Highway and VC Dimensions: from Practice to Theory and Back

Andrew V. Goldberg

Microsoft Research – Silicon Valley http://research.microsoft.com/~goldberg/

Joint work with Ittai Abraham, Daniel Delling, Amos Fiat, and Renato Werneck

Andrew V. Goldberg (MSR-SVC)

Highway and VC Dimensions

6/30/10 1 / 22

Natural Science

• "Science is divided into natural and unnatural." Vladimir Steklov, *mathematician*

Natural Science

- "Science is divided into natural and unnatural." Vladimir Steklov, mathematician
- "No Sir, into social and anti-social." Sergei Platonov, *historian*

Natural Science

- "Science is divided into natural and unnatural." Vladimir Steklov, *mathematician*
- "No Sir, into social and anti-social." Sergei Platonov, *historian*

Common Ground: Scientific Method

- Make an observation.
- Form a hypothesis or theory.
- Make a prediction.
- Verify by experiment.

Natural Science

- "Science is divided into natural and unnatural." Vladimir Steklov, *mathematician*
- "No Sir, into social and anti-social." Sergei Platonov, *historian*

Common Ground: Scientific Method

- Make an observation.
- Form a hypothesis or theory.
- Make a prediction.
- Verify by experiment.

Useful theory.

Andrew V. Goldberg (MSR-SVC)

Scientific Method and Algorithms

- Current technology, practical problem, previous experience.
- Modeling.
- Algorithm design and analysis.
- Experimental evaluation or practical use.

Scientific Method and Algorithms

- Current technology, practical problem, previous experience.
- Modeling.
- Algorithm design and analysis.
- Experimental evaluation or practical use.

Remarks

- Some algorithms are never implemented.
- Some algorithms are never analyzed.
- Scientific method includes both analysis and experimentation.
- Leads to better algorithms.

Scientific Method and Algorithms

- Current technology, practical problem, previous experience.
- Modeling.
- Algorithm design and analysis.
- Experimental evaluation or practical use.

Remarks

- Some algorithms are never implemented.
- Some algorithms are never analyzed.
- Scientific method includes both analysis and experimentation.
- Leads to better algorithms.

Mathematics of algorithms vs. algorithm engineering vs. algorithm science: algorithm research via the sceintific method.

Andrew V. Goldberg (MSR-SVC)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

- 2 Transit Node Algorithm
- Bighway Dimension and Shortest Path Covers (SPCs)
- 4 Computing SPCs
- 5 VC-Dimension
- 6 Work in Progress

Shortest Paths: Recent Developments

Continent-sized road networks have 10s of millions intersections. Dijkstra's algorithm: $\approx 5 \text{ s}$

4 A N

Shortest Paths: Recent Developments

Continent-sized road networks have 10s of millions intersections. Dijkstra's algorithm: $\approx 5 \text{ s}$

Recent work

- Arc flags [Lauther 04, Köhler et al. 06, Bauer & Delling 08].
- A* with landmarks [Goldberg & Harrelson 05].
- Reach [Gutman 04, Goldberg et al. 06].
- Highway hierarchies [Sanders & Schultes 05].
- Contraction hierarchies [Geisberger et al. 08].
- Transit nodes [Bast et al. 06].
- DIMACS Shortest Paths Implementation Challenge (2005–2006).

A (10) A (10)

Shortest Paths: Recent Developments

Continent-sized road networks have 10s of millions intersections. Dijkstra's algorithm: $\approx 5 \text{ s}$

Recent work

- Arc flags [Lauther 04, Köhler et al. 06, Bauer & Delling 08].
- A* with landmarks [Goldberg & Harrelson 05].
- Reach [Gutman 04, Goldberg et al. 06].
- Highway hierarchies [Sanders & Schultes 05].
- Contraction hierarchies [Geisberger et al. 08].
- Transit nodes [Bast et al. 06].
- DIMACS Shortest Paths Implementation Challenge (2005–2006).

Greatly improved performance: < 1 ms, $\approx 0.1 \text{ s on a mobile device.}$ Only a few hundred intersections searched.

Andrew V. Goldberg (MSR-SVC)

Highway and VC Dimensions

6/30/10 5 / 22

Definitions and Model

Input

- Graph G = (V, E) (intersections, road segments), |V| = n, |E| = m.
- Weight function ℓ (length, transit time, fuel consumption, ...).
- Static problem, G and ℓ incorporate all modeling information.

Definitions and Model

Input

- Graph G = (V, E) (intersections, road segments), |V| = n, |E| = m.
- Weight function ℓ (length, transit time, fuel consumption, ...).
- Static problem, G and ℓ incorporate all modeling information.
- Query (multiple times for the same input network)
 - Given origin s and destination t, find optimal path from s to t.
 - Exact algorithms help modeling and debugging.

Definitions and Model

Input

- Graph G = (V, E) (intersections, road segments), |V| = n, |E| = m.
- Weight function ℓ (length, transit time, fuel consumption, ...).
- Static problem, G and ℓ incorporate all modeling information.

Query (multiple times for the same input network)

- Given origin s and destination t, find optimal path from s to t.
- Exact algorithms help modeling and debugging.

Algorithms with preprocessing

- Two phases: practical preprocessing and real-time queries.
- Preprocessing output not much bigger than the input.
- Preprocessing may use more resources than queries. - 31

< 4 →

Transit Node (TN) Algorithm

[Bast et al. 06]

For a region, there is a small set of nodes such that all sufficiently long shortest paths out of the region pass a node in the set.

TN Preprocessing

Basic concepts

- Divide a map into regions (a few thousand).
- For each region, optimal paths to far away places pass through one of a small number of access nodes (≈ 10 on the average).
- The union of access nodes is the set of transit nodes ($\approx 10\,000$).

TN Preprocessing

Basic concepts

- Divide a map into regions (a few thousand).
- For each region, optimal paths to far away places pass through one of a small number of access nodes (≈ 10 on the average).
- The union of access nodes is the set of transit nodes ($\approx 10\,000$).

Empirical observation: small number of access/transit nodes.

TN Preprocessing

Basic concepts

- Divide a map into regions (a few thousand).
- For each region, optimal paths to far away places pass through one of a small number of access nodes (≈ 10 on the average).
- The union of access nodes is the set of transit nodes ($\approx 10\,000$).

Empirical observation: small number of access/transit nodes.

Preprocessing Algorithm

- Find access nodes for every region.
- Connect each vertex to its access nodes.
- Compute all pairs of shortest paths between transit nodes.

Long-range query algorithm The shortest path has the form s - access(s) - access(t) - t

- B

Long-range query algorithm

• The shortest path has the form s - access(s) - access(t) - t

Long-range query algorithm

- The shortest path has the form s - access(s) - access(t) - t
- Table look-up for the (access(s), access(t)) node pairs.

4 D K 4 B K 4 B K 4

Remarks

- Very fast: 10×10 table look-ups per long-range query.
- Local queries: another method or hierarchical approach.

Theoretical Results

Practice

- Intuitive and practical algorithms, but...
- Why do they work well on road networks?
- What is a road network (formally)?

Theoretical Results

Practice

- Intuitive and practical algorithms, but...
- Why do they work well on road networks?
- What is a road network (formally)?

Theory [Abraham, Fiat, Goldberg & Werneck '10]

- Define highway dimension (HD).
- Good time bounds for transit nodes, highway hierarchies, and reach algorithms assuming HD is small.
- Analysis highlights algorithm similarities.

Definitions and Theoretical Results

Definitions and assumptions

- Constant maximum degree.
- $B_{v,r}$ denotes the set of vertices within distance r from v.
- $\ell(P)$ denotes the length of *P*.
- Assume shortest paths are unique.
- h denotes highway dimension.
- Network diameter *D*.

Definitions and Theoretical Results

Definitions and assumptions

- Constant maximum degree.
- $B_{v,r}$ denotes the set of vertices within distance r from v.
- $\ell(P)$ denotes the length of *P*.
- Assume shortest paths are unique.
- h denotes highway dimension.
- Network diameter D.

Theoretical Results

- Polynomial-time preprocessing.
- Query time polynomial in h and $\log D$ ("polylog").
- Space overhead factor polynomial in *h* and log *D*.

4 **A** N A **B** N A **B** N

Highway Dimension Motivation

For a region, there is a small set of nodes such that all sufficiently long shortest paths out of the region pass a node in the set.

				_	2.12
Andrew V. Goldberg (MSR-SVC)	Highway and VC Dimensions		6/30/10)	12/22

Highway Dimension Definition

Locally, a small set of vertices hits all long SPs.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Highway Dimension Definition

Highway dimension (HD) h

 $\begin{array}{ll} \forall \quad r \in \Re, \forall u \in V, \exists S \subseteq B_{u,4r}, |S| \leq h, \text{ such that} \\ \forall \quad v, w \in B_{u,4r}, \\ \quad \text{ if } P \text{ is an SP with } \ell(P(v,w)) > r \text{ and } P(v,w) \subseteq B_{u,4r}, \\ \quad \text{ then } P(v,w) \cap S \neq \emptyset. \end{array}$

Andrew V. Goldberg (MSR-SVC)

6/30/10 13 / 22

Shortest Path Covers

All SPs in a range can be hit by a sparse set.

(r,k) Shortest path cover ((r,k)-SPC): A set *C* such that

$$\forall \quad \text{SP } P: \ r < \ell(P) \le 2r \Rightarrow$$
$$P \cap C \neq \emptyset \quad \text{and}$$
$$\forall u \in V, \ |C \cap B_{u,2r}| \le k$$

Shortest Path Covers

All SPs in a range can be hit by a sparse set.

(*r*, *k*) Shortest path cover ((*r*, *k*)-SPC): A set *C* such that $\forall SP P : r < \ell(P) \le 2r \Rightarrow$ $P \cap C \neq \emptyset$ and $\forall u \in V, |C \cap B_{u,2r}| \le k$

Constants 4 (HD definition) and 2 (SPC definition) are related.

Andrew V. Goldberg (MSR-SVC)

Highway and VC Dimensions

6/30/10 14 / 22

A .

HD vs. SPC

Theorem

If *G* has HD *h*, then $\forall r \exists an (r, h)$ -SPC.

Proof:

- Show S^* , the smallest set hitting all SPs $P: r < \ell(P) \le 2r$, is an (r, h)-SPC.
- Suppose $|S^* \cap B_{v,2r}| > h$.
- Consider $B_{v,4r}$, it contains a set H with $|H| \le h$ that hits all SPs $P : \ell(P) > r$.
- *H* hits all SPs $P: r < \ell(P) \le 2r$ hit by $S^* \cap B_{v,2r}$.
- Replacing $S^* \cap B_{v,2r}$ by *H* gives a smaller set S^* .

HD vs. SPC

Theorem

If *G* has HD *h*, then $\forall r \exists an (r, h)$ -SPC.

Proof:

- Show S^* , the smallest set hitting all SPs $P: r < \ell(P) \le 2r$, is an (r, h)-SPC.
- Suppose $|S^* \cap B_{v,2r}| > h$.
- Consider $B_{v,4r}$, it contains a set H with $|H| \le h$ that hits all SPs $P : \ell(P) > r$.
- *H* hits all SPs $P: r < \ell(P) \le 2r$ hit by $S^* \cap B_{v,2r}$.
- Replacing $S^* \cap B_{v,2r}$ by *H* gives a smaller set S^* .

Finding S* is NP-hard. Efficient construction?

Computing Approximate SPCs

- Greedy approximation for *S*^{*} gives an *O*(log *n*) factor approximation.
- Approximation independent of *n*?

A (10) A (10)

Computing Approximate SPCs

- Greedy approximation for *S*^{*} gives an *O*(log *n*) factor approximation.
- Approximation independent of *n*?

Theorem

Suppose we have a poly-time, $(c \log h)$ approximation algorithm for hitting set. If *G* has HD *h*, then for any *r* we can construct, in polynomial time, an $(r, O(h \log h))$ -SPC.

Proof: Similar to the previous proof. Maintain a hitting set *S*. If for some v, $|S \cap B_{v,2r}| > c \log h$, compute a hitting set for the SPs in $B_{v,4r}$ of size at most $c \log h$ and get a smaller hitting set *S*.

Computing Approximate SPCs

- Greedy approximation for *S*^{*} gives an *O*(log *n*) factor approximation.
- Approximation independent of *n*?

Theorem

Suppose we have a poly-time, $(c \log h)$ approximation algorithm for hitting set. If *G* has HD *h*, then for any *r* we can construct, in polynomial time, an $(r, O(h \log h))$ -SPC.

Proof: Similar to the previous proof. Maintain a hitting set *S*. If for some v, $|S \cap B_{v,2r}| > c \log h$, compute a hitting set for the SPs in $B_{v,4r}$ of size at most $c \log h$ and get a smaller hitting set *S*.

Connection to VC-dimension [Vapnik & Chervonenkis 71] [Brönnimann & Goodrich 95]: $O(hd \log(hd))$ hitting sets for set systems of VC-dimension *d*.

- Base set X, collection of subsets \mathcal{R} , set system (X, \mathcal{R}) .
- For $Y \subseteq X$, $Y_{|\mathcal{R}} = (Y, \{Z \cap Y | Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{|\mathcal{R}} = 2^{Y}$.
- (X, \mathcal{R}) has VC-dimension *d* if *d* is the smallest integer such that no d + 1 subset of *X* can be shattered.
- A hitting set intersects all sets in \mathcal{R} .

向下 イヨト イヨト

- Base set *X*, collection of subsets \mathcal{R} , set system (*X*, \mathcal{R}).
- For $Y \subseteq X$, $Y_{|\mathcal{R}} = (Y, \{Z \cap Y | Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{|\mathcal{R}} = 2^{Y}$.
- (X, \mathcal{R}) has VC-dimension *d* if *d* is the smallest integer such that no d+1 subset of *X* can be shattered.
- A hitting set intersects all sets in \mathcal{R} .

Example (points and half-planes)

X is a plane, \mathcal{R} is the set of all half-planes, VC-dimension is 3.

Andrew V. Goldberg (MSR-SVC)

- Base set *X*, collection of subsets \mathcal{R} , set system (*X*, \mathcal{R}).
- For $Y \subseteq X$, $Y_{|\mathcal{R}} = (Y, \{Z \cap Y | Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{|\mathcal{R}} = 2^{Y}$.
- (X, \mathcal{R}) has VC-dimension *d* if *d* is the smallest integer such that no d+1 subset of *X* can be shattered.
- A hitting set intersects all sets in \mathcal{R} .

Example (points and half-planes)

- Base set *X*, collection of subsets \mathcal{R} , set system (*X*, \mathcal{R}).
- For $Y \subseteq X$, $Y_{|\mathcal{R}} = (Y, \{Z \cap Y | Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{|\mathcal{R}} = 2^{Y}$.
- (X, \mathcal{R}) has VC-dimension *d* if *d* is the smallest integer such that no d+1 subset of *X* can be shattered.
- A hitting set intersects all sets in R.

Example (points and half-planes)

- Base set X, collection of subsets \mathcal{R} , set system (X, \mathcal{R}) .
- For $Y \subseteq X$, $Y_{|\mathcal{R}} = (Y, \{Z \cap Y | Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{|\mathcal{R}} = 2^{Y}$.
- (X, \mathcal{R}) has VC-dimension *d* if *d* is the smallest integer such that no d+1 subset of *X* can be shattered.
- A hitting set intersects all sets in \mathcal{R} .

Example (points and half-planes)

- Base set *X*, collection of subsets \mathcal{R} , set system (*X*, \mathcal{R}).
- For $Y \subseteq X$, $Y_{|\mathcal{R}} = (Y, \{Z \cap Y | Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{|\mathcal{R}} = 2^{Y}$.
- (X, \mathcal{R}) has VC-dimension *d* if *d* is the smallest integer such that no d+1 subset of *X* can be shattered.
- A hitting set intersects all sets in \mathcal{R} .

Example (points and half-planes)

- Base set *X*, collection of subsets \mathcal{R} , set system (*X*, \mathcal{R}).
- For $Y \subseteq X$, $Y_{|\mathcal{R}} = (Y, \{Z \cap Y | Z \in \mathcal{R}\})$.
- \mathcal{R} shatters Y if $Y_{|\mathcal{R}} = 2^{Y}$.
- (X, \mathcal{R}) has VC-dimension *d* if *d* is the smallest integer such that no d+1 subset of *X* can be shattered.
- A hitting set intersects all sets in \mathcal{R} .

Example (points and half-planes)

VC-Dimension and Shortest Paths

- *X* is the set of vertices.
- \mathcal{R} contains the sets of vertices on SPs P : $r < \ell(P) \le 2r$.
- VC-dimension of (X, \mathcal{R}) is at most two.

VC-Dimension and Shortest Paths

- *X* is the set of vertices.
- \mathcal{R} contains the sets of vertices on SPs $P: r < \ell(P) \leq 2r$.
- VC-dimension of (X, \mathcal{R}) is at most two.

Theorem

[Brönnimann & Goodrich 95]: If h is the optimal hitting set size and d is VC-dimension, then we can find an $O(hd \log(hd))$ hitting set in polynomial time.

Corollary

For an HD h graph, we can efficiently compute an $O(h \log h)$ -size hitting set for SPs $P: r < \ell(P) \le 2r$.

Andrew V. Goldberg (MSR-SVC)

6/30/10 18 / 22

ъ

BG Algorithm Outline

Algorithm has a learning flavor

- Start with all vertices having weight one.
- 2 Pick a random weighted set *S* of size $(ch \log h)$.
- If S is a hitting set halt.
- Find an SP P that is not covered, double vertex weights on P.
- Goto 2.

BG Algorithm Outline

Algorithm has a learning flavor

- Start with all vertices having weight one.
- 2 Pick a random weighted set *S* of size $(ch \log h)$.
- If S is a hitting set halt.
- Find an SP P that is not covered, double vertex weights on P.
- Goto 2.

Remarks

- The algorithm can be derandomized.
- Not the first algorithm for SPC one would think of.
- Currently, our best SPC algorithm uses these ideas.

Work in Progress

Implications and refinement of theory

- Practical SPC algorithms for big networks.
- Computing HD of real maps.
- Alternative HD definitions.
- Improved algorithms explicitly based on SPCs.
- Other practical applications of SPCs.
- Other theoretical applications of HD (e.g., Steiner Tree construction).

Scientific method From practice to theory to practice.

6/30/10 20 / 22

SPA (Shortest Path Algorithms) project page http://research.microsoft.com/en-us/projects/SPA/

Questions?

- 2 Transit Node Algorithm
- Bighway Dimension and Shortest Path Covers (SPCs)
- 4 Computing SPCs
- 5 VC-Dimension
- 6 Work in Progress