# Modal Logic, Constructive Mathematics, Computational Complexity, Reasoning Under Interval Uncertainty: Why and How It All Fits Together 

```
Home Page
```

Vladik Kreinovich

> Department of Computer Science, University of Texas at El Paso,
> El Paso, TX 79968, USA
> vladik@utep.edu
> http://www.cs.utep.edu/vladik

Page 1 of 64

Go Back
Interval computations website:
http://www.cs.utep.edu/interval-comp

Full Screen

Close

Quit

- How can we make inference about the real world?
- How can we predict its future state?
- In the ideal world, we can measure everything with perfect accuracy.
- The only challenges are:
- solving the corresponding equations and
- making predictions based on these solutions.

> Home Page

## Interval Arithmetic:

Case Study: Chip Design

## Combining Interval .

## Case Study:

Case Study: Detecting

Title Page

44

Page 2 of 64

Go Back

Full Screen

Close

Quit

## 2. Science in Real World

- In this case, after each measurement, possible values of the quantity $x$ form an interval $[\widetilde{x}-\Delta, \widetilde{x}+\Delta]$.

```
    Home Page
```

```
Title Page
```

Home Page

44


Page 3 of 64

Go Back

Full Screen

Close

Quit

- Under such interval uncertainty, for many properties, we cannot say for sure whether this property is true.
- For example, stability means that real parts $r$ of eigenvalues are non-positive.
- If $r \in[-1,-2]$, the system is necessarily stable.
- If we only know that $r \in[-1,1]$, the system is possibly

Interval Arithmetic:
Case Study: Chip Design
Combining Interval.
Case Study:
Case Study: Detecting
Home Page

Title Page stable and possibly not.

- In effect, we need modal logic (or, to be precise, modal mathematics).

Go Back

Full Screen

Close

Quit

## 4. Need to Compute

- And this all needs to be computed.
- So we need to use tools and results from constructive and computable mathematics.
- We also need to take computational complexity into account.
- In this talk, we show how all this is combined in interval

Interval Arithmetic:
Case Study: Chip Design
Combining Interval.
Case Study:
Case Study: Detecting
Home Page

Title Page mathematics.

- Yuri Matiyasevich, one of its pioneers and supporters, came from constructive mathematics.
- So, he used to call it applied constructive mathematics.
- However, it can be also called applied modal mathematics.
- Let's get to formulas.

5. General Problem of Data Processing

- Indirect measurements: way to measure $y$ that are difficult (or even impossible) to measure directly.
- Idea: $y=f\left(x_{1}, \ldots, x_{n}\right)$



## Case Study:

Case Study: Detecting
Home Page

Title Page

Page 6 of 64

- Problem: measurements are never $100 \%$ accurate: $\widetilde{x}_{i} \neq$ $x_{i}\left(\Delta x_{i} \neq 0\right)$ hence

$$
\widetilde{y}=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right) \neq y=f\left(x_{1}, \ldots, x_{n}\right) .
$$

```
Full Screen
```

Close
What are bounds on $\Delta y \xlongequal{\text { def }} \widetilde{y}-y$ ?
6. Probabilistic and Interval Uncertainty

```
Home Page
```

- Traditional approach: we know probability distribution

Title Page for $\Delta x_{i}$ (usually Gaussian).

- Where it comes from: calibration using standard MI.
- Problem: calibration is not possible in:

Page 7 of 64

- fundamental science

```
Go Back
```

- manufacturing
- Solution: we know upper bounds $\Delta_{i}$ on $\left|\Delta x_{i}\right|$ hence

> Full Screen

Close

$$
x_{i} \in\left[\widetilde{x}_{i}-\Delta_{i}, \widetilde{x}_{i}+\Delta_{i}\right]
$$

## 7. Interval Computations: A Problem



- Given: an algorithm $y=f\left(x_{1}, \ldots, x_{n}\right)$ and $n$ intervals $\mathbf{x}_{i}=\left[\underline{x}_{i}, \bar{x}_{i}\right]$.
- Compute: the corresponding range of $y$ :
$[\underline{y}, \bar{y}]=\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \in\left[\underline{x}_{1}, \bar{x}_{1}\right], \ldots, x_{n} \in\left[\underline{x}_{n}, \bar{x}_{n}\right]\right\}$.
- Fact: NP-hard even for quadratic $f$.
- Challenge: when are feasible algorithms possible?
- Challenge: when computing $\mathbf{y}=[\underline{y}, \bar{y}]$ is not feasible, find a good approximation $\mathbf{Y} \supseteq \mathbf{y}$.


## Case Study: Chip Design

## Combining Interval

## Case Study:

Case Study: Detecting .

## Home Page

## Title Page

## 44

```
Go Back
```

```
Full Screen
```

Close

Quit

- Situation: in many practical applications, it is very difficult to come up with the probabilities.
- Traditional engineering approach: use probabilistic techniques.
- Problem: many different probability distributions are

```
Home Page
``` consistent with the same observations.
- Solution: select one of these distributions - e.g., the one with the largest entropy.
- Example - single variable: if all we know is that \(x \in\) \([\underline{x}, \bar{x}]\), then MaxEnt leads to a uniform distribution.
- Example - multiple variables: different variables are independently distributed.
```

Full Screen

```

Close
- Example: simplest algorithm \(y=x_{1}+\ldots+x_{n}\).
- Measurement errors: \(\Delta x_{i} \in[-\Delta, \Delta]\).
- Analysis: \(\Delta y=\Delta x_{1}+\ldots+\Delta x_{n}\).
- Worst case situation: \(\Delta y=n \cdot \Delta\).
- Maximum Entropy approach: due to Central Limit Theorem, \(\Delta y\) is \(\approx\) normal, with \(\sigma=\Delta \cdot \frac{\sqrt{n}}{\sqrt{3}}\).
- Why this may be inadequate: we get \(\Delta \sim \sqrt{n}\), but due to correlation, it is possible that \(\Delta=n \cdot \Delta \sim n \gg \sqrt{n}\).

Interval Arithmetic:
Case Study: Chip Design

\section*{Combining Interval.}

\section*{Case Study:}

Case Study: Detecting
Home Page

Title Page

44

4

Page 10 of 64

Go Back

Full Screen
- Examples: high-risk application areas such as space exploration or nuclear engineering.
- In many practical situations, the errors \(\Delta x_{i}\) are small, so we can ignore quadratic terms:
\[
\begin{gathered}
\Delta y=\widetilde{y}-y=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)= \\
f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)-f\left(\widetilde{x}_{1}-\Delta x_{1}, \ldots, \widetilde{x}_{n}-\Delta x_{n}\right) \approx \\
c_{1} \cdot \Delta x_{1}+\ldots+c_{n} \cdot \Delta x_{n}
\end{gathered}
\]

Home Page
where \(c_{i} \stackrel{\text { def }}{=} \frac{\partial f}{\partial x_{i}}\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)\).
- For a linear function, the largest \(\Delta y\) is obtained when each term \(c_{i} \cdot \Delta x_{i}\) is the largest:
\[
\Delta=\left|c_{1}\right| \cdot \Delta_{1}+\ldots+\left|c_{n}\right| \cdot \Delta_{n}
\]
- Due to the linearization assumption, we can estimate each partial derivative \(c_{i}\) as
\[
c_{i} \approx \frac{f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{i-1}, \widetilde{x}_{i}+h_{i}, \widetilde{x}_{i+1}, \ldots, \widetilde{x}_{n}\right)-\widetilde{y}}{h_{i}}
\]

Page 11 of 64

Go Back

Full Screen

Close

Quit

\section*{11. Linearization: Algorithm}
```

Home Page

```

Title Page

44
\[
c_{i}=\frac{f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{i-1}, \widetilde{x}_{i}+h_{i}, \widetilde{x}_{i+1}, \ldots, \widetilde{x}_{n}\right)-\widetilde{y}}{h_{i}}
\]
```

Page 12 of 64

```
- Finally, we compute \(\Delta=\left|c_{1}\right| \cdot \Delta_{1}+\ldots+\left|c_{n}\right| \cdot \Delta_{n}\) and the desired range \(\mathbf{y}=[\widetilde{y}-\Delta, \widetilde{y}+\Delta]\).
```

Full Screen

```
- Problem: we need \(n+1\) calls to \(f\), and this is often too long.

\section*{12. Cauchy Deviate Method: Idea}
```

Home Page

```
```

Title Page

``` ables w/parameters \(\Delta_{1}, \ldots, \Delta_{n}\),
- then \(z=c_{1} \cdot z_{1}+\ldots+c_{n} \cdot z_{n}\) is also Cauchy distributed, w/parameter
\[
\Delta=\left|c_{1}\right| \cdot \Delta_{1}+\ldots+\left|c_{n}\right| \cdot \Delta_{n}
\]
- This is exactly what we need to estimate interval uncertainty!
13. Cauchy Deviate Method: Towards Implementation
- To implement the Cauchy idea, we must answer the following questions:
- how to simulate the Cauchy distribution; and
- how to estimate the parameter \(\Delta\) of this distribution from a finite sample.
- Simulation can be based on the functional transformation of uniformly distributed sample values:
\[
\delta_{i}=\Delta_{i} \cdot \tan \left(\pi \cdot\left(r_{i}-0.5\right)\right), \text { where } r_{i} \sim U([0,1]) .
\]
- To estimate \(\Delta\), we can apply the Maximum Likelihood Method \(\rho\left(\delta^{(1)}\right) \cdot \rho\left(\delta^{(2)}\right) \cdot \ldots \cdot \rho\left(\delta^{(N)}\right) \rightarrow\) max, i.e., solve
\[
\frac{1}{1+\left(\frac{\delta^{(1)}}{\Delta}\right)^{2}}+\ldots+\frac{1}{1+\left(\frac{\delta^{(N)}}{\Delta}\right)^{2}}=\frac{N}{2}
\]

\section*{Combining Interval .}

\section*{Case Study:}

Case Study: Detecting
Home Page \(c_{i}^{(k)}:=\tan \left(\pi \cdot\left(r_{i}^{(k)}-0.5\right)\right) ;\)

Title Page
- compute \(K:=\max _{i}\left|c_{i}^{(k)}\right|\) and normalized errors \(\delta_{i}^{(k)}:=\Delta_{i} \cdot c_{i}^{(k)} / K ;\)
- compute the simulated "actual values" \(x_{i}^{(k)}:=\widetilde{x}_{i}-\delta_{i}^{(k)}\)
- compute simulated errors of indirect measurement: \(\delta^{(k)}:=K \cdot\left(\widetilde{y}-f\left(x_{1}^{(k)}, \ldots, x_{n}^{(k)}\right)\right) ;\)
- Compute \(\Delta\) by applying the bisection method to solve the Maximum Likelihood equation.
```

```
Full Screen
```

```
```

```
Full Screen
```

```

Close

Quit
- To avoid confusion, we should emphasize that:
- in contrast to the Monte-Carlo solution for the probabilistic case,
- the use of Cauchy distribution in the interval case is a computational trick,

Interval Arithmetic:
Case Study: Chip Design
Combining Interval.
Case Study:
Case Study: Detecting
Home Page
- it is not a truthful simulation of the actual measurement error \(\Delta x_{i}\).
- Indeed:
- we know that the actual value of \(\Delta x_{i}\) is always inside the interval \(\left[-\Delta_{i}, \Delta_{i}\right]\), but
- a Cauchy distributed random attains values outside this interval as well.
16. Approximate Methods - Such As Linearizaion
- In many application areas, it is sufficient to have an approximate estimate of \(y\).
- Sometimes, we need to guarantee that \(y\) does not exceed a certain threshold \(y_{0}\). Examples:
- in nuclear engineering, the temperatures and the neutron flows should not exceed the critical values;
- a space ship lands on the planet and does not fly past it, etc.
- The only way to guarantee this is to have an interval \(\mathbf{Y}=[\underline{Y}, \bar{Y}]\) for which \(\mathbf{y} \subseteq \mathbf{Y}\) and \(\bar{Y} \leq y_{0}\).
- Such an interval is called an enclosure.
- Computing such an enclosure is one of the main tasks of interval computations.

Title Page

44


Go Back

> Full Screen

Close

Quit
- Origins: Archimedes (Ancient Greece)
- Modern pioneers: Warmus (Poland), Sunaga (Japan), Moore (USA), 1956-59
- First boom: early 1960s.
- First challenge: taking interval uncertainty into ac-

\section*{Interval Arithmetic:}
```

Case Study: Chip Design

```

\section*{Combining Interval .}

\section*{Case Study:}

Case Study: Detecting
Home Page count when planning spaceflights to the Moon.

Title Page
- Current applications (sample):
- design of elementary particle colliders: Berz, Kyoko (USA)
- will a comet hit the Earth: Berz, Moore (USA)
- robotics: Jaulin (France), Neumaier (Austria)
- chemical engineering: Stadtherr (USA)
18. Interval Arithmetic: Foundations of Interval Techniques
- Problem: compute the range \([\underline{y}, \bar{y}]=\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \in\left[\underline{x}_{1}, \bar{x}_{1}\right], \ldots, x_{n} \in\left[\underline{x}_{n}, \bar{x}_{n}\right]\right\}\).
- Interval arithmetic: for arithmetic operations \(f\left(x_{1}, x_{2}\right)\) (and for elementary functions), we have explicit formulas for the range.
- Examples: when \(x_{1} \in \mathbf{x}_{1}=\left[\underline{x}_{1}, \bar{x}_{1}\right]\) and \(x_{2} \in \mathbf{x}_{2}=\) \(\left[\underline{x}_{2}, \bar{x}_{2}\right]\), then:
- The range \(\mathbf{x}_{1}+\mathbf{x}_{2}\) for \(x_{1}+x_{2}\) is \(\left[\underline{x}_{1}+\underline{x}_{2}, \bar{x}_{1}+\bar{x}_{2}\right]\).
- The range \(\mathbf{x}_{1}-\mathbf{x}_{2}\) for \(x_{1}-x_{2}\) is \(\left[\underline{x}_{1}-\bar{x}_{2}, \bar{x}_{1}-\underline{x}_{2}\right]\).
- The range \(\mathbf{x}_{1} \cdot \mathbf{x}_{2}\) for \(x_{1} \cdot x_{2}\) is \([\underline{y}, \bar{y}]\), where
\[
\begin{aligned}
& \underline{y}=\min \left(\underline{x}_{1} \cdot \underline{x}_{2}, \underline{x}_{1} \cdot \bar{x}_{2}, \bar{x}_{1} \cdot \underline{x}_{2}, \bar{x}_{1} \cdot \bar{x}_{2}\right) \\
& \bar{y}=\max \left(\underline{x}_{1} \cdot \underline{x}_{2}, \underline{x}_{1} \cdot \bar{x}_{2}, \bar{x}_{1} \cdot \underline{x}_{2}, \bar{x}_{1} \cdot \bar{x}_{2}\right) .
\end{aligned}
\]

Title Page

44

4

Page 19 of 64

Go Back

Full Screen

Close
- The range \(1 / \mathbf{x}_{1}\) for \(1 / x_{1}\) is \(\left[1 / \bar{x}_{1}, 1 / \underline{x}_{1}\right]\) (if \(0 \notin \mathbf{x}_{1}\) ).
19. Straightforward Interval Computations:
- Example: \(f(x)=(x-2) \cdot(x+2), x \in[1,2]\).
- How will the computer compute it?
- \(r_{1}:=x-2 ;\)
- \(r_{2}:=x+2\);
- \(r_{3}:=r_{1} \cdot r_{2}\).

\section*{Combining Interval .}

\section*{Case Study:}

Case Study: Detecting

> Home Page

Title Page
- Main idea: perform the same operations, but with intervals instead of numbers:
- \(\mathbf{r}_{1}:=[1,2]-[2,2]=[-1,0]\);
- \(\mathbf{r}_{2}:=[1,2]+[2,2]=[3,4]\);
- \(\mathbf{r}_{3}:=[-1,0] \cdot[3,4]=[-4,0]\).
- Actual range: \(f(\mathbf{x})=[-3,0]\).
- Comment: this is just a toy example, there are more efficient ways of computing an enclosure \(\mathbf{Y} \supseteq \mathbf{y}\).
```

Full Screen

```

Close

Quit

\section*{20. First Idea: Use of Monotonicity}
- Similarly: if \(f \uparrow\) for some \(x_{i}\) and \(f \downarrow\) for other \(x_{j}\).

Title Page
- Fact: \(f \uparrow\) in \(x_{i}\) if \(\frac{\partial f}{\partial x_{i}} \geq 0\).
- Checking monotonicity: check that the range \(\left[\underline{r}_{i}, \bar{r}_{i}\right]\) of \(\frac{\partial f}{\partial x_{i}}\) on \(\mathbf{x}_{i}\) has \(\underline{r}_{i} \geq 0\).

Page 21 of 64

Go Back
- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating ranges of \(\frac{\partial f}{\partial x_{i}}\) : straightforward interval comp.

\section*{Combining Interval.}

\section*{Case Study:}

Case Study: Detecting
```

Home Page

```
- Case \(n=1\) : if the range \([\underline{r}, \bar{r}]\) of \(\frac{d f}{d x}\) on \(\mathbf{x}\) has \(\underline{r} \geq 0\), then
\[
f(\mathbf{x})=[f(\underline{x}), f(\bar{x})] .
\]
- \(A D: \frac{d f}{d x}=1 \cdot(x+2)+(x-2) \cdot 1=2 x\).
- Checking: \([\underline{r}, \bar{r}]=[2,4]\), with \(2 \geq 0\).
- Result: \(f([1,2])=[f(1), f(2)]=[-3,0]\).
- Comparison: this is the exact range.
```

Full Screen

```

44
4

Page 22 of 64

Full Screen

Close

Quit

\section*{22. Non-Monotonic Example}
- Example: \(f(x)=x \cdot(1-x), x \in[0,1]\).
- How will the computer compute it?

\section*{Combining Interval}

\section*{Case Study:}

Case Study: Detecting

> Home Page

Title Page

44
4

Page 23 of 64
- Here, \(\frac{d f}{d x}=1-2 x=0\) for \(x=0.5\), thus we:
- compute \(f(0)=0, f(0.5)=0.25\), and \(f(1)=0\), so
- \(\underline{y}=\min (0,0.25,0)=0, \bar{y}=\max (0,0.25,0)=0.25\).
```

Full Screen

```

Close
- Resulting range: \(f(\mathbf{x})=[0,0.25]\).
- Main idea: Intermediate Value Theorem
\[
f\left(x_{1}, \ldots, x_{n}\right)=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\chi) \cdot\left(x_{i}-\widetilde{x}_{i}\right)
\]
```

Home Page

```
- Corollary: \(f\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Y}\), where
\[
\mathbf{Y}=\widetilde{y}+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \cdot\left[-\Delta_{i}, \Delta_{i}\right]
\]
- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating the ranges of derivatives:
```

Go Back

```
- if appropriate, by monotonicity, or
```

Full Screen

```
- by straightforward interval computations, or
- by centered form (more time but more accurate).

\section*{24. Centered Form: Example}

\section*{Combining Interval .}

\section*{Case Study:}

Case Study: Detecting
Home Page
- Here, \(\mathbf{x}=[\widetilde{x}-\Delta, \widetilde{x}+\Delta]\), with \(\widetilde{x}=0.5\) and \(\Delta=0.5\).

Title Page
- Case \(n=1: \mathbf{Y}=f(\widetilde{x})+\frac{d f}{d x}(\mathbf{x}) \cdot[-\Delta, \Delta]\).
- \(A D: \frac{d f}{d x}=1 \cdot(1-x)+x \cdot(-1)=1-2 x\).

Page 25 of 64
- Estimation: we have \(\frac{d f}{d x}(\mathbf{x})=1-2 \cdot[0,1]=[-1,1]\).
- Result: \(\mathbf{Y}=0.5 \cdot(1-0.5)+[-1,1] \cdot[-0.5,0.5]=\) \(0.25+[-0.5,0.5]=[-0.25,0.75]\).
- Comparison: actual range [0, 0.25], straightforward \([0,1]\).

Full Screen

Close

Quit

\section*{25. Third Idea: Bisection}
- Known: accuracy \(O\left(\Delta_{i}^{2}\right)\) of first order formula
\[
f\left(x_{1}, \ldots, x_{n}\right)=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\chi) \cdot\left(x_{i}-\widetilde{x}_{i}\right)
\]
- split one of them in half \(\left(\Delta_{i}^{2} \rightarrow \Delta_{i}^{2} / 4\right)\); and
- take the union of the resulting ranges.

Title Page
- Example: \(f(x)=x \cdot(1-x)\), where \(x \in \mathbf{x}=[0,1]\).
- Split: take \(\mathbf{x}^{\prime}=[0,0.5]\) and \(\mathbf{x}^{\prime \prime}=[0.5,1]\).
- 1st range: \(1-2 \cdot \mathbf{x}=1-2 \cdot[0,0.5]=[0,1]\), so \(f \uparrow\) and \(f\left(\mathbf{x}^{\prime}\right)=[f(0), f(0.5)]=[0,0.25]\).
- 2nd range: \(1-2 \cdot \mathbf{x}=1-2 \cdot[0.5,1]=[-1,0]\), so \(f \downarrow\) and \(f\left(\mathrm{x}^{\prime \prime}\right)=[f(1), f(0.5)]=[0,0.25]\).
- Result: \(f\left(\mathbf{x}^{\prime}\right) \cup f\left(\mathbf{x}^{\prime \prime}\right)=[0,0.25]\) - exact.

Page 26 of 64

Go Back

Quit
- So far: we compute the range of \(x \cdot(1-x)\) by multiplying ranges of \(x\) and \(1-x\).
- We ignore: that both factors depend on \(x\) and are, thus, dependent.
- Idea: for each intermediate result \(a\), keep an explicit dependence on \(\Delta x_{i}=\widetilde{x}_{i}-x_{i}\) (at least its linear terms).
- Implementation:
\[
a=a_{0}+\sum_{i=1}^{n} a_{i} \cdot \Delta x_{i}+[\underline{a}, \bar{a}] .
\]
- We start: with \(x_{i}=\widetilde{x}_{i}-\Delta x_{i}\), i.e.,
```

Go Back

```
\(\widetilde{x}_{i}+0 \cdot \Delta x_{1}+\ldots+0 \cdot \Delta x_{i-1}+(-1) \cdot \Delta x_{i}+0 \cdot \Delta x_{i+1}+\ldots+0 \cdot \Delta x_{n}+[0,0]\).
- Description: \(a_{0}=\widetilde{x}_{i}, a_{i}=-1, a_{j}=0\) for \(j \neq i\), and \([\underline{a}, \bar{a}]=[0,0]\).
- Representation: \(a=a_{0}+\sum_{i=1}^{n} a_{i} \cdot \Delta x_{i}+[\underline{a}, \bar{a}]\).
- Input: \(a=a_{0}+\sum_{i=1}^{n} a_{i} \cdot \Delta x_{i}+\mathbf{a}\) and \(b=b_{0}+\sum_{i=1}^{n} b_{i} \cdot \Delta x_{i}+\mathbf{b}\).
- Operations: \(c=a \otimes b\).
- Addition: \(c_{0}=a_{0}+b_{0}, c_{i}=a_{i}+b_{i}, \mathbf{c}=\mathbf{a}+\mathbf{b}\).
- Subtraction: \(c_{0}=a_{0}-b_{0}, c_{i}=a_{i}-b_{i}, \mathbf{c}=\mathbf{a}-\mathbf{b}\).
- Multiplication: \(c_{0}=a_{0} \cdot b_{0}, c_{i}=a_{0} \cdot b_{i}+b_{0} \cdot a_{i}\),
\[
\begin{gathered}
\mathbf{c}=a_{0} \cdot \mathbf{b}+b_{0} \cdot \mathbf{a}+\sum_{i \neq j} a_{i} \cdot b_{j} \cdot\left[-\Delta_{i}, \Delta_{i}\right] \cdot\left[-\Delta_{j}, \Delta_{j}\right]+ \\
\sum_{i} a_{i} \cdot b_{i} \cdot\left[-\Delta_{i}, \Delta_{i}\right]^{2}+ \\
\left(\sum_{i} a_{i} \cdot\left[-\Delta_{i}, \Delta_{i}\right]\right) \cdot \mathbf{b}+\left(\sum_{i} b_{i} \cdot\left[-\Delta_{i}, \Delta_{i}\right]\right) \cdot \mathbf{a}+\mathbf{a} \cdot \mathbf{b} .
\end{gathered}
\]
- Example: \(f(x)=x \cdot(1-x), x \in[0,1]\).
- Here, \(n=1, \widetilde{x}=0.5\), and \(\Delta=0.5\).
- How will the computer compute it?

\section*{Combining Interval .}

\section*{Case Study:}

Case Study: Detecting
```

Home Page

```
- \(r_{2}:=x \cdot r_{1}\).
- Affine arithmetic: we start with \(x=0.5-\Delta x+[0,0]\);
- \(\mathbf{r}_{1}:=1-(0.5-\Delta x)=0.5+\Delta x\);
- \(\mathbf{r}_{2}:=(0.5-\Delta x) \cdot(0.5+\Delta x)\), i.e.,
\[
\mathbf{r}_{2}=0.25+0 \cdot \Delta x-[-\Delta, \Delta]^{2}=0.25+\left[-\Delta^{2}, 0\right] .
\]

Page 29 of 64
```

Go Back

```
- Resulting range: \(\mathbf{y}=0.25+[-0.25,0]=[0,0.25]\).
- Comparison: this is the exact range.
- In our simple example: we got the exact range.
- In general: range estimation is NP-hard.
- Meaning: a feasible (polynomial-time) algorithm will sometimes lead to excess width: \(\mathbf{Y} \supset \mathbf{y}\).
- Conclusion: affine arithmetic may lead to excess width.
- Question: how to get more accurate estimates?
- First idea: bisection.
- Second idea (Taylor arithmetic):
- affine arithmetic: \(a=a_{0}+\sum a_{i} \cdot \Delta x_{i}+\mathbf{a}\);
- meaning: we keep linear terms in \(\Delta x_{i}\);
- idea: keep, e.g., quadratic terms
\[
a=a_{0}+\sum a_{i} \cdot \Delta x_{i}+\sum a_{i j} \cdot \Delta x_{i} \cdot \Delta x_{j}+\mathbf{a} .
\]
```

Home Page

```
```

Title Page

```

44

4

Page 30 of 64

Go Back

Full Screen

Close

Quit
30. Interval Computations vs. Affine Arithmetic:
- Objective: we want a method that computes a reasonable estimate for the range in reasonable time.
- Conclusion - how to compare different methods:
- how accurate are the estimates, and
```

Home Page

```
- how fast we can compute them.

Title Page
- Accuracy: affine arithmetic leads to more accurate ranges.
- Computation time:
- Interval arithmetic: for each intermediate result \(a\), we compute two values: endpoints \(\underline{a}\) and \(\bar{a}\) of \([\underline{a}, \bar{a}]\).
- Affine arithmetic: for each \(a\), we compute \(n+3\) values:
\[
a_{0} \quad a_{1}, \ldots, a_{n} \quad \underline{a}, \bar{a} .
\]
- Conclusion: affine arithmetic is \(\sim n\) times slower.

Go Back
Full Screen

Close

Quit
31. Solving Systems of Equations: Extending Known Algorithms to Situations with Interval Uncertainty
- We have: a system of equations \(g_{i}\left(y_{1}, \ldots, y_{n}\right)=a_{i}\) with unknowns \(y_{i}\);
- We know: \(a_{i}\) with interval uncertainty: \(a_{i} \in\left[\underline{a}_{i}, \bar{a}_{i}\right]\);
- We want: to find the corresponding ranges of \(y_{j}\).
- First case: for exactly known \(a_{i}\), we have an algorithm \(y_{j}=f_{j}\left(a_{1}, \ldots, a_{n}\right)\) for solving the system.
- Example: system of linear equations.
- Solution: apply interval computations techniques to find the range \(f_{j}\left(\left[\underline{a}_{1}, \bar{a}_{1}\right], \ldots,\left[\underline{a}_{n}, \bar{a}_{n}\right]\right)\).
- Better solution: for specific equations, we often already know which ideas work best.
- Example: linear equations \(A y=b ; y\) is monotonic in \(b\).

Title Page

44

Page 32 of 64

Go Back

Full Screen

Close

Quit
32. Solving Systems of Equations When No

\section*{Algorithm Is Known}
- Idea:
- parse each equation into elementary constraints, and
- use interval computations to improve original ranges
```

Case Study: Chip Design

```

\section*{Combining Interval .}

\section*{Case Study}

Case Study: Detecting until we get a narrow range ( \(=\) solution).
- First example: \(x-x^{2}=0.5, x \in[0,1]\) (no solution).
- Parsing: \(r_{1}=x^{2}, 0.5\left(=r_{2}\right)=x-r_{1}\).
- Rules: from \(r_{1}=x^{2}\), we extract two rules:

Title Page
44
.

Page 33 of 64
\[
\text { (1) } x \rightarrow r_{1}=x^{2} ; \quad \text { (2) } r_{1} \rightarrow x=\sqrt{r_{1}}
\]
from \(0.5=x-r_{1}\), we extract two more rules:

> Full Screen
\[
\text { (3) } x \rightarrow r_{1}=x-0.5 ; \quad \text { (4) } r_{1} \rightarrow x=r_{1}+0.5
\]
33. Solving Systems of Equations When No

\section*{Algorithm Is Known: Example}
- (1) \(r=x^{2}\); (2) \(x=\sqrt{r}\); (3) \(r=x-0.5\); (4) \(x=r+0.5\).
- We start with: \(\mathbf{x}=[0,1], \mathbf{r}=(-\infty, \infty)\).
(1) \(\mathbf{r}=[0,1]^{2}=[0,1]\), so \(\mathbf{r}_{\text {new }}=(-\infty, \infty) \cap[0,1]=[0,1]\).
(2) \(\mathbf{x}_{\text {new }}=\sqrt{[0,1]} \cap[0,1]=[0,1]-\) no change.
(3) \(\mathbf{r}_{\mathrm{new}}=([0,1]-0.5) \cap[0,1]=[-0.5,0.5] \cap[0,1]=[0,0.5]\).
(4) \(\mathbf{x}_{\mathrm{new}}=([0,0.5]+0.5) \cap[0,1]=[0.5,1] \cap[0,1]=[0.5,1]\).
(1) \(\mathbf{r}_{\text {new }}=[0.5,1]^{2} \cap[0,0.5]=[0.25,0.5]\).
(2) \(\mathbf{x}_{\text {new }}=\sqrt{[0.25,0.5]} \cap[0.5,1]=[0.5,0.71]\);
round \(\underline{a}\) down \(\downarrow\) and \(\bar{a}\) up \(\uparrow\), to guarantee enclosure.
(3) \(\mathbf{r}_{\text {new }}=([0.5,0.71]-0.5) \cap[0.25,5]=[0.0 .21] \cap[0.25,0.5]\), i.e., \(\mathbf{r}_{\mathrm{new}}=\emptyset\).
- Conclusion: the original equation has no solutions.

\section*{Combining Interval .}

Case Study:
Case Study: Detecting
Home Page

Title Page

44

Page 34 of 64

Go Back

Full Screen

Close

Quit

\section*{34. Solving Systems of Equations: 2nd Example}
- Example: \(x-x^{2}=0, x \in[0,1]\).
- Parsing: \(r_{1}=x^{2}, 0\left(=r_{2}\right)=x-r_{1}\).
- Rules: (1) \(r=x^{2}\); (2) \(x=\sqrt{r}\); (3) \(r=x\); (4) \(x=r\).
- We start with: \(\mathbf{x}=[0,1], \mathbf{r}=(-\infty, \infty)\).
- Problem: after Rule 1, we're stuck with \(\mathbf{x}=\mathbf{r}=[0,1]\).
- Solution: bisect \(\mathbf{x}=[0,1]\) into \([0,0.5]\) and \([0.5,1]\).
- For 1st subinterval:
- Rule 1 leads to \(\mathbf{r}_{\mathrm{new}}=[0,0.5]^{2} \cap[0,0.5]=[0,0.25] ;\)
- Rule 4 leads to \(\mathbf{x}_{\text {new }}=[0,0.25]\);
- Rule 1 leads to \(\mathbf{r}_{\text {new }}=[0,0.25]^{2}=[0,0.0625] ;\)
- Rule 4 leads to \(\mathbf{x}_{\text {new }}=[0,0.0625]\); etc.
- we converge to \(x=0\).
- For \(2 n d\) subinterval: we converge to \(x=1\).
Home Page

Home Page

Title Page

\section*{Combining Interval .}

\section*{Case Study:}

Case Study: Detecting

Page 35 of 64
Go Back
```

Full Screen

Close

Quit

- Problem: find $y_{1}, \ldots, y_{m}$ for which

$$
g\left(y_{1}, \ldots, y_{m}, a_{1}, \ldots, a_{m}\right) \rightarrow \max
$$

- We know: $a_{i}$ with interval uncertainty: $a_{i} \in\left[\underline{a}_{i}, \bar{a}_{i}\right]$;

```
Case Study: Chip Design
```


## Combining Interval

## Case Study:

Case Study: Detecting
Home Page

- We want: to find the corresponding ranges of $y_{j}$.
- First case: for exactly known $a_{i}$, we have an algorithm $y_{j}=f_{j}\left(a_{1}, \ldots, a_{n}\right)$ for solving the optimization problem.
- Example: quadratic objective function $g$.
- Solution: apply interval computations techniques to find the range $f_{j}\left(\left[\underline{a}_{1}, \bar{a}_{1}\right], \ldots,\left[\underline{a}_{n}, \bar{a}_{n}\right]\right)$.
- Better solution: for specific $f$, we often already know which ideas work best.

Title Page

44

4

Page 36 of 64

Go Back

```
Full Screen
```

Close

Quit

- Idea: divide the original box $\mathbf{x}$ into subboxes $\mathbf{b}$.
- If $\max _{x \in \mathbf{b}} g(x)<g\left(x^{\prime}\right)$ for a known $x^{\prime}$, dismiss $\mathbf{b}$.
- Example: $g(x)=x \cdot(1-x), \mathbf{x}=[0,1]$.
- Divide into $10(?)$ subboxes $\mathbf{b}=[0,0.1],[0.1,0.2], \ldots$
- Find $g(\widetilde{b})$ for each $\mathbf{b}$; the largest is $0.45 \cdot 0.55=0.2475$.
- Compute $G(\mathbf{b})=g(\widetilde{b})+(1-2 \cdot \mathbf{b}) \cdot[-\Delta, \Delta]$.
- Dismiss subboxes for which $\bar{Y}<0.2475$.
- Example: for $[0.2,0.3]$, we have

$$
0.25 \cdot(1-0.25)+(1-2 \cdot[0.2,0.3]) \cdot[-0.05,0.05] .
$$

- Here $\bar{Y}=0.2175<0.2475$, so we dismiss [0.2, 0.3].
- Result: keep only boxes $\subseteq[0.3,0.7]$.
- Further subdivision: get us closer and closer to $x=0.5$.


## 37. Case Study: Chip Design

- Chip design: one of the main objectives is to decrease the clock cycle.
- Current approach: uses worst-case (interval) techniques.
- Problem: the probability of the worst-case values is usually very small.
- Result: estimates are over-conservative - unnecessary

```
Home Page
```

over-design and under-performance of circuits.

- Difficulty: we only have partial information about the corresponding probability distributions.
- Objective: produce estimates valid for all distributions

Page 38 of 64

Go Back which are consistent with this information.

- What we do: provide such estimates for the clock time.
- Objective: estimate the clock cycle on the design stage.
- The clock cycle of a chip is constrained by the maximum path delay over all the circuit paths

$$
D \stackrel{\text { def }}{=} \max \left(D_{1}, \ldots, D_{N}\right)
$$

Interval Arithmetic:

```
Case Study: Chip Design
```


## Combining Interval

Case Study:
Case Study: Detecting
Home Page

- The path delay $D_{i}$ along the $i$-th path is the sum of the delays corresponding to the gates and wires along this path.
- Each of these delays, in turn, depends on several factors such as:
- the variation caused by the current design practices,
- environmental design characteristics (e.g., variations in temperature and in supply voltage), etc.

Page 39 of 64

Go Back

Full Screen

Close

Quit
39. Traditional (Interval) Approach to Estimating the Clock Cycle

- Traditional approach: assume that each factor takes the worst possible value.
- Result: time delay when all the factors are at their worst.

```
Home Page
```

- Problem:

```
Title Page
```

- different factors are usually independent;
- combination of worst cases is improbable.
- Computational result: current estimates are $30 \%$ above the observed clock time.
- Practical result: the clock time is set too high - chips are over-designed and under-performing.

```
Full Screen
```

Close

Quit

- Ideal case: we know probability distributions.
- Solution: Monte-Carlo simulations.
- In practice: we only have partial information about the distributions of some of the parameters; usually:
- the mean, and
- some characteristic of the deviation from the mean
- e.g., the interval that is guaranteed to contain possible values of this parameter.
- Possible approach: Monte-Carlo with several possible distributions.
- Problem: no guarantee that the result is a valid bound for all possible distributions.
- Objective: provide robust bounds, i.e., bounds that work for all possible distributions.


## Interval Arithmetic:

```
Case Study: Chip Design
```


## Combining Interval .

Case Study:
Case Study: Detecting
Home Page

Title Page
44


Page 41 of 64

Go Back

Full Screen

Close

Quit
41. Towards a Mathematical Formulation of the Problem

- General case: each gate delay $d$ depends on the difference $x_{1}, \ldots, x_{n}$ between the actual and the nominal values of the parameters.
- Main assumption: these differences are usually small.

Home Page

Title Page

- Conclusion: $D_{i}$ is a linear function: $D_{i}=a_{i}+\sum_{j=1}^{n} a_{i j} \cdot x_{j}$ for some $a_{i}$ and $a_{i j}$.
- The desired maximum delay $D=\max _{i} D_{i}$ has the form

$$
D=F\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} \max _{i}\left(a_{i}+\sum_{j=1}^{n} a_{i j} \cdot x_{j}\right)
$$

```
Full Screen
```


## Close

Quit
42. Towards a Mathematical Formulation of the Problem (cont-d)

- Known: maxima of linear function are exactly convex functions:

$$
F(\alpha \cdot x+(1-\alpha) \cdot y) \leq \alpha \cdot F(x)+(1-\alpha) \cdot F(y)
$$

for all $x, y$ and for all $\alpha \in[0,1]$;

- We know: factors $x_{i}$ are independent;
- we know distribution of some of the factors;
- for others, we know ranges $\left[\underline{x}_{j}, \bar{x}_{j}\right]$ and means $E_{j}$.
- Given: a convex function $F \geq 0$ and a number $\varepsilon>0$.
- Objective: find the smallest $y_{0}$ s.t. for all possible distributions, we have $y \leq y_{0}$ with the probability $\geq 1-\varepsilon$.

```
Home Page
Home Page
```

Title Page

44

4

Page 43 of 64

Go Back

Full Screen

Close

Quit
43. Additional Property: Dependency is

## Non-Degenerate

- Fact: sometimes, we learn additional information about one of the factors $x_{j}$.
- Example: we learn that $x_{j}$ actually belongs to a proper subinterval of the original interval $\left[\underline{x}_{j}, \bar{x}_{j}\right]$.
- Consequence: the class $\mathcal{P}$ of possible distributions is replaced with $\mathcal{P}^{\prime} \subset \mathcal{P}$.
- Result: the new value $y_{0}^{\prime}$ can only decrease: $y_{0}^{\prime} \leq y_{0}$.
- Fact: if $x_{j}$ is irrelevant for $y$, then $y_{0}^{\prime}=y_{0}$.
- Assumption: irrelevant variables been weeded out.
- Formalization: if we narrow down one of the intervals $\left[\underline{x}_{j}, \bar{x}_{j}\right]$, the resulting value $y_{0}$ decreases: $y_{0}^{\prime}<y_{0}$.

Title Page

44


Page 44 of 64
Go Back

Full Screen

Close

Quit

GIVEN: • $n, k \leq n, \varepsilon>0$;

- a convex function $y=F\left(x_{1}, \ldots, x_{n}\right) \geq 0$;
- $n-k$ cdfs $F_{j}(x), k+1 \leq j \leq n$;
- intervals $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$, values $E_{1}, \ldots, E_{k}$,

TAKE: all joint probability distributions on $R^{n}$ for which:

## Interval Arithmetic:

Case Study: Chip Design

## Combining Interval

## Case Study:

Case Study: Detecting
Home Page

- all $x_{i}$ are independent,
- $x_{j} \in \mathbf{x}_{j}, E\left[x_{j}\right]=E_{j}$ for $j \leq k$, and
- $x_{j}$ have distribution $F_{j}(x)$ for $j>k$.

FIND: the smallest $y_{0}$ s.t. for all such distributions, $F\left(x_{1}, \ldots, x_{n}\right) \leq y_{0}$ with probability $\geq 1-\varepsilon$. one of the intervals $\mathbf{x}_{j}, y_{0}$ decreases.

Page 45 of 64

Go Back
Title Page

44
4

Full Screen

Close

Quit

- Result: $y_{0}$ is attained when for each $j$ from 1 to $k$,
- $x_{j}=\underline{x}_{j}$ with probability $\underline{p}_{j} \stackrel{\text { def }}{=} \frac{\bar{x}_{j}-E_{j}}{\bar{x}_{j}-\underline{x}_{j}}$, and
- $x_{j}=\bar{x}_{j}$ with probability $\bar{p}_{j} \stackrel{\text { def }}{=} \frac{E_{j}-\underline{x}_{j}}{\bar{x}_{j}-\underline{x}_{j}}$.


## Interval Arithmetic:

Case Study: Chip Design

## Combining Interval .

## Case Study:

Case Study: Detecting

```
Home Page
```

- Algorithm:
- simulate these distributions for $x_{j}, j<k$;
- simulate known distributions for $j>k$;
- use the simulated values $x_{j}^{(s)}$ to find

$$
y^{(s)}=F\left(x_{1}^{(s)}, \ldots, x_{n}^{(s)}\right)
$$

- $\operatorname{sort} N$ values $y^{(s)}: y_{(1)} \leq y_{(2)} \leq \ldots \leq y_{\left(N_{i}\right)}$;
- take $y_{\left(N_{i} \cdot(1-\varepsilon)\right)}$ as $y_{0}$.
- Traditional belief: Monte-Carlo methods are inferior to analytical:
- they are approximate;
- they require large computation time;
- simulations for several distributions, may mis-calculate the (desired) maximum over all distributions.
- We proved: the value corresponding to the selected distributions indeed provide the desired maximum value $y_{0}$.
- General comment:
- justified Monte-Carlo methods often lead to faster computations than analytical techniques;
- example: multi-D integration - where Monte-Carlo methods were originally invented.


## 47. Comment about Non-Linear Terms

- Reminder: in the above formula $D_{i}=a_{i}+\sum_{j=1}^{n} a_{i j} \cdot x_{j}$, we ignored quadratic and higher order terms in the dependence of each path time $D_{i}$ on parameters $x_{j}$.
- In reality: we may need to take into account some quadratic terms.
- Idea behind possible solution: it is known that the max

Title Page

44


Page 48 of 64

Go Back

Full Screen

- the function function $D$ is still convex, - hence, our algorithm will work.

```
Home Page
```

- Consequence: estimates are over-conservative, hence over-design and under-performance of circuits.
- Objective: find the clock time as $y_{0}$ s.t. for the actual delay $y$, we have $\operatorname{Prob}\left(y>y_{0}\right) \leq \varepsilon$ for given $\varepsilon>0$.

Page 49 of 64

Go Back

Full Screen

- What we have described: a general technique that allows us, in particular, to compute $y_{0}$.

49. Combining Interval and Probabilistic
```
Home Page
```

Title Page

44

4

Page 50 of 64

Go Back

- Case 2: threshold-type $u(x)$.
- Conclusion: we need cdf $F(x)=\operatorname{Prob}(\xi \leq x)$.
- Case of uncertainty: p-box $[\underline{F}(x), \bar{F}(x)]$.

Close

Quit ,$- \cdot 1 / x$, max, min.

- General solution: parse to elementary operations +,
- Explicit formulas for arithmetic operations known for intervals, for p-boxes $\mathbf{F}(x)=[\underline{F}(x), \bar{F}(x)]$, for intervals

Case Study: Chip Design

## Combining Interval .

## Case Study:

Case Study: Detecting

> Home Page

Title Page


44


Go Back

Full Screen

## Close

Quit

- Easy cases: +, -, product of independent $x_{i}$.
- Example of a non-trivial case: multiplication $y=x_{1}$. $x_{2}$, when we have no information about the correlation:
- $\underline{E}=\max \left(p_{1}+p_{2}-1,0\right) \cdot \bar{x}_{1} \cdot \bar{x}_{2}+\min \left(p_{1}, 1-p_{2}\right) \cdot \bar{x}_{1} \cdot \underline{x}_{2}+$ $\min \left(1-p_{1}, p_{2}\right) \cdot \underline{x}_{1} \cdot \bar{x}_{2}+\max \left(1-p_{1}-p_{2}, 0\right) \cdot \underline{x}_{1} \cdot \underline{x}_{2} ;$


## Interval Arithmetic:

Case Study: Chip Design

## Combining Interval .

## Case Study:

Case Study: Detecting

> Home Page

- $\bar{E}=\min \left(p_{1}, p_{2}\right) \cdot \bar{x}_{1} \cdot \bar{x}_{2}+\max \left(p_{1}-p_{2}, 0\right) \cdot \bar{x}_{1} \cdot \underline{x}_{2}+$ $\max \left(p_{2}-p_{1}, 0\right) \cdot \underline{x}_{1} \cdot \bar{x}_{2}+\min \left(1-p_{1}, 1-p_{2}\right) \cdot \underline{x}_{1} \cdot \underline{x}_{2}$, where $p_{i} \stackrel{\text { def }}{=}\left(E_{i}-\underline{x}_{i}\right) /\left(\bar{x}_{i}-\underline{x}_{i}\right)$.

Title Page

44


Go Back

Full Screen

Close

Quit

- intervals +2 nd moments:


Interval Arithmetic:
Case Study: Chip Design

## Combining Interval .

## Case Study:

Case Study: Detecting

Home Page

Title Page

- moments + p-boxes; e.g.:


Page 53 of 64

Go Back

Full Screen

Close

Quit

- Solution: we measure $y_{i} \approx x_{i} \cdot c+\left(1-x_{i}\right) \cdot h$, where $x_{i}$ is the percentage of cancer cells in $i$-th sample.
- Equivalent form: $a \cdot x_{i}+h \approx y_{i}$, where $a \stackrel{\text { def }}{=} c-h$.

```
    Home Page
Home Page
```

Title Page

44


Page 54 of 64

Go Back

Full Screen

Close

Quit

## 54. Case Study: Bioinformatics (cont-d)

## Combining Interval

## Case Study:

Case Study: Detecting
Home Page

Title Page
"

$$
C(x, y)=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-E(x)\right) \cdot\left(y_{i}-E(y)\right)
$$

- Interval uncertainty: experts manually count $x_{i}$, and only provide interval bounds $\mathbf{x}_{i}$, e.g., $x_{i} \in[0.7,0.8]$.

Page 55 of 64

Go Back

Full Screen

- Problem: find the range of $a$ and $h$ corresponding to all possible values $x_{i} \in\left[\underline{x}_{i}, \bar{x}_{i}\right]$.


## 55. General Problem

- General problem:
- we know intervals $\mathbf{x}_{1}=\left[\underline{x}_{1}, \bar{x}_{1}\right], \ldots, \mathbf{x}_{n}=\left[\underline{x}_{n}, \bar{x}_{n}\right]$,
- compute the range of $E(x)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, population

$$
\text { variance } V=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-E(x)\right)^{2} \text {, etc. }
$$

## Interval Arithmetic:

Case Study: Chip Design

## Combining Interval .

## Case Study:

Case Study: Detecting

> Home Page

```
Title Page
```

- Difficulty: NP-hard even for variance.
- Known:
- efficient algorithms for $\underline{V}$,
- efficient algorithms for $\bar{V}$ and $C(x, y)$ for reasonable situations.
- Bioinformatics case: find intervals for $C(x, y)$ and for $V(x)$ and divide.

```
Full Screen
Full Screen
``` Close
Go Back

Quit
- In many application areas, it is important to detect outliers, i.e., unusual, abnormal values.
- In medicine, unusual values may indicate disease.
- In geophysics, abnormal values may indicate a mineral deposit (or an erroneous measurement result).

Interval Arithmetic:
Case Study: Chip Design

\section*{Combining Interval.}

Case Study:
Case Study: Detecting
Home Page
- In structural integrity testing, abnormal values may in-

Title Page dicate faults in a structure.
- Traditional engineering approach: a new measurement result \(x\) is classified as an outlier if \(x \notin[L, U]\), where
\[
L \stackrel{\text { def }}{=} E-k_{0} \cdot \sigma, \quad U \stackrel{\text { def }}{=} E+k_{0} \cdot \sigma,
\]
and \(k_{0}>1\) is pre-selected.
- Comment: most frequently, \(k_{0}=2,3\), or 6 .
```

Full Screen

```

Close

Quit

\section*{57. Outlier Detection Under Interval Uncertainty:}

\section*{A Problem}
- In some practical situations, we only have intervals \(\mathbf{x}_{i}=\left[\underline{x}_{i}, \bar{x}_{i}\right]\).
- Different \(x_{i} \in \mathbf{x}_{i}\) lead to different intervals \([L, U]\).
- A possible outlier: outside some \(k_{0}\)-sigma interval.
```

Home Page

```
- Example: structural integrity - not to miss a fault.

Title Page
- A guaranteed outlier: outside all \(k_{0}\)-sigma intervals.
- Example: before a surgery, we want to make sure that there is a micro-calcification.
- A value \(x\) is a possible outlier if \(x \notin[\bar{L}, \underline{U}]\).
- A value \(x\) is a guaranteed outlier if \(x \notin[\underline{L}, \bar{U}]\).
- Conclusion: to detect outliers, we must know the ranges of \(L=E-k_{0} \cdot \sigma\) and \(U=E+k_{0} \cdot \sigma\).
58. Outlier Detection Under Interval Uncertainty:

\section*{A Solution}
- We need: to detect outliers, we must compute the ranges of \(L=E-k_{0} \cdot \sigma\) and \(U=E+k_{0} \cdot \sigma\).
- We know: how to compute the ranges \(\mathbf{E}\) and \([\underline{\sigma}, \bar{\sigma}]\) for \(E\) and \(\sigma\).
- Possibility: use interval computations to conclude that \(L \in \mathbf{E}-k_{0} \cdot[\underline{\sigma}, \bar{\sigma}]\) and \(L \in \mathbf{E}+k_{0} \cdot[\underline{\sigma}, \bar{\sigma}]\).
- Problem: the resulting intervals for \(L\) and \(U\) are wider than the actual ranges.
- Reason: \(E\) and \(\sigma\) use the same inputs \(x_{1}, \ldots, x_{n}\) and

Page 59 of 64

Go Back

Full Screen

Close

Quit

\section*{59. Acknowledgments}

This work was supported in part by the National Science Foundation grants:
- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
- DUE-0926721.

\section*{Combining Interval .}

\section*{Case Study:}

Case Study: Detecting

> Home Page

Title Page

44


Page 60 of 64

Go Back

Full Screen

Close

Quit


\section*{Interval Arithmetic:}

\section*{Case Study: Chip Design}

\section*{Combining Interval .}

\section*{Case Study:}

Case Study: Detecting
Home Page
- Given: an algorithm \(y=f\left(x_{1}, \ldots, x_{n}\right)\) and \(n\) fuzzy

Title Page numbers \(\mu_{i}\left(x_{i}\right)\).
- Compute: \(\mu(y)=\max _{x_{1}, \ldots, x_{n}: f\left(x_{1}, \ldots, x_{n}\right)=y} \min \left(\mu_{1}\left(x_{1}\right), \ldots, \mu_{n}\left(x_{n}\right)\right)\).
- Motivation: \(y\) is a possible value of \(Y \leftrightarrow \exists x_{1}, \ldots, x_{n}\) s.t.
each \(x_{i}\) is a possible value of \(X_{i}\) and \(f\left(x_{1}, \ldots, x_{n}\right)=y\).

Page 61 of 64

Go Back
- Details: "and" is min, \(\exists\) ("or") is max, hence

\section*{Full Screen}

\section*{Close}

Quit
61. Fuzzy Computations: Reduction to Interval Computations
- Problem (reminder):
- Given: an algorithm \(y=f\left(x_{1}, \ldots, x_{n}\right)\) and \(n\) fuzzy numbers \(X_{i}\) described by membership functions \(\mu_{i}\left(x_{i}\right)\).
- Compute: \(Y=f\left(X_{1}, \ldots, X_{n}\right)\), where \(Y\) is defined by Zadeh's extension principle:
```

Home Page

```
\[
\mu(y)=\max _{x_{1}, \ldots, x_{n}: f\left(x_{1}, \ldots, x_{n}\right)=y} \min \left(\mu_{1}\left(x_{1}\right), \ldots, \mu_{n}\left(x_{n}\right)\right)
\]
- Idea: represent each \(X_{i}\) by its \(\alpha\)-cuts
\[
X_{i}(\alpha)=\left\{x_{i}: \mu_{i}\left(x_{i}\right) \geq \alpha\right\} .
\]
- Resulting algorithm: for \(\alpha=0,0.1,0.2, \ldots, 1\) apply interval computations techniques to compute \(Y(\alpha)\).

Title Page

44
4
Page 62 of 64
- Advantage: for continuous \(f\), for every \(\alpha\), we have
\[
Y(\alpha)=f\left(X_{1}(\alpha), \ldots, X_{n}(\alpha)\right) .
\]
- Let us fix the optimal distributions for \(x_{2}, \ldots, x_{n}\); then,
\[
\operatorname{Prob}\left(D \leq y_{0}\right)=\sum_{\left(x_{1}, \ldots, x_{n}\right): D\left(x_{1}, \ldots, x_{n}\right) \leq y_{0}} p_{1}\left(x_{1}\right) \cdot p_{2}\left(x_{2}\right) \cdot \ldots
\]

Interval Arithmetic:
Case Study: Chip Design

\section*{Combining Interval .}

\section*{Case Study:}

Case Study: Detecting
Home Page

Title Page
- Restrictions: \(q_{i} \geq 0, \sum_{i=0}^{N} q_{i}=1\), and \(\sum_{i=0}^{N} q_{i} \cdot v_{i}=E_{1}\).
- Thus, the worst-case distribution for \(x_{1}\) is a solution to the following linear programming (LP) problem:

Page 63 of 64
Minimize \(\sum_{i=0}^{N} c_{i} \cdot q_{i}\) under the constraints \(\sum_{i=0}^{N} q_{i}=1\) and
\[
\sum_{i=0}^{N} q_{i} \cdot v_{i}=E_{1}, q_{i} \geq 0, \quad i=0,1,2, \ldots, N
\]
- Minimize: \(\sum_{i=0}^{N} c_{i} \cdot q_{i}\) under the constraints \(\sum_{i=0}^{N} q_{i}=1\) and \(\sum_{i=0}^{N} q_{i} \cdot v_{i}=E_{1}, q_{i} \geq 0, \quad i=0,1,2, \ldots, N\). \(\geq N+1\) constraints are equalities.
- In our case: we have 2 equalities, so at least \(N-1\) constraints \(q_{i} \geq 0\) are equalities.
- Hence, no more than 2 values \(q_{i}=p_{1}\left(v_{i}\right)\) are non- 0 .
- If corresponding \(v\) or \(v^{\prime}\) are in \(\left(\underline{x}_{1}, \bar{x}_{1}\right)\), then for \(\left[v, v^{\prime}\right] \subset\) \(\mathbf{x}_{1}\) we get the same \(y_{0}\) - in contradiction to non-degeneracy.
- Thus, the worst-case distribution is located at \(\underline{x}_{1}\) and \(\bar{x}_{1}\).
- The condition that the mean of \(x_{1}\) is \(E_{1}\) leads to the desired formulas for \(\underline{p}_{1}\) and \(\bar{p}_{1}\).

Title Page

44

\section*{4}

Page 64 of 64```

