
What, if anything,
can be done in linear time?

Yuri Gurevich

Computer Science & Engineering
University of Michigan

June 30, 2020, St. Petersburg via Zoom

YG Linear time logic U Mich 1 / 39



Agenda

1 Linear time computation complexity
2 Basic primal logic
3 Extensions

YG Linear time logic U Mich 2 / 39



§1. Linear time complexity

1. Linear time
computation complexity

YG Linear time logic U Mich 3 / 39



§1. Linear time complexity §1.1. Computation model

1.1. Computation model

YG Linear time logic U Mich 4 / 39



§1. Linear time complexity §1.1. Computation model

Why not polynomial time?

Practicality.

Even linear time may be excessive:

1 The debate with Steve Cook.
2 Counting unique queries.

YG Linear time logic U Mich 5 / 39



§1. Linear time complexity §1.1. Computation model

What linear time?

The linear time of the standard computation
model of the analysis of algorithms, the RAM.
More details below.

Term “random access” is misleading.
The important part is this:
constant-time memory access.

YG Linear time logic U Mich 6 / 39



§1. Linear time complexity §1.1. Computation model

Sorting

Sorting n items requires Ω(n log n) comparisons
and thus Ω(n log n) time.

There is no way around that lower bound.
Or maybe there is?

YG Linear time logic U Mich 7 / 39



§1. Linear time complexity §1.1. Computation model

Recall arrays

An array A:

Indices: 0, 1, . . . , n − 1

Values: A[0],A[1], . . . ,A[n − 1]

“Data structure” is another misleading term.
An array A is also an algorithm which, given an
index i , produces A[i ] in constant time.

YG Linear time logic U Mich 8 / 39



§1. Linear time complexity §1.1. Computation model

Theorem: Arrays of natural numbers < n
can be sorted in time O(n).

Illustration. Given A = 〈3, 6, 0〉,
1 Create (i.e. allocate space for) an auxiliary

array B of length 7, and then zero it:
B = 〈0, 0, 0, 0, 0, 0, 0〉.

2 Traverse A setting every B[A[k]] to 1.
Now B = 〈1, 0, 0, 1, 0, 0, 1〉.

3 Traverse B and output the indices of value 1
into a new array: 〈0, 3, 6〉.

YG Linear time logic U Mich 9 / 39



§1. Linear time complexity §1.1. Computation model

The random access machine

Let n be length of the input.

Only polynomially many initial registers are used, with
addresses and registers of length O(log n).

Value(address) is read and written in constant time.

Arithmetical relations =,≤,≥ and operations +,− are
constant time.

The model reflects the standard computer architecture.

It is often assumed that multiplication and division are also
constant time; we will not need that.

YG Linear time logic U Mich 10 / 39



§1. Linear time complexity 1.2. Homonymy originals

1.2. Homonymy originals

YG Linear time logic U Mich 11 / 39



§1. Linear time complexity 1.2. Homonymy originals

Suffix arrays

The suffix array for a string c0, . . . , cn−1 of
characters is an array A of length n where A[i ] is
the j such that cj . . . cn−1 is the i th suffix in the
lexicographical order. Think of this j as the key
for the suffix cj . . . cn−1. In an appropriate sense,
the suffix array orders the suffixes
lexicographically.

There is an amazing algorithm that constructs
suffix arrays in linear time.

YG Linear time logic U Mich 12 / 39



§1. Linear time complexity 1.2. Homonymy originals

A useful linear-time parsing algorithm

1 Use a deterministic pushdown automaton to
produce the parse tree of a given formula ϕ.

2 Construct the suffix array for ϕ.
3 Traverse the suffix array and construct pointers

H(u) from every node u to the first node with
the same subformula.

H(u) is the homonymy original of u and the
representative of the subformula of u.

YG Linear time logic U Mich 13 / 39



§2. Basic primal logic

2. Basic primal logic

Main reference:

Carlos Cotrini and YG, “Basic primal infon logic”
Journal of Logic and Computation 26:1 (2016)
(#215 at YG’s website)

YG Linear time logic U Mich 14 / 39



§2. Basic primal logic §2.1. Motivation

2.1. Motivation

YG Linear time logic U Mich 15 / 39



§2. Basic primal logic §2.1. Motivation

Infon algebra

Primal (infon) logic was introduced in 2009 in the
framework of policy and trust management, but here we
motivate it from first principles.

Infon is an item of information, not necessarily true or false.
A meaningful question is whether it is known to an agent.

y ≤ x means: y is at least as informative as x .

Conjunction turns the preorder into a semilattice. In
addition to the binary connective ∧, there are also unary
connectives, one for each agent p:

p said x

YG Linear time logic U Mich 16 / 39



§2. Basic primal logic §2.1. Motivation

Infon algebra to infon logic

Implication a→ b is a solution for (a ∧ x ≤ b ≤ x).(
Requiring a greatest solution leads to intuitionistic

implication.
)

Disjunction a ∨ b is a solution for (a ≤ x and b ≤ x).(
Requiring a smallest solution leads to intuitionistic

disjunction [Beklemishev-YG]
)
.

The resulting basic primary logic has a remarkable
combination of expressivity (e.g. of typical access-control
scenarios) and feasibility (to be discussed).

YG Linear time logic U Mich 17 / 39



§2. Basic primal logic Derivation

2.2. Derivation

YG Linear time logic U Mich 18 / 39



§2. Basic primal logic Derivation

Derivation rules

For expository reasons, we restrict attention to
the conjunction and implication fragment.

x ∧ y

x

x ∧ y

y

x , y

x ∧ y

x , x → y

y

y

x → y

YG Linear time logic U Mich 19 / 39



§2. Basic primal logic Derivation

Subformula property

Theorem
If α1, . . . , α` is a shortest derivation of ϕ from H
then every αi is a subformula of (a formula in)
H ∪ {ϕ}.

YG Linear time logic U Mich 20 / 39



§2. Basic primal logic Derivation

Interpolation lemma

Lemma
If H ` ϕ, then there is a set I of subformulas of
H that are also subformulas of ϕ such that
1 all I formulas are derivable from H, and
2 ϕ is derivable from I via introduction rules only.

We will not use the interpolation lemma but it
gives a useful optimization in the case where the
hypotheses change rarely.

YG Linear time logic U Mich 21 / 39



§2. Basic primal logic Derivation

Multiderivation problem

Definition
Given sets H of hypotheses and Q of queries,
decide which of the queries follow from the
hypotheses.

YG Linear time logic U Mich 22 / 39



§2. Basic primal logic §2.3. Decision algorithm

2.3. Decision algorithm

YG Linear time logic U Mich 23 / 39



§2. Basic primal logic §2.3. Decision algorithm

Theorem
The multiderivation problem for propositional
infon logic is solvable in linear time.

Our approach is: Derive them all!
Compute all subformulas of H ∪ Q
derivable from H .

YG Linear time logic U Mich 24 / 39



§2. Basic primal logic §2.3. Decision algorithm

Initial condition

Initially,

all subformulas of H ∪ Q are raw,

the hypotheses are pending, and

no formulas are processed.

YG Linear time logic U Mich 25 / 39



§2. Basic primal logic §2.3. Decision algorithm

Pseudocode

Repeat until no formula is pending.

1 Pick the first pending formula α.
2 Apply all possible inference rules to

α, and if a newly derived formula is

raw then mark it pending.

3 Mark α itself processed.

YG Linear time logic U Mich 26 / 39



§2. Basic primal logic §2.3. Decision algorithm

One easy case

Apply the first ∧-elimination rule
x ∧ y

x
to

α = α1 ∧ α2 and thus derive α1.

If α1 is raw then mark it pending.

YG Linear time logic U Mich 27 / 39



§2. Basic primal logic §2.3. Decision algorithm

One harder case

Apply the ∧-introduction rule
x , y

x ∧ y
to α

where α plays the role of x .

If α ∧ y is raw but y is pending or processed,
mark α ∧ y pending.

But how do we find the relevant formulas y?
We don’t have time to walk through the raw
formulas over and over again.

YG Linear time logic U Mich 28 / 39



§2. Basic primal logic §2.3. Decision algorithm

Local search

Traverse the parse tree for H ∪ Q and construct
use lists (∧, `), (∧, r), (→, `), (→, r)
for every homonymy original node u.

(∧, `) If node u = H(u) is the left child of a
node w with subformula x ∧ y , put
H(w) into the use set (∧, r) of u.
(Notice that the subformula of u is x .)

Similarly for (∧, r), (→, `) and (→, r).

YG Linear time logic U Mich 29 / 39



§2. Basic primal logic §2.3. Decision algorithm

Back to applying
x , y

x ∧ y
to x = α

Recall: we are looking for formulas α ∧ y ,
more exactly for the nodes representing these
formulas.

Let u = H(u) represent α.

Just walk through the use set (∧, `) of u.

YG Linear time logic U Mich 30 / 39



§3. Extensions

3. Extensions

YG Linear time logic U Mich 31 / 39



§3. Extensions §3.1. Disjunctions

3.1. Disjunctions

YG Linear time logic U Mich 32 / 39



§3. Extensions §3.1. Disjunctions

Original motivation

Rules of the form

if α then ACTION

are common in access control. Suppose that
α = α1 ∨ α2, e.g.

passport(US) ∨ passport(UK).

Such disjunctions may be eliminated but they
may make the rule exponentially more succinct.

YG Linear time logic U Mich 33 / 39



§3. Extensions §3.1. Disjunctions

New rules

Add introduction rules

x

x ∨ y

y

x ∨ y
.

The linear-time decision algorithm generalizes in
a rather obvious way.

YG Linear time logic U Mich 34 / 39



§3. Extensions §3.2. Transitive primal logic

3.2. Transitive primal logic

Reference:

Carlos Cotrini and YG
“Transitive primal infon logic: the propositional case”
Review of Symbolic Logic 6:2 (2013)
(#211 at YG’s website)

YG Linear time logic U Mich 35 / 39



§3. Extensions §3.3. Conjunctions as sets

3.3. Conjunctions as sets

Reference:

Carlos Cotrini, YG, Ori Lahav, and Artem Melentyev
“Primal infon logic with conjunctions as sets”
Springer LNCS 8705 (2014)
(#221 at the YG website)

YG Linear time logic U Mich 36 / 39



§3. Extensions §3.3. Conjunctions as sets

Motivation

While x ∧ y entails y ∧ x in basic primal logic,

(x ∧ y)→ z does not entail (y ∧ x)→ z ,

z → (x ∧ y) does not entail z → (y ∧ x),

etc.

YG Linear time logic U Mich 37 / 39



§3. Extensions §3.3. Conjunctions as sets

Idea, a problem and proposed solution

Idea: View conjuncts as sets.

Problem: Sets are not constructive objects.

Proposed solution: Represent sets as sequences
by ordering conjuncts lexicographically.

YG Linear time logic U Mich 38 / 39



§3. Extensions §3.3. Conjunctions as sets

Decision algorithm

The resulting multiderivation problem is solvable
in expected linear time.

It is the algorithm that introduces randomness.
No probability distribution on inputs is assumed.

YG Linear time logic U Mich 39 / 39


	§1. Linear time complexity
	§1.1. Computation model
	1.2. Homonymy originals

	§2. Basic primal logic
	§2.1. Motivation
	Derivation
	§2.3. Decision algorithm

	§3. Extensions
	§3.1. Disjunctions
	§3.2. Transitive primal logic
	§3.3. Conjunctions as sets


