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Paths to proving consistency

We consider the question of proving consistency of Peano arithmetic PA
by means formalizable in PA.

Several paths converge at this point:

1. Historical, via Hilbert’s Program and Gödel’s Incompleteness.

2. Foundational, whether tools formalizable in a theory T are
sufficient for establishing consistency of T .

3. Mathematical, whether the arithmetized consistency Con(T ) is a
fair representation of mathematical consistency of T .

4. Constructive, BHK semantics, Gödel’s S4, the Logic of Proofs, and
tracking witnesses in arithmetic reasoning.
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Hilbert’s consistency program

The goal of Hilbert’s consistency program was to give “finitary” proofs
that there can be no derivation of a contradiction in mathematical
theories. For Hilbert, the domain of contentual number theory are
numerals such as

|, ||, |||, ||||, . . .

A finitary general proposition is “a hypothetical judgment that comes
to assert something when a numeral is given” (Hilbert, 1928)

For Hilbert, the statement of consistency is of such a general form: for a
given sequence of formulas S, S is not a derivation of a contradiction.
Within this talk, we will call this statement Hilbert consistency.

This Hilbert’s approach hinted at formalizing the consistency property as
an arithmetical scheme with a numeral parameter.
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Disclaimer

Despite this mentioning of Hilbert’s consistency program, in this work,
we do not study Hilbert’s finitism (which has not even been
definitively described) but rather focus on the class of proofs

by means formalizable in PA.
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G2 and Formalization Principle

Formal derivations are finite sequences of formulas. Gödel’s
arithmetization numerically encodes those derivations and then uses
numeric quantifiers to represent universal properties of derivations,
including the consistency formula Con(T ),

∀x “x is not a code of a proof of a contradiction in T .”

By Gödel’s Second Incompleteness Theorem, G2, PA, if consistent, does
not prove Con(PA).

To connect G2 to the real question of (un)provability of PA-consistency,
one has to rely on Formalization Principle, FP,

any finitary reasoning may be formalized as a derivation in PA.
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Gödel and Hilbert vs. von Neumann on FP

In the principal G2 paper, “On formally undecidable propositions . . .” of
1931, speaking of G2, Gödel directly challenges FP:

... it is conceivable that there exist finitary proofs that cannot
be expressed in the formalism of [our basic system].

Hilbert has rejected FP is strong words.

Von Neumann, however, was an active promoter of FP and of reading
arithmetical consistency formulas like Con(PA) as contentual consistency
statements, which we call von Neumann consistency.

Von Neumann’s viewpoint appeared to prevail in the public opinion, de
facto in the form of the following Strong Formalization Principle.
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Strong Formalization Principle, SFP

Any reasoning by means of PA may be formalized as a derivation in PA

SFP is more general than FP, since most authors appear to agree that
finitary reasoning tools are formalizable in PA. Therefore, Gödel’s and
Hilbert’s reservations concerning FP automatically translate to similar
reservations concerning SFP.

SFP is needed to connect G2 with the popular opinion that methods
formalizable in PA cannot prove consistency of PA: without SFP, such
a conclusion is not warranted.
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Mathematical consistency of PA vs. Con(PA)

By construction, Con(PA) holds in the standard model of arithmetic iff
PA is consistent. However, since we are interested in provability of this
formula in PA, we have to analyze validity of Con(PA) in all models of
PA, most of them nonstandard.

In a given nonstandard model, the quantifier “for all x” spills over to
nonstandard/infinite numbers, and hence Con(PA) states consistency
of both standard and nonstandard proof codes. This is stronger than
mathematical consistency of PA which speaks exclusively about sequences
S of formulas and such sequences have only standard integer codes.

Mathematically, by G2, PA does not prove Con(PA) hence there are
models of PA with inconsistent proofs. However, all such “bad” proofs
turned out to be infinite/nonstandard, hence G2 does not appear to
be about real PA-derivations which are all finite and which Hilbert’s
consistency program has been all about.
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Con(PA) is unprovable because of a technicality?

Arithmetization and consequent factoring the informal universal quantifier
“any finite sequence S”

into the language of PA, thereby making it an internalized quantifier,
“any number x,”

appear to distort the foundational picture and make consistency
unprovable for a seemingly nonessential reason: the language of PA is too
weak to sort out fake codes.

In this respect, a better arithmetical presentation of consistency of PA is
offered by a scheme with a numeral parameter n, ConS(PA):

“a PA-proof with code n does not contain 0=1,”

a Hilbertian “hypothetical judgment when a numeral n is given” – rather
than as a Π1-formula Con(PA).
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Arithmetical schemes are necessary

We argue that arithmetical schemes not reducible to formulas should be
included into proof theoretical considerations. For example, the intuition
“any principle of PA is provable by means formalizable in PA” is not
supported by the existing toolkit of arithmetical formalizations.

Consider the Induction Principle: for each formula ϕ,
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x + 1))→ ∀xϕ(x).

There is no single formula IND which logically implies all Ind(ϕ)’s and is
provable in PA. O/w, IND and all Ind(ϕ)’s were derivable in a finite
fragment of PA which is impossible (PA is not finitely axiomatizable).

So, the arithmetical representation of Induction Principle is a scheme
{Ind(ϕ) | ϕ is an arithmetical formula}.

The same holds for Reflection Principle, Explicit Reflection Principle,
Σ1-Completeness, etc.: they are all represented by schemes rather than
by single formulas and widely used in proof theory.

Sergei Artemov The Provability of Consistency



What counts as a proof of a scheme?

Näıvely, a scheme is provable iff each of its instances is provable.
However, this does not automatically extend to provability by means
formalizable in PA. Otherwise, any true Π1-sentence ∀xS(x) would be,
counterintuitively, PA-provable as a scheme:

{S(n) | n = 0, 1, 2, . . .}.
However, the generic justification of this is not formalizable in PA.

For the consistency proof, we apply an intuitively safe two-stage approach
for proving a scheme S(n) by means formalizable in PA:

i) find a mathematical proof of S(n) as Hilbert’s “hypothetical
judgment when a numeral n is given”;

ii) step-by-step formalize (i) in PA.
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Counterexample to SFP with schemes:

It is assumed that each arithmetical formula ψ expresses a contentual
property of natural numbers ‘ψ.’

Induction Principle Ind(ϕ) is the scheme
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x + 1))→ ∀xϕ(x).

Obviously, Ind(ϕ) is provable by means of PA. Indeed, given ϕ, assume
‘ϕ(0)’ and ‘∀x(ϕ(x)→ ϕ(x + 1))’. By induction, conclude ‘∀xϕ(x)’.

A straightforward formalization of this proof in PA produces an obvious
primitive recursive term p(x) such that

PA ` ∀x“p(x) is a proof of Ind(x)”.
Both conditions (i) and (ii) are met. Therefore, Induction Principle, as a
scheme, is provable by means formalizable in PA, but, as it was shown
earlier, cannot be proved in PA as a single formula.
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How to prove Hilbert consistency of PA by means of PA.

Consider consistency in its original Hilbert form:

“no sequence of formulas S is a derivation of a contradiction.”

Our strategy: find a way to reason about real PA-derivations S as
combinatorial objects and avoid arithmetization.

Once we have decided to avoid arithmetization, finitary mathematical
proofs of Hilbert consistency readily suggest themselves. We are
presenting one below.

Sergei Artemov The Provability of Consistency



Partial truth definitions in PA

In metamathematics of the first-order arithmetic, there is a well-known
construction called partial truth definitions. Namely, for each
n = 0, 1, 2, . . . we build, in a primitive recursive way, a Σn+1 formula

Trn(x , y),

called truth definition for Σn formulas, which satisfies natural properties
of a truth predicate.

Intuitively, when ϕ is a Σn-formula and y is a sequence encoding values of
the parameters in ϕ then Trn(pϕq, y) defines the truth value of ϕ on y .
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Partial truth definitions in PA

Proposition 1.
I Trn(pϕq, y) satisfies the usual properties of truth with respect to

boolean connectives, quantifiers, and rule Modus Ponens for each
ϕ ∈ Σn, and these properties are derivable using Σn+1 induction.

I PA naturally proves Tarksi’s condition for any Σn-formula ϕ:
Trn(pϕq, y) ≡ ϕ(y).

In particular, ¬Trn(p0=1q, y) is naturally provable.
I Trn(pAq, y) is provable for any axiom A of PA of depth ≤ n.

Note that all the proofs in Proposition 1 are rigorous contentual
arguments w/o any metamathematical assumptions about PA. The
formal language of PA is used here just for bookkeeping.

Sergei Artemov The Provability of Consistency



A proof of Hilbert consistency for PA

Given a finite sequence S of formulas which is a legitimate PA-derivation,
we first calculate n such that all formulas from S have depth ≤ n. Then,
by induction on the length of S, we check that for any formula ϕ in S
with parameters y , the property Trn(pϕq, y) holds. This is an immediate
corollary of Proposition 1, since all PA-axioms satisfy Trn and each rule
of inference respects Trn. So, Trn serves as an invariant for all formulas
from S. Since, by Proposition 1, 0=1 does not satisfy Trn, 0=1 cannot
occur in S.

1. This is a rigorous mathematical proof of Hilbert consistency of PA.

2. The constructions and required properties used in this argument are
formalizable in PA: partial truth definitions, compliance of truth
definitions with PA-derivation rules, etc.
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Comments to this proof of Hilbert consistency

Mathematically, this proof is a “deformalization” (i.e., a contentual
counterpart) of the well-known formal derivation of Con(IΣn) in IΣn+1:

IΣn+1 ` Con(IΣn). (1)

Note, however, that (1) alone is not sufficient for claiming a consistency
proof for PA since its direct application

“consistency is provable hence consistency takes place”
requires a soundness assumption which is not appropriate since such an
assumption is stronger than the desired consistency conclusion.

We have to repeat steps of (1) in a contentual reasoning.
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A posteriori arithmetization: a consistency scheme

The Hilbert consistency condition

no sequence S of formulas is a derivation of a contradiction in PA

can be equivalently represented by an arithmetical scheme ConS(PA):

n is not a code of a proof of a contradiction in PA,

with a numeral parameter n.
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Specifics of formalization for ConS(PA).

Here is a verbal description of a primitive recursive function/term p(x)
connecting a parameter n with the proof p(n).

Given n, the Gödel number of a PA-derivation, we first calculate r(n)
such that all formulas from S have depth ≤ r(n). All quantifiers used in
the description of the procedure are now bounded by r(n) or other given
primitive recursive functions of n.

Then, for any formula ϕ in S, we build a proof of Trr(n)(pϕq, y). Since,
by Proposition 1, we have a proof of ¬Trr(n)(0 = 1, y), we have a proof
that 0 = 1 is not in S.

By the description, p(n) is primitive recursive and
PA ` ∀x“p(x) is a proof that x does not contain 0 = 1”. (2)

(2) does not serve as a proof of ConS(PA), but rather as a sertification
that a given earlier contentual proof uses only tools formalizabe in PA.
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Some morals

I The interpretation of Gödel’s Second Incompleteness Theorem as
yielding the unprovability of (Hilbert) consistency of PA by means
formalizable in PA is a misconception which should be resisted.

I The arithmetical formula Con(PA) is not an adequate representation
of Hilbert consistency of PA in the context of its provability.
Consistency formulas and their relatives, such as reflection
principles, are indispensible in unprovability studies. However, their
impact on studies of contentual consistency proofs is limited.

I The consistency scheme ConS(PA) offers an alternative. It respects
mathematical intuition, complies with Hilbert’s format for
consistency, and is provable by means formalizable in PA.
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Hilbert’s consistency program

The impact of these findings to the original Hilbert’s consistency program
is not clear and requires additional studies. The next obvious questions in
this direction are Hilbert consistency of PRA and ZF, and we can only
suggest following Hilbert’s advice that “one must exploit the finitary
standpoint in a sharper way for the farther reaching consistency proofs.”

However, to some extent, Hilbert’s consistency program is already
vindicated: thinking of proving consistency of a theory by means
formalizable in the same theory should no longer be a taboo.
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Take home foundational summary

Our starting point was the foundational problem in its entirety:

Can mathematics establish its own consistency? (3)

The prevailing wisdom so far has been “No, by Gödel’s Second
Incompleteness Theorem, unless mathematics is inconsistent.”

We offer a new mathematically well-principled answer to (3):

Yes, for PA. The question remains open in general.
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Constructive truth and falsity in PA

As a study of schematic reasoning in PA, we consider a theory of
constructive truth/falsity. Conceptually, it reads PA-provability of a
scheme {S(n) | n = 0, 1, 2, . . .} as “for each n, PA ` S(n).”

Let t:Y be a shorthand for the standard formula Proof (t,Y ) stating that
‘t is a proof of Y in PA,’ 2Y stand for Provable(Y ), i.e., ∃x(x:Y ).

Definition. An arithmetical sentence F is constructively true iff PA`F .
F is constructively false iff

PA ` ∀x2¬x:F . (4)
(4) is equivalent to “PA ` ∀x v(x):¬x:F for some provably total
computable term v(x).” Indeed, assume (4). Since u:F is decidable, given
x , enumerate proofs in PA until a proof of ¬x:F is met. By (4), such
v(x) is provably total. The other direction is immediate.

This notion appeared from the S4/LP formalization of BHK semantics:
¬F Gödel translates to 2¬2F which realizes as v(x):¬x:F .
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Constructive consistency

Constructive consistency of T is a formula CCon(T ) stating that for
each number, PA proves that it is not a proof of a contradiction in T :

CCon(T ) = ∀x2PA¬x:T⊥.

In particular, CCon(PA) = ∀x2PA¬x:PA⊥ or, for short,

CCon(PA) = ∀x2¬x:⊥.

Both Con(T ) and CCon(T ) are arithmetical formulas which are true iff
T is consistent and in this respect they both naturally express
consistency of T . However, they have different provability behavior. By
G2, PA does not prove Con(PA).

The name “constructive consistency of T ” is self-explanatory: it
expresses the idea that consistency of each derivation x in T is confirmed
constructively by a corresponding PA-proof. Besides, constructive
consistency of PA is a special case of the constructive falsity condition.
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The following Proposition 2 is a special instance of constructive falsity of
refutable formulas. It is also an easy corollary of Feferman’s general
observation concerning reflection principles.

Proposition 2. PA proves its own constructive consistency:
PA ` CCon(PA).

First, we check that PA ` 2⊥ → CCon(PA). Indeed, note that
PA ` 2⊥ → 2¬x:⊥. By generalization,

PA ` 2⊥ → ∀x2¬x:⊥ .

Furthermore, PA ` ¬2⊥ → CCon(PA). Indeed, by first-order logic,
PA ` x:⊥ → ∃x(x:⊥), hence PA ` ¬2⊥ → ¬x:⊥. By Σ1-completeness of
PA, PA ` ¬x:F → 2¬x:F , hence PA ` ¬2⊥ → 2¬x:⊥. By
generalization,

PA ` ¬2⊥ → ∀x2¬x:⊥ .

Historically, Proposition 2 was one of the first signs that schematic
reasoning in not under the G2 spell.
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CCon(PA) vs. Con(PA)

By G2, ∀x¬x:⊥ is not internally provable. So, there is no p such that
PA ` p:∀x¬x:⊥.

Constructive consistency offers a more flexible approach: it allows the
aforementioned certification p to depend on x , p = p(x) and we can ask
whether

PA ` ∀x p(x):¬x:⊥.

In a general form this is a question of whether
PA ` ∀x∃y(y:¬x:⊥),

i.e.
PA ` CCon(PA)

which was answered affirmatively in Proposition 2.

Sergei Artemov The Provability of Consistency



Provability of CCon(PA) is not an answer

However, the argument

PA is consistent because PA ` CCon(PA)

is circular since it relies on soundness of PA.

Here we face the deformalization problem: given that a statement is
formally provable in a theory T , produce a rigorous mathematical proof
of this statement. This does not necessarily work, e.g., when T is
inconsistent, or T is not sound, like T = PA + ¬Con(PA), etc.

A general deformalization can work for sound T ’s, but the assumption of
soundness is stronger than the assumption of consistency.

Deformalization also can work on a case-by-case basis: given a specific
derivation d in T , repeat its steps countentually and check whether the
corresponding assumptions are acceptable.

Sergei Artemov The Provability of Consistency



Normal forms of constructive falsity

Theorem [Normal Form Theorem] F is constructively false iff

PA ` Con(PA)→ ¬2F .

Equivalently F is constructive false iff PA ` 2F → 2⊥.
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Adequacy Theorem

Adequacy Theorem.

1. PA ` F yields “F is constructively true”;

2. PA ` ¬F yields “F is constructively false”;

3. “constructively true” and “constructively false” are mutually
exclusive;

4. “constructively true/false” do not coincide with
“provable/refutable”;

5. “constructively true” and “constructively false” are monotone in the
Lindenbaum algebra of PA: if PA ` F → G, then

I “F is constructively true” yields “G is constructively true,”
I “G is constructively false” yields “F is constructively false.”
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Inconsistency is not constructively false.

Theorem 1.

1. Con(PA) = ¬2⊥ is true and constructively false.

2. ¬Con(PA) = 2⊥ is false, but not constructively false.

Proof. 1. Con(PA) is true in the standard model since PA is sound,
hence consistent. Furthermore, since, by the formalized Löb’s Theorem,

PA ` 2¬2⊥ → 2⊥,

2. Immediate from Normal Form Theorem, since PA 6` 22⊥ → 2⊥:
otherwise, by Löb’s Theorem, PA ` 2⊥ which is not the case.
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Rosser sentences

By Rosser’s Theorem, there is a sentence R, for which independence in
PA follows from simple consistency of PA: if PA is consistent, then
nether R nor its negation ¬R is provable.

Theorem 2. Rosser sentences R and ¬R are both constructively false.

Proof. The proof of Rosser’s Theorem is syntactic and can be formalized
in PA:

PA ` ¬2⊥ → (¬2R ∧ ¬2¬R).

By Normal Form Theorem, both R and ¬R are constructively false.
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Constructive liar sentence

Theorem 3. There is a true independent in PA sentence which is not
constructively false.

Proof. Using the fixed-point lemma, find a sentence L such that

PA ` L↔ “L is constructively false.”

Formally,
PA ` L↔ (2L→ 2⊥). (5)

If PA ` L, then PA ` 2L and, by (5), PA ` 2⊥ which is not the case.
If PA ` ¬L, then, by Adequacy Theorem item 2, L is constructively false,
hence, PA ` 2L→ 2⊥. By the fixed point (5), PA ` L - a contradiction
in PA. So, L is independent and not constructively false.

Note that L is classically true: otherwise 2L is false and 2L→ 2⊥ is
vacuously true. By the fixed point (5), L ought to be true as well.
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Summary table of classical and constructive truth/falsity

Intersection of classes Example

True and constructively true 0=0
True and constructively false Con(PA),R

True and neither Constructive Liar L
False and constructively true ∅
False and constructively false 0=1, ¬R

False and neither ¬Con(PA)
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Further details can be found in
Artemov, S., 2019. The Provability of Consistency. arXiv:1902.07404.
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