DIMACS Shortest Paths Implementation Challenge (2005-2006).

Greatly improved performance: $<1 \mathrm{~ms}, \approx 0.1 \mathrm{~s}$ on a mobile device. Only a few hundred intersections searched.

Definitions and Model

Input

- Graph $G=(V, E)$ (intersections, road segments), $|V|=n$, $|E|=m$.
- Weight function ℓ (length, transit time, fuel consumption, ...).
- Static problem, G and ℓ incorporate all modeling information.

Definitions and Model

Input

- Graph $G=(V, E)$ (intersections, road segments), $|V|=n$, $|E|=m$.
- Weight function ℓ (length, transit time, fuel consumption, ...).
- Static problem, G and ℓ incorporate all modeling information.

Query (multiple times for the same input network)

- Given origin s and destination t, find optimal path from s to t.
- Exact algorithms help modeling and debugging.

Definitions and Model

Input

- Graph $G=(V, E)$ (intersections, road segments), $|V|=n$, $|E|=m$.
- Weight function ℓ (length, transit time, fuel consumption, ...).
- Static problem, G and ℓ incorporate all modeling information.

Query (multiple times for the same input network)

- Given origin s and destination t, find optimal path from s to t.
- Exact algorithms help modeling and debugging.

Algorithms with preprocessing

- Two phases: practical preprocessing and real-time queries.
- Preprocessing output not much bigger than the input.
- Preprocessing may use more resources than queries.

Transit Node (TN) Algorithm

[Bast et al. 06]

For a region, there is a small set of nodes such that all sufficiently long shortest paths out of the region pass a node in the set.

TN Preprocessing

Basic concepts

- Divide a map into regions (a few thousand).
- For each region, optimal paths to far away places pass through one of a small number of access nodes (≈ 10 on the average).
- The union of access nodes is the set of transit nodes (≈ 10000).

TN Preprocessing

Basic concepts

- Divide a map into regions (a few thousand).
- For each region, optimal paths to far away places pass through one of a small number of access nodes (≈ 10 on the average).
- The union of access nodes is the set of transit nodes (≈ 10000).

Empirical observation: small number of access/transit nodes.

TN Preprocessing

Basic concepts

- Divide a map into regions (a few thousand).
- For each region, optimal paths to far away places pass through one of a small number of access nodes (≈ 10 on the average).
- The union of access nodes is the set of transit nodes (≈ 10000).

Empirical observation: small number of access/transit nodes.

Preprocessing Algorithm

- Find access nodes for every region.
- Connect each vertex to its access nodes.
- Compute all pairs of shortest paths between transit nodes.

TN Query

Long-range query algorithm

- The shortest path has the form $s-\operatorname{access}(s)-\operatorname{access}(t)-t$

TN Query

Long-range query algorithm

- The shortest path has the form $s-\operatorname{access}(s)-\operatorname{access}(t)-t$

TN Query

Long-range query algorithm

- The shortest path has the form $s-\operatorname{access}(s)-\operatorname{access}(t)-t$

TN Query

Long-range query algorithm

- The shortest path has the form $s-\operatorname{access}(s)-\operatorname{access}(t)-t$

TN Query

Long-range query algorithm

- The shortest path has the form $s-\operatorname{access}(s)-\operatorname{access}(t)-t$
- Table look-up for the (access(s), access(t)) node pairs.

Remarks

- Very fast: 10×10 table look-ups per long-range query.
- Local queries: another method or hierarchical approach.

Theoretical Results

Practice

- Intuitive and practical algorithms, but...
- Why do they work well on road networks?
- What is a road network (formally)?

Theoretical Results

Practice

- Intuitive and practical algorithms, but...
- Why do they work well on road networks?
- What is a road network (formally)?

Theory [Abraham, Fiat, Goldberg \& Werneck '10]

- Define highway dimension (HD).
- Good time bounds for transit nodes, highway hierarchies, and reach algorithms assuming HD is small.
- Analysis highlights algorithm similarities.

Definitions and Theoretical Results

Definitions and assumptions

- Constant maximum degree.
- $B_{v, r}$ denotes the set of vertices within distance r from v.
- $\ell(P)$ denotes the length of P.
- Assume shortest paths are unique.
- h denotes highway dimension.
- Network diameter D.

Definitions and Theoretical Results

Definitions and assumptions

- Constant maximum degree.
- $B_{v, r}$ denotes the set of vertices within distance r from v.
- $\ell(P)$ denotes the length of P.
- Assume shortest paths are unique.
- h denotes highway dimension.
- Network diameter D.

Theoretical Results

- Polynomial-time preprocessing.
- Query time polynomial in h and $\log D$ ("polylog").
- Space overhead factor polynomial in h and $\log D$.

Highway Dimension Motivation

For a region, there is a small set of nodes such that all sufficiently long shortest paths out of the region pass a node in the set.

Highway Dimension Definition

Locally, a small set of vertices hits all long SPs.

Highway Dimension Definition

Locally, a small set of vertices hits all long SPs.

Highway dimension (HD) h

$$
\forall \quad r \in \Re, \forall u \in V, \exists S \subseteq B_{u, 4 r},|S| \leq h, \text { such that }
$$

$$
\forall v, w \in B_{u, 4 r},
$$

if P is an SP with $\ell(P(v, w))>r$ and $P(v, w) \subseteq B_{u, 4 r}$, then $P(v, w) \cap S \neq \varnothing$.

Shortest Path Covers

All SPs in a range can be hit by a sparse set.
(r, k) Shortest path cover ($(r, k)-$ SPC $)$:
A set C such that

$$
\begin{aligned}
& \forall \quad \mathrm{SP} P: r<\ell(P) \leq 2 r \Rightarrow \\
& \quad P \cap C \neq \varnothing \text { and } \\
& \forall u \in V,\left|C \cap B_{u, 2 r}\right| \leq k
\end{aligned}
$$

Shortest Path Covers

All SPs in a range can be hit by a sparse set.
(r, k) Shortest path cover (($r, k)$-SPC):
A set C such that

$$
\begin{aligned}
& \forall \quad \mathrm{SP} P: r<\ell(P) \leq 2 r \Rightarrow \\
& \quad P \cap C \neq \varnothing \text { and } \\
& \quad \forall u \in V,\left|C \cap B_{u, 2 r}\right| \leq k
\end{aligned}
$$

Constants 4 (HD definition) and 2 (SPC definition) are related.

HD vs. SPC

Theorem
 If G has HD h, then $\forall r \exists$ an $(r, h)-S P C$.

Proof:

- Show S^{*}, the smallest set hitting all SPs $P: r<\ell(P) \leq 2 r$, is an (r, h)-SPC.
- Suppose $\left|S^{*} \cap B_{v, 2 r}\right|>h$.
- Consider $B_{v, 4 t}$, it contains a set H with $|H| \leq h$ that hits all SPs $P: \ell(P)>r$.
- H hits all SPs $P: r<\ell(P) \leq 2 r$ hit by $S^{*} \cap B_{v, 2 r}$.
- Replacing $S^{*} \cap B_{v, 2 r}$ by H gives a smaller set S^{*}.

HD vs. SPC

```
Theorem
If \(G\) has \(H D h\), then \(\forall r \exists\) an \((r, h)-S P C\).
```


Proof:

- Show S^{*}, the smallest set hitting all SPs $P: r<\ell(P) \leq 2 r$, is an (r, h)-SPC.
- Suppose $\left|S^{*} \cap B_{v, 2 r}\right|>h$.
- Consider $B_{v, 4 t}$, it contains a set H with $|H| \leq h$ that hits all SPs $P: \ell(P)>r$.
- H hits all SPs $P: r<\ell(P) \leq 2 r$ hit by $S^{*} \cap B_{v, 2 r}$.
- Replacing $S^{*} \cap B_{v, 2 r}$ by H gives a smaller set S^{*}.

Finding S^{*} is NP-hard. Efficient construction?

Computing Approximate SPCs

- Greedy approximation for S^{*} gives an $O(\log n)$ factor approximation.
- Approximation independent of n ?

Computing Approximate SPCs

- Greedy approximation for S^{*} gives an $O(\log n)$ factor approximation.
- Approximation independent of n ?

Theorem

Suppose we have a poly-time, ($c \log h$) approximation algorithm for hitting set. If G has $H D h$, then for any r we can construct, in polynomial time, an $(r, O(h \log h))-S P C$.

Proof: Similar to the previous proof. Maintain a hitting set S. If for some $v,\left|S \cap B_{v, 2 r}\right|>c \log h$, compute a hitting set for the SPs in $B_{v, 4 r}$ of size at most $c \log h$ and get a smaller hitting set S.

Computing Approximate SPCs

- Greedy approximation for S^{*} gives an $O(\log n)$ factor approximation.
- Approximation independent of n ?

Theorem

Suppose we have a poly-time, ($c \log h$) approximation algorithm for hitting set. If G has $H D h$, then for any r we can construct, in polynomial time, an $(r, O(h \log h))-S P C$.

Proof: Similar to the previous proof. Maintain a hitting set S. If for some $v,\left|S \cap B_{v, 2 r}\right|>c \log h$, compute a hitting set for the SPs in $B_{v, 4 r}$ of size at most $c \log h$ and get a smaller hitting set S.
Connection to VC-dimension [Vapnik \& Chervonenkis 71]
[Brönnimann \& Goodrich 95]: $O(h d \log (h d))$ hitting sets for set systems of VC-dimension d.

VC-Dimension

- Base set X, collection of subsets \mathcal{R}, set system (X, \mathcal{R}).
- For $Y \subseteq X, Y_{\mid \mathcal{R}}=(Y,\{Z \cap Y \mid Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{\mid \mathcal{R}}=2^{Y}$.
- (X, \mathcal{R}) has VC-dimension d if d is the smallest integer such that no $d+1$ subset of X can be shattered.
- A hitting set intersects all sets in \mathcal{R}.

VC-Dimension

- Base set X, collection of subsets \mathcal{R}, set system (X, \mathcal{R}).
- For $Y \subseteq X, Y_{\mid \mathcal{R}}=(Y,\{Z \cap Y \mid Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{\mid \mathcal{R}}=2^{Y}$.
- (X, \mathcal{R}) has VC-dimension d if d is the smallest integer such that no $d+1$ subset of X can be shattered.
- A hitting set intersects all sets in \mathcal{R}.

Example (points and half-planes)

X is a plane, \mathcal{R} is the set of all half-planes, VC-dimension is 3 .

VC-Dimension

- Base set X, collection of subsets \mathcal{R}, set system (X, \mathcal{R}).
- For $Y \subseteq X, Y_{\mid \mathcal{R}}=(Y,\{Z \cap Y \mid Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{\mid \mathcal{R}}=2^{Y}$.
- (X, \mathcal{R}) has VC-dimension d if d is the smallest integer such that no $d+1$ subset of X can be shattered.
- A hitting set intersects all sets in \mathcal{R}.

Example (points and half-planes)

X is a plane, \mathcal{R} is the set of all half-planes, VC-dimension is 3 .

VC-Dimension

- Base set X, collection of subsets \mathcal{R}, set system (X, \mathcal{R}).
- For $Y \subseteq X, Y_{\mid \mathcal{R}}=(Y,\{Z \cap Y \mid Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{\mid \mathcal{R}}=2^{Y}$.
- (X, \mathcal{R}) has VC-dimension d if d is the smallest integer such that no $d+1$ subset of X can be shattered.
- A hitting set intersects all sets in \mathcal{R}.

Example (points and half-planes)

X is a plane, \mathcal{R} is the set of all half-planes, VC-dimension is 3 .

VC-Dimension

- Base set X, collection of subsets \mathcal{R}, set system (X, \mathcal{R}).
- For $Y \subseteq X, Y_{\mid \mathcal{R}}=(Y,\{Z \cap Y \mid Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{\mid \mathcal{R}}=2^{Y}$.
- (X, \mathcal{R}) has VC-dimension d if d is the smallest integer such that no $d+1$ subset of X can be shattered.
- A hitting set intersects all sets in \mathcal{R}.

Example (points and half-planes)

X is a plane, \mathcal{R} is the set of all half-planes, VC-dimension is 3 .

VC-Dimension

- Base set X, collection of subsets \mathcal{R}, set system (X, \mathcal{R}).
- For $Y \subseteq X, Y_{\mid \mathcal{R}}=(Y,\{Z \cap Y \mid Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{\mid \mathcal{R}}=2^{Y}$.
- (X, \mathcal{R}) has VC-dimension d if d is the smallest integer such that no $d+1$ subset of X can be shattered.
- A hitting set intersects all sets in \mathcal{R}.

Example (points and half-planes)

X is a plane, \mathcal{R} is the set of all half-planes, VC-dimension is 3 .

VC-Dimension

- Base set X, collection of subsets \mathcal{R}, set system (X, \mathcal{R}).
- For $Y \subseteq X, Y_{\mid \mathcal{R}}=(Y,\{Z \cap Y \mid Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{\mid \mathcal{R}}=2^{Y}$.
- (X, \mathcal{R}) has VC-dimension d if d is the smallest integer such that no $d+1$ subset of X can be shattered.
- A hitting set intersects all sets in \mathcal{R}.

Example (points and half-planes)

X is a plane, \mathcal{R} is the set of all half-planes, VC-dimension is 3 .

VC-Dimension and Shortest Paths

- X is the set of vertices.
- \mathcal{R} contains the sets of vertices on SPs $P: r<\ell(P) \leq 2 r$.
- VC-dimension of (X, \mathcal{R}) is at most two.

VC-Dimension and Shortest Paths

- X is the set of vertices.
- \mathcal{R} contains the sets of vertices on SPs $P: r<\ell(P) \leq 2 r$.
- VC-dimension of (X, \mathcal{R}) is at most two.

Theorem

[Brönnimann \& Goodrich 95]: If h is the optimal hitting set size and d is $V C$-dimension, then we can find an $O(h d \log (h d))$ hitting set in polynomial time.

Corollary

For an HD h graph, we can efficiently compute an $O(h \log h)$-size hitting set for SPs P : $r<\ell(P) \leq 2 r$.

BG Algorithm Outline

Algorithm has a learning flavor

(1) Start with all vertices having weight one.
(2) Pick a random weighted set S of size $(c h \log h)$.
(3) If S is a hitting set halt.
(4) Find an SP P that is not covered, double vertex weights on P.
(5) Goto 2.

BG Algorithm Outline

Algorithm has a learning flavor

(1) Start with all vertices having weight one.
(2) Pick a random weighted set S of size $(c h \log h)$.
(3) If S is a hitting set halt.
(Find an SP P that is not covered, double vertex weights on P.
(0) Goto 2.

Remarks

- The algorithm can be derandomized.
- Not the first algorithm for SPC one would think of.
- Currently, our best SPC algorithm uses these ideas.

Work in Progress

Implications and refinement of theory

- Practical SPC algorithms for big networks.
- Computing HD of real maps.
- Alternative HD definitions.
- Improved algorithms explicitly based on SPCs.
- Other practical applications of SPCs.
- Other theoretical applications of HD (e.g., Steiner Tree construction).

Scientific method
From practice to theory to practice.

Thank You!

SPA (Shortest Path Algorithms) project page http://research.microsoft.com/en-us/projects/SPA/

Questions?

(1) Recent Shortest Path Algorithms
(2) Transit Node Algorithm
(3) Highway Dimension and Shortest Path Covers (SPCs)
(4) Computing SPCs
(5) VC-Dimension
(6) Work in Progress

