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1. Science in the Ideal World

• How can we make inference about the real world?

• How can we predict its future state?

• In the ideal world, we can measure everything with
perfect accuracy.

• The only challenges are:

– solving the corresponding equations and

– making predictions based on these solutions.
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2. Science in Real World

• In practice, measurement accuracy is limited.

• The measurement result x̃ is, in general, different from

the actual value x: ∆x
def
= x̃− x 6= 0.

• Often, the only information we have about measure-
ment error ∆x is the upper bound ∆ on |∆x|: |∆x| ≤
∆.

• In this case, after each measurement, possible values
of the quantity x form an interval [x̃−∆, x̃+ ∆].
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3. Modal Logic Is Needed

• Under such interval uncertainty, for many properties,
we cannot say for sure whether this property is true.

• For example, stability means that real parts r of eigen-
values are non-positive.

• If r ∈ [−1,−2], the system is necessarily stable.

• If we only know that r ∈ [−1, 1], the system is possibly
stable and possibly not.

• In effect, we need modal logic (or, to be precise, modal
mathematics).
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4. Need to Compute

• And this all needs to be computed.

• So we need to use tools and results from constructive
and computable mathematics.

• We also need to take computational complexity into
account.

• In this talk, we show how all this is combined in interval
mathematics.

• Yuri Matiyasevich, one of its pioneers and supporters,
came from constructive mathematics.

• So, he used to call it applied constructive mathematics.

• However, it can be also called applied modal mathe-
matics.

• Let’s get to formulas.
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5. General Problem of Data Processing
under Uncertainty

• Indirect measurements: way to measure y that are dif-
ficult (or even impossible) to measure directly.

• Idea: y = f(x1, . . . , xn)

-

· · ·
-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

• Problem: measurements are never 100% accurate: x̃i 6=
xi (∆xi 6= 0) hence

ỹ = f(x̃1, . . . , x̃n) 6= y = f(x1, . . . , xn).

What are bounds on ∆y
def
= ỹ − y?
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6. Probabilistic and Interval Uncertainty

-

. . .

-

-

∆xn

∆x2

∆x1

-∆yf

• Traditional approach: we know probability distribution
for ∆xi (usually Gaussian).

• Where it comes from: calibration using standard MI.

• Problem: calibration is not possible in:

– fundamental science

– manufacturing

• Solution: we know upper bounds ∆i on |∆xi| hence

xi ∈ [x̃i −∆i, x̃i + ∆i].
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7. Interval Computations: A Problem

-

· · ·
-

-

xn

x2

x1

-y = f(x1, . . . ,xn)f

• Given: an algorithm y = f(x1, . . . , xn) and n intervals
xi = [xi, xi].

• Compute: the corresponding range of y:

[y, y] = {f(x1, . . . , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

• Fact: NP-hard even for quadratic f .

• Challenge: when are feasible algorithms possible?

• Challenge: when computing y = [y, y] is not feasible,
find a good approximation Y ⊇ y.
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8. Alternative Approach: Maximum Entropy

• Situation: in many practical applications, it is very
difficult to come up with the probabilities.

• Traditional engineering approach: use probabilistic tech-
niques.

• Problem: many different probability distributions are
consistent with the same observations.

• Solution: select one of these distributions – e.g., the
one with the largest entropy.

• Example – single variable: if all we know is that x ∈
[x, x], then MaxEnt leads to a uniform distribution.

• Example – multiple variables: different variables are
independently distributed.
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9. Limitations of Maximum Entropy Approach

• Example: simplest algorithm y = x1 + . . .+ xn.

• Measurement errors: ∆xi ∈ [−∆,∆].

• Analysis: ∆y = ∆x1 + . . .+ ∆xn.

• Worst case situation: ∆y = n ·∆.

• Maximum Entropy approach: due to Central Limit The-

orem, ∆y is ≈ normal, with σ = ∆ ·
√
n√
3

.

• Why this may be inadequate: we get ∆ ∼
√
n, but due

to correlation, it is possible that ∆ = n ·∆ ∼ n�
√
n.

• Conclusion: using a single distribution can be very
misleading, especially if we want guaranteed results.

• Examples: high-risk application areas such as space
exploration or nuclear engineering.
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10. Linearization is Usually Possible

• In many practical situations, the errors ∆xi are small,
so we can ignore quadratic terms:

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn) =

f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn) ≈
c1 ·∆x1 + . . .+ cn ·∆xn,

where ci
def
=

∂f

∂xi
(x̃1, . . . , x̃n).

• For a linear function, the largest ∆y is obtained when
each term ci ·∆xi is the largest:

∆ = |c1| ·∆1 + . . .+ |cn| ·∆n.

• Due to the linearization assumption, we can estimate
each partial derivative ci as

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
.
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11. Linearization: Algorithm

To compute the range y of y, we do the following.

• First, we apply the algorithm f to the original esti-
mates x̃1, . . . , x̃n, resulting in the value ỹ = f(x̃1, . . . , x̃n).

• Second, for all i from 1 to n,

– we compute f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) for
some small hi and then

– we compute

ci =
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
.

• Finally, we compute ∆ = |c1| ·∆1 + . . .+ |cn| ·∆n and
the desired range y = [ỹ −∆, ỹ + ∆].

• Problem: we need n+1 calls to f , and this is often too
long.
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12. Cauchy Deviate Method: Idea

• For large n, we can further reduce the number of calls
to f if we Cauchy distributions, w/pdf

ρ(z) =
∆

π · (z2 + ∆2)
.

• Known property of Cauchy transforms:

– if z1, . . . , zn are independent Cauchy random vari-
ables w/parameters ∆1, . . . ,∆n,

– then z = c1 · z1 + . . . + cn · zn is also Cauchy dis-
tributed, w/parameter

∆ = |c1| ·∆1 + . . .+ |cn| ·∆n.

• This is exactly what we need to estimate interval un-
certainty!



General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . . .

Home Page

Title Page

JJ II

J I

Page 14 of 64

Go Back

Full Screen

Close

Quit

13. Cauchy Deviate Method: Towards Implemen-
tation

• To implement the Cauchy idea, we must answer the
following questions:

– how to simulate the Cauchy distribution; and

– how to estimate the parameter ∆ of this distribu-
tion from a finite sample.

• Simulation can be based on the functional transforma-
tion of uniformly distributed sample values:

δi = ∆i · tan(π · (ri − 0.5)), where ri ∼ U([0, 1]).

• To estimate ∆, we can apply the Maximum Likelihood
Method ρ(δ(1)) · ρ(δ(2)) · . . . · ρ(δ(N))→ max, i.e., solve

1

1 +

(
δ(1)

∆

)2 + . . .+
1

1 +

(
δ(N)

∆

)2 =
N

2
.
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14. Cauchy Deviates Method: Algorithm

• Apply f to x̃i; we get ỹ := f(x̃1, . . . , x̃n).

• For k = 1, 2, . . . , N , repeat the following:

• use the standard RNG to draw r
(k)
i ∼ U([0, 1]),

i = 1, 2, . . . , n;

• compute Cauchy distributed values
c
(k)
i := tan(π · (r(k)i − 0.5));

• compute K := maxi |c(k)i | and normalized errors

δ
(k)
i := ∆i · c(k)i /K;

• compute the simulated “actual values”
x
(k)
i := x̃i − δ(k)i ;

• compute simulated errors of indirect measurement:

δ(k) := K ·
(
ỹ − f

(
x
(k)
1 , . . . , x

(k)
n

))
;

• Compute ∆ by applying the bisection method to solve
the Maximum Likelihood equation.
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15. Important Comment

• To avoid confusion, we should emphasize that:

– in contrast to the Monte-Carlo solution for the prob-
abilistic case,

– the use of Cauchy distribution in the interval case
is a computational trick,

– it is not a truthful simulation of the actual mea-
surement error ∆xi.

• Indeed:

– we know that the actual value of ∆xi is always in-
side the interval [−∆i,∆i], but

– a Cauchy distributed random attains values outside
this interval as well.
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16. Approximate Methods – Such As Linearizaion
– Are Sometimes Not Sufficient

• In many application areas, it is sufficient to have an
approximate estimate of y.

• Sometimes, we need to guarantee that y does not ex-
ceed a certain threshold y0. Examples:

– in nuclear engineering, the temperatures and the
neutron flows should not exceed the critical values;

– a space ship lands on the planet and does not fly
past it, etc.

• The only way to guarantee this is to have an interval
Y =

[
Y , Y

]
for which y ⊆ Y and Y ≤ y0.

• Such an interval is called an enclosure.

• Computing such an enclosure is one of the main tasks
of interval computations.
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17. Interval Computations: A Brief History

• Origins: Archimedes (Ancient Greece)

• Modern pioneers: Warmus (Poland), Sunaga (Japan),
Moore (USA), 1956–59

• First boom: early 1960s.

• First challenge: taking interval uncertainty into ac-
count when planning spaceflights to the Moon.

• Current applications (sample):

– design of elementary particle colliders: Berz, Kyoko
(USA)

– will a comet hit the Earth: Berz, Moore (USA)

– robotics: Jaulin (France), Neumaier (Austria)

– chemical engineering: Stadtherr (USA)
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18. Interval Arithmetic: Foundations of Interval
Techniques

• Problem: compute the range

[y, y] = {f(x1, . . . , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

• Interval arithmetic: for arithmetic operations f(x1, x2)
(and for elementary functions), we have explicit formu-
las for the range.

• Examples: when x1 ∈ x1 = [x1, x1] and x2 ∈ x2 =
[x2, x2], then:

– The range x1 + x2 for x1 + x2 is [x1 + x2, x1 + x2].

– The range x1 − x2 for x1 − x2 is [x1 − x2, x1 − x2].
– The range x1 · x2 for x1 · x2 is [y, y], where

y = min(x1 · x2, x1 · x2, x1 · x2, x1 · x2);
y = max(x1 · x2, x1 · x2, x1 · x2, x1 · x2).

• The range 1/x1 for 1/x1 is [1/x1, 1/x1] (if 0 6∈ x1).
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19. Straightforward Interval Computations:
Example

• Example: f(x) = (x− 2) · (x+ 2), x ∈ [1, 2].

• How will the computer compute it?

• r1 := x− 2;

• r2 := x+ 2;

• r3 := r1 · r2.
• Main idea: perform the same operations, but with in-

tervals instead of numbers:

• r1 := [1, 2]− [2, 2] = [−1, 0];

• r2 := [1, 2] + [2, 2] = [3, 4];

• r3 := [−1, 0] · [3, 4] = [−4, 0].

• Actual range: f(x) = [−3, 0].

• Comment: this is just a toy example, there are more
efficient ways of computing an enclosure Y ⊇ y.
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20. First Idea: Use of Monotonicity

• Reminder: for arithmetic, we had exact ranges.

• Reason: +, −, · are monotonic in each variable.

• How monotonicity helps: if f(x1, . . . , xn) is (non-strictly)
increasing (f ↑) in each xi, then

f(x1, . . . ,xn) = [f(x1, . . . , xn), f(x1, . . . , xn)].

• Similarly: if f ↑ for some xi and f ↓ for other xj.

• Fact: f ↑ in xi if
∂f

∂xi
≥ 0.

• Checking monotonicity: check that the range [ri, ri] of
∂f

∂xi
on xi has ri ≥ 0.

• Differentiation: by Automatic Differentiation (AD) tools.

• Estimating ranges of
∂f

∂xi
: straightforward interval comp.
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21. Monotonicity: Example

• Idea: if the range [ri, ri] of each
∂f

∂xi
on xi has ri ≥ 0,

then

f(x1, . . . ,xn) = [f(x1, . . . , xn), f(x1, . . . , xn)].

• Example: f(x) = (x− 2) · (x+ 2), x = [1, 2].

• Case n = 1: if the range [r, r] of
df

dx
on x has r ≥ 0,

then
f(x) = [f(x), f(x)].

• AD:
df

dx
= 1 · (x+ 2) + (x− 2) · 1 = 2x.

• Checking: [r, r] = [2, 4], with 2 ≥ 0.

• Result: f([1, 2]) = [f(1), f(2)] = [−3, 0].

• Comparison: this is the exact range.
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22. Non-Monotonic Example

• Example: f(x) = x · (1− x), x ∈ [0, 1].

• How will the computer compute it?

• r1 := 1− x;

• r2 := x · r1.
• Straightforward interval computations:

• r1 := [1, 1]− [0, 1] = [0, 1];

• r2 := [0, 1] · [0, 1] = [0, 1].

• Actual range: min, max of f at x, x, or when
df

dx
= 0.

• Here,
df

dx
= 1− 2x = 0 for x = 0.5, thus we:

• compute f(0) = 0, f(0.5) = 0.25, and f(1) = 0, so

• y = min(0, 0.25, 0) = 0, y = max(0, 0.25, 0) = 0.25.

• Resulting range: f(x) = [0, 0.25].
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23. Second Idea: Centered Form

• Main idea: Intermediate Value Theorem

f(x1, . . . , xn) = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(χ) · (xi − x̃i)

for some χi ∈ xi.

• Corollary: f(x1, . . . , xn) ∈ Y, where

Y = ỹ +
n∑

i=1

∂f

∂xi
(x1, . . . ,xn) · [−∆i,∆i].

• Differentiation: by Automatic Differentiation (AD) tools.

• Estimating the ranges of derivatives:

– if appropriate, by monotonicity, or

– by straightforward interval computations, or

– by centered form (more time but more accurate).
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24. Centered Form: Example

• General formula:

Y = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(x1, . . . ,xn) · [−∆i,∆i].

• Example: f(x) = x · (1− x), x = [0, 1].

• Here, x = [x̃−∆, x̃+ ∆], with x̃ = 0.5 and ∆ = 0.5.

• Case n = 1: Y = f(x̃) +
df

dx
(x) · [−∆,∆].

• AD:
df

dx
= 1 · (1− x) + x · (−1) = 1− 2x.

• Estimation: we have
df

dx
(x) = 1− 2 · [0, 1] = [−1, 1].

• Result: Y = 0.5 · (1 − 0.5) + [−1, 1] · [−0.5, 0.5] =
0.25 + [−0.5, 0.5] = [−0.25, 0.75].

• Comparison: actual range [0, 0.25], straightforward [0, 1].
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25. Third Idea: Bisection

• Known: accuracy O(∆2
i ) of first order formula

f(x1, . . . , xn) = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(χ) · (xi − x̃i).

• Idea: if the intervals are too wide, we:

– split one of them in half (∆2
i → ∆2

i/4); and

– take the union of the resulting ranges.

• Example: f(x) = x · (1− x), where x ∈ x = [0, 1].

• Split: take x′ = [0, 0.5] and x′′ = [0.5, 1].

• 1st range: 1− 2 · x = 1− 2 · [0, 0.5] = [0, 1], so f ↑ and
f(x′) = [f(0), f(0.5)] = [0, 0.25].

• 2nd range: 1 − 2 · x = 1 − 2 · [0.5, 1] = [−1, 0], so f ↓
and f(x′′) = [f(1), f(0.5)] = [0, 0.25].

• Result: f(x′) ∪ f(x′′) = [0, 0.25] – exact.
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26. Alternative Approach: Affine Arithmetic

• So far: we compute the range of x · (1 − x) by multi-
plying ranges of x and 1− x.

• We ignore: that both factors depend on x and are,
thus, dependent.

• Idea: for each intermediate result a, keep an explicit
dependence on ∆xi = x̃i−xi (at least its linear terms).

• Implementation:

a = a0 +
n∑

i=1

ai ·∆xi + [a, a].

• We start: with xi = x̃i −∆xi, i.e.,

x̃i+0·∆x1+. . .+0·∆xi−1+(−1)·∆xi+0·∆xi+1+. . .+0·∆xn+[0, 0].

• Description: a0 = x̃i, ai = −1, aj = 0 for j 6= i, and
[a, a] = [0, 0].
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27. Affine Arithmetic: Operations

• Representation: a = a0 +
n∑

i=1

ai ·∆xi + [a, a].

• Input: a = a0+
n∑

i=1

ai·∆xi+a and b = b0+
n∑

i=1

bi·∆xi+b.

• Operations: c = a⊗ b.
• Addition: c0 = a0 + b0, ci = ai + bi, c = a + b.

• Subtraction: c0 = a0 − b0, ci = ai − bi, c = a− b.

• Multiplication: c0 = a0 · b0, ci = a0 · bi + b0 · ai,
c = a0 · b + b0 · a +

∑
i6=j

ai · bj · [−∆i,∆i] · [−∆j,∆j]+

∑
i

ai · bi · [−∆i,∆i]
2+(∑

i

ai · [−∆i,∆i]

)
·b+

(∑
i

bi · [−∆i,∆i]

)
·a+a ·b.
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28. Affine Arithmetic: Example

• Example: f(x) = x · (1− x), x ∈ [0, 1].

• Here, n = 1, x̃ = 0.5, and ∆ = 0.5.

• How will the computer compute it?

• r1 := 1− x;

• r2 := x · r1.

• Affine arithmetic: we start with x = 0.5−∆x+ [0, 0];

• r1 := 1− (0.5−∆x) = 0.5 + ∆x;

• r2 := (0.5−∆x) · (0.5 + ∆x), i.e.,

r2 = 0.25 + 0 ·∆x− [−∆,∆]2 = 0.25 + [−∆2, 0].

• Resulting range: y = 0.25 + [−0.25, 0] = [0, 0.25].

• Comparison: this is the exact range.
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29. Affine Arithmetic: Towards More Accurate
Estimates

• In our simple example: we got the exact range.

• In general: range estimation is NP-hard.

• Meaning: a feasible (polynomial-time) algorithm will
sometimes lead to excess width: Y ⊃ y.

• Conclusion: affine arithmetic may lead to excess width.

• Question: how to get more accurate estimates?

• First idea: bisection.

• Second idea (Taylor arithmetic):

– affine arithmetic: a = a0 +
∑
ai ·∆xi + a;

– meaning: we keep linear terms in ∆xi;

– idea: keep, e.g., quadratic terms

a = a0 +
∑

ai ·∆xi +
∑

aij ·∆xi ·∆xj + a.
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30. Interval Computations vs. Affine Arithmetic:
Comparative Analysis

• Objective: we want a method that computes a reason-
able estimate for the range in reasonable time.

• Conclusion – how to compare different methods:

– how accurate are the estimates, and

– how fast we can compute them.

• Accuracy: affine arithmetic leads to more accurate ranges.

• Computation time:

– Interval arithmetic: for each intermediate result a,
we compute two values: endpoints a and a of [a, a].

– Affine arithmetic: for each a, we compute n + 3
values:

a0 a1, . . . , an a, a.

• Conclusion: affine arithmetic is ∼ n times slower.
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31. Solving Systems of Equations: Extending Known
Algorithms to Situations with Interval
Uncertainty

• We have: a system of equations gi(y1, . . . , yn) = ai with
unknowns yi;

• We know: ai with interval uncertainty: ai ∈ [ai, ai];

• We want: to find the corresponding ranges of yj.

• First case: for exactly known ai, we have an algorithm
yj = fj(a1, . . . , an) for solving the system.

• Example: system of linear equations.

• Solution: apply interval computations techniques to
find the range fj([a1, a1], . . . , [an, an]).

• Better solution: for specific equations, we often already
know which ideas work best.

• Example: linear equations Ay = b; y is monotonic in b.
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32. Solving Systems of Equations When No
Algorithm Is Known

• Idea:

– parse each equation into elementary constraints,
and

– use interval computations to improve original ranges
until we get a narrow range (= solution).

• First example: x− x2 = 0.5, x ∈ [0, 1] (no solution).

• Parsing: r1 = x2, 0.5 (= r2) = x− r1.

• Rules: from r1 = x2, we extract two rules:

(1) x→ r1 = x2; (2) r1 → x =
√
r1;

from 0.5 = x− r1, we extract two more rules:

(3) x→ r1 = x− 0.5; (4) r1 → x = r1 + 0.5.
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33. Solving Systems of Equations When No
Algorithm Is Known: Example

• (1) r = x2; (2) x =
√
r; (3) r = x−0.5; (4) x = r+0.5.

• We start with: x = [0, 1], r = (−∞,∞).

(1) r = [0, 1]2 = [0, 1], so rnew = (−∞,∞) ∩ [0, 1] = [0, 1].

(2) xnew =
√

[0, 1] ∩ [0, 1] = [0, 1] – no change.

(3) rnew = ([0, 1]−0.5)∩[0, 1] = [−0.5, 0.5]∩[0, 1] = [0, 0.5].

(4) xnew = ([0, 0.5] + 0.5)∩ [0, 1] = [0.5, 1]∩ [0, 1] = [0.5, 1].

(1) rnew = [0.5, 1]2 ∩ [0, 0.5] = [0.25, 0.5].

(2) xnew =
√

[0.25, 0.5] ∩ [0.5, 1] = [0.5, 0.71];
round a down ↓ and a up ↑, to guarantee enclosure.

(3) rnew = ([0.5, 0.71]−0.5)∩[0.25, 5] = [0.0.21]∩[0.25, 0.5],
i.e., rnew = ∅.

• Conclusion: the original equation has no solutions.
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34. Solving Systems of Equations: 2nd Example

• Example: x− x2 = 0, x ∈ [0, 1].

• Parsing: r1 = x2, 0 (= r2) = x− r1.

• Rules: (1) r = x2; (2) x =
√
r; (3) r = x; (4) x = r.

• We start with: x = [0, 1], r = (−∞,∞).

• Problem: after Rule 1, we’re stuck with x = r = [0, 1].

• Solution: bisect x = [0, 1] into [0, 0.5] and [0.5, 1].

• For 1st subinterval:

– Rule 1 leads to rnew = [0, 0.5]2 ∩ [0, 0.5] = [0, 0.25];

– Rule 4 leads to xnew = [0, 0.25];

– Rule 1 leads to rnew = [0, 0.25]2 = [0, 0.0625];

– Rule 4 leads to xnew = [0, 0.0625]; etc.

– we converge to x = 0.

• For 2nd subinterval: we converge to x = 1.
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35. Optimization: Extending Known Algorithms
to Situations with Interval Uncertainty

• Problem: find y1, . . . , ym for which

g(y1, . . . , ym, a1, . . . , am)→ max .

• We know: ai with interval uncertainty: ai ∈ [ai, ai];

• We want: to find the corresponding ranges of yj.

• First case: for exactly known ai, we have an algorithm
yj = fj(a1, . . . , an) for solving the optimization prob-
lem.

• Example: quadratic objective function g.

• Solution: apply interval computations techniques to
find the range fj([a1, a1], . . . , [an, an]).

• Better solution: for specific f , we often already know
which ideas work best.
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36. Optimization When No Algorithm Is Known

• Idea: divide the original box x into subboxes b.

• If max
x∈b

g(x) < g(x′) for a known x′, dismiss b.

• Example: g(x) = x · (1− x), x = [0, 1].

• Divide into 10 (?) subboxes b = [0, 0.1], [0.1, 0.2], . . .

• Find g(̃b) for each b; the largest is 0.45 ·0.55 = 0.2475.

• Compute G(b) = g(̃b) + (1− 2 · b) · [−∆,∆].

• Dismiss subboxes for which Y < 0.2475.

• Example: for [0.2, 0.3], we have

0.25 · (1− 0.25) + (1− 2 · [0.2, 0.3]) · [−0.05, 0.05].

• Here Y = 0.2175 < 0.2475, so we dismiss [0.2, 0.3].

• Result: keep only boxes ⊆ [0.3, 0.7].

• Further subdivision: get us closer and closer to x = 0.5.
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37. Case Study: Chip Design

• Chip design: one of the main objectives is to decrease
the clock cycle.

• Current approach: uses worst-case (interval) techniques.

• Problem: the probability of the worst-case values is
usually very small.

• Result: estimates are over-conservative – unnecessary
over-design and under-performance of circuits.

• Difficulty: we only have partial information about the
corresponding probability distributions.

• Objective: produce estimates valid for all distributions
which are consistent with this information.

• What we do: provide such estimates for the clock time.
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38. Estimating Clock Cycle: a Practical Problem

• Objective: estimate the clock cycle on the design stage.

• The clock cycle of a chip is constrained by the maxi-
mum path delay over all the circuit paths

D
def
= max(D1, . . . , DN).

• The path delay Di along the i-th path is the sum of
the delays corresponding to the gates and wires along
this path.

• Each of these delays, in turn, depends on several factors
such as:

– the variation caused by the current design prac-
tices,

– environmental design characteristics (e.g., variations
in temperature and in supply voltage), etc.
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39. Traditional (Interval) Approach to Estimating
the Clock Cycle

• Traditional approach: assume that each factor takes
the worst possible value.

• Result: time delay when all the factors are at their
worst.

• Problem:

– different factors are usually independent;

– combination of worst cases is improbable.

• Computational result: current estimates are 30% above
the observed clock time.

• Practical result: the clock time is set too high – chips
are over-designed and under-performing.
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40. Robust Statistical Methods Are Needed

• Ideal case: we know probability distributions.

• Solution: Monte-Carlo simulations.

• In practice: we only have partial information about the
distributions of some of the parameters; usually:

– the mean, and

– some characteristic of the deviation from the mean
– e.g., the interval that is guaranteed to contain
possible values of this parameter.

• Possible approach: Monte-Carlo with several possible
distributions.

• Problem: no guarantee that the result is a valid bound
for all possible distributions.

• Objective: provide robust bounds, i.e., bounds that
work for all possible distributions.
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41. Towards a Mathematical Formulation of the
Problem

• General case: each gate delay d depends on the dif-
ference x1, . . . , xn between the actual and the nominal
values of the parameters.

• Main assumption: these differences are usually small.

• Each path delay Di is the sum of gate delays.

• Conclusion: Di is a linear function: Di = ai+
n∑

j=1

aij ·xj

for some ai and aij.

• The desired maximum delay D = max
i
Di has the form

D = F (x1, . . . , xn)
def
= max

i

(
ai +

n∑
j=1

aij · xj

)
.
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42. Towards a Mathematical Formulation of the
Problem (cont-d)

• Known: maxima of linear function are exactly convex
functions:

F (α · x+ (1− α) · y) ≤ α · F (x) + (1− α) · F (y)

for all x, y and for all α ∈ [0, 1];

• We know: factors xi are independent;

– we know distribution of some of the factors;

– for others, we know ranges [xj, xj] and means Ej.

• Given: a convex function F ≥ 0 and a number ε > 0.

• Objective: find the smallest y0 s.t. for all possible dis-
tributions, we have y ≤ y0 with the probability ≥ 1−ε.
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43. Additional Property: Dependency is
Non-Degenerate

• Fact: sometimes, we learn additional information about
one of the factors xj.

• Example: we learn that xj actually belongs to a proper
subinterval of the original interval [xj, xj].

• Consequence: the class P of possible distributions is
replaced with P ′ ⊂ P .

• Result: the new value y′0 can only decrease: y′0 ≤ y0.

• Fact: if xj is irrelevant for y, then y′0 = y0.

• Assumption: irrelevant variables been weeded out.

• Formalization: if we narrow down one of the intervals
[xj, xj], the resulting value y0 decreases: y′0 < y0.
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44. Formulation of the Problem

GIVEN: • n, k ≤ n, ε > 0;

• a convex function y = F (x1, . . . , xn) ≥ 0;

• n− k cdfs Fj(x), k + 1 ≤ j ≤ n;

• intervals x1, . . . ,xk, values E1, . . . , Ek,

TAKE: all joint probability distributions on Rn for which:

• all xi are independent,

• xj ∈ xj, E[xj] = Ej for j ≤ k, and

• xj have distribution Fj(x) for j > k.

FIND: the smallest y0 s.t. for all such distributions,
F (x1, . . . , xn) ≤ y0 with probability ≥ 1− ε.

WHEN: the problem is non-degenerate – if we narrow down
one of the intervals xj, y0 decreases.
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45. Main Result and How We Can Use It

• Result: y0 is attained when for each j from 1 to k,

• xj = xj with probability p
j

def
=
xj − Ej

xj − xj
, and

• xj = xj with probability pj
def
=
Ej − xj
xj − xj

.

• Algorithm:

• simulate these distributions for xj, j < k;

• simulate known distributions for j > k;

• use the simulated values x
(s)
j to find

y(s) = F (x
(s)
1 , . . . , x(s)n );

• sort N values y(s): y(1) ≤ y(2) ≤ . . . ≤ y(Ni);

• take y(Ni·(1−ε)) as y0.
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46. Comment about Monte-Carlo Techniques

• Traditional belief: Monte-Carlo methods are inferior to
analytical:

– they are approximate;

– they require large computation time;

– simulations for several distributions, may mis-calculate
the (desired) maximum over all distributions.

• We proved: the value corresponding to the selected dis-
tributions indeed provide the desired maximum value y0.

• General comment:

– justified Monte-Carlo methods often lead to faster
computations than analytical techniques;

– example: multi-D integration – where Monte-Carlo
methods were originally invented.
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47. Comment about Non-Linear Terms

• Reminder: in the above formula Di = ai +
n∑

j=1

aij · xj,

we ignored quadratic and higher order terms in the
dependence of each path time Di on parameters xj.

• In reality: we may need to take into account some
quadratic terms.

• Idea behind possible solution: it is known that the max
D = max

i
Di of convex functions Di is convex.

• Condition when this idea works: when each depen-
dence Di(x1, . . . , xk, . . .) is still convex.

• Solution: in this case,

– the function function D is still convex,

– hence, our algorithm will work.
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48. Conclusions

• Problem of chip design: decrease the clock cycle.

• How this problem is solved now: by using worst-case
(interval) techniques.

• Limitations of this solution: the probability of the worst-
case values is usually very small.

• Consequence: estimates are over-conservative, hence
over-design and under-performance of circuits.

• Objective: find the clock time as y0 s.t. for the actual
delay y, we have Prob(y > y0) ≤ ε for given ε > 0.

• Difficulty: we only have partial information about the
corresponding distributions.

• What we have described: a general technique that al-
lows us, in particular, to compute y0.
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49. Combining Interval and Probabilistic
Uncertainty: General Case

• Problem: there are many ways to represent a probabil-
ity distribution.

• Idea: look for an objective.

• Objective: make decisions Ex[u(x, a)]→ max
a

.

• Case 1: smooth u(x).

• Analysis: we have u(x) = u(x0) + (x−x0) ·u′(x0) + . . .

• Conclusion: we must know moments to estimate E[u].

• Case of uncertainty: interval bounds on moments.

• Case 2: threshold-type u(x).

• Conclusion: we need cdf F (x) = Prob(ξ ≤ x).

• Case of uncertainty: p-box [F (x), F (x)].
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50. Extension of Interval Arithmetic to
Probabilistic Case: Successes

• General solution: parse to elementary operations +,
−, ·, 1/x, max, min.

• Explicit formulas for arithmetic operations known for
intervals, for p-boxes F(x) = [F (x), F (x)], for intervals

+ 1st moments Ei
def
= E[xi]:

-

· · ·
-

-

xn,En

x2,E2

x1,E1

-y,Ef
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51. Successes (cont-d)

• Easy cases: +, −, product of independent xi.

• Example of a non-trivial case: multiplication y = x1 ·
x2, when we have no information about the correlation:

• E = max(p1+p2−1, 0)·x1·x2+min(p1, 1−p2)·x1·x2+
min(1− p1, p2) ·x1 ·x2 + max(1− p1− p2, 0) ·x1 ·x2;
• E = min(p1, p2) · x1 · x2 + max(p1 − p2, 0) · x1 · x2+

max(p2− p1, 0) ·x1 ·x2 + min(1− p1, 1− p2) ·x1 ·x2,

where pi
def
= (Ei − xi)/(xi − xi).
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52. Challenges

• intervals + 2nd moments:

-

· · ·
-

-

xn,En,Vn

x2,E2,V2

x1,E1,V1

-y,E,Vf

• moments + p-boxes; e.g.:

-

· · ·
-

-

En,Fn(x)

E2,F2(x)

E1,F1(x)

-E,F(x)f
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53. Case Study: Bioinformatics

• Practical problem: find genetic difference between can-
cer cells and healthy cells.

• Ideal case: we directly measure concentration c of the
gene in cancer cells and h in healthy cells.

• In reality: difficult to separate.

• Solution: we measure yi ≈ xi · c+ (1− xi) · h, where xi
is the percentage of cancer cells in i-th sample.

• Equivalent form: a · xi + h ≈ yi, where a
def
= c− h.
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54. Case Study: Bioinformatics (cont-d)

• If we know xi exactly: Least Squares Method
n∑

i=1

(a · xi + h − yi)
2 → min

a,h
, hence a =

C(x, y)

V (x)
and

h = E(y)− a · E(x), where E(x) =
1

n
·

n∑
i=1

xi,

V (x) =
1

n− 1
·

n∑
i=1

(xi − E(x))2,

C(x, y) =
1

n− 1
·

n∑
i=1

(xi − E(x)) · (yi − E(y)).

• Interval uncertainty: experts manually count xi, and
only provide interval bounds xi, e.g., xi ∈ [0.7, 0.8].

• Problem: find the range of a and h corresponding to
all possible values xi ∈ [xi, xi].
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55. General Problem

• General problem:

– we know intervals x1 = [x1, x1], . . . , xn = [xn, xn],

– compute the range of E(x) =
1

n

n∑
i=1

xi, population

variance V =
1

n

n∑
i=1

(xi − E(x))2, etc.

• Difficulty: NP-hard even for variance.

• Known:

– efficient algorithms for V ,

– efficient algorithms for V and C(x, y) for reasonable
situations.

• Bioinformatics case: find intervals for C(x, y) and for
V (x) and divide.
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56. Case Study: Detecting Outliers

• In many application areas, it is important to detect
outliers, i.e., unusual, abnormal values.

• In medicine, unusual values may indicate disease.

• In geophysics, abnormal values may indicate a mineral
deposit (or an erroneous measurement result).

• In structural integrity testing, abnormal values may in-
dicate faults in a structure.

• Traditional engineering approach: a new measurement
result x is classified as an outlier if x 6∈ [L,U ], where

L
def
= E − k0 · σ, U

def
= E + k0 · σ,

and k0 > 1 is pre-selected.

• Comment: most frequently, k0 = 2, 3, or 6.
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57. Outlier Detection Under Interval Uncertainty:
A Problem

• In some practical situations, we only have intervals
xi = [xi, xi].

• Different xi ∈ xi lead to different intervals [L,U ].

• A possible outlier: outside some k0-sigma interval.

• Example: structural integrity – not to miss a fault.

• A guaranteed outlier: outside all k0-sigma intervals.

• Example: before a surgery, we want to make sure that
there is a micro-calcification.

• A value x is a possible outlier if x 6∈ [L,U ].

• A value x is a guaranteed outlier if x 6∈ [L,U ].

• Conclusion: to detect outliers, we must know the ranges
of L = E − k0 · σ and U = E + k0 · σ.
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58. Outlier Detection Under Interval Uncertainty:
A Solution

• We need: to detect outliers, we must compute the
ranges of L = E − k0 · σ and U = E + k0 · σ.

• We know: how to compute the ranges E and [σ, σ] for
E and σ.

• Possibility: use interval computations to conclude that
L ∈ E− k0 · [σ, σ] and L ∈ E + k0 · [σ, σ].

• Problem: the resulting intervals for L and U are wider
than the actual ranges.

• Reason: E and σ use the same inputs x1, . . . , xn and
are hence not independent from each other.

• Practical consequence: we miss some outliers.

• Desirable: compute exact ranges for L and U .

• Application: detecting outliers in gravity measurements.
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60. Fuzzy Computations: A Problem

-

· · ·
-

-

µn(xn)

µ2(x2)

µ1(x1)

-µ = f(µ1, . . . , µn)f

• Given: an algorithm y = f(x1, . . . , xn) and n fuzzy
numbers µi(xi).

• Compute: µ(y) = max
x1,...,xn:f(x1,...,xn)=y

min(µ1(x1), . . . , µn(xn)).

• Motivation: y is a possible value of Y ↔∃x1, . . . , xn s.t.
each xi is a possible value of Xi and f(x1, . . . , xn) = y.

• Details: “and” is min, ∃ (“or”) is max, hence

µ(y) = max
x1,...,xn

min(µ1(x1), . . . , µn(xn), t(f(x1, . . . , xn) = y)),

where t(true) = 1 and t(false) = 0.
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61. Fuzzy Computations: Reduction to Interval
Computations

• Problem (reminder):

– Given: an algorithm y = f(x1, . . . , xn) and n fuzzy
numbersXi described by membership functions µi(xi).

– Compute: Y = f(X1, . . . , Xn), where Y is defined
by Zadeh’s extension principle:

µ(y) = max
x1,...,xn:f(x1,...,xn)=y

min(µ1(x1), . . . , µn(xn)).

• Idea: represent each Xi by its α-cuts

Xi(α) = {xi : µi(xi) ≥ α}.

• Advantage: for continuous f , for every α, we have

Y (α) = f(X1(α), . . . , Xn(α)).

• Resulting algorithm: for α = 0, 0.1, 0.2, . . . , 1 apply in-
terval computations techniques to compute Y (α).
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62. Proof of the Result about Chips

• Let us fix the optimal distributions for x2, . . . , xn; then,

Prob(D ≤ y0) =
∑

(x1,...,xn):D(x1,...,xn)≤y0

p1(x1) · p2(x2) · . . .

• So, Prob(D ≤ y0) =
N∑
i=0

ci · qi, where qi
def
= p1(vi).

• Restrictions: qi ≥ 0,
N∑
i=0

qi = 1, and
N∑
i=0

qi · vi = E1.

• Thus, the worst-case distribution for x1 is a solution to
the following linear programming (LP) problem:

Minimize
N∑
i=0

ci · qi under the constraints
N∑
i=0

qi = 1 and

N∑
i=0

qi · vi = E1, qi ≥ 0, i = 0, 1, 2, . . . , N.
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63. Proof of the Result about Chips (cont-d)

• Minimize:
N∑
i=0

ci ·qi under the constraints
N∑
i=0

qi = 1 and

N∑
i=0

qi · vi = E1, qi ≥ 0, i = 0, 1, 2, . . . , N.

• Known: in LP with N + 1 unknowns q0, q1, . . . , qN ,
≥ N + 1 constraints are equalities.

• In our case: we have 2 equalities, so at least N − 1
constraints qi ≥ 0 are equalities.

• Hence, no more than 2 values qi = p1(vi) are non-0.

• If corresponding v or v′ are in (x1, x1), then for [v, v′] ⊂
x1 we get the same y0 – in contradiction to non-degeneracy.

• Thus, the worst-case distribution is located at x1 and x1.

• The condition that the mean of x1 is E1 leads to the
desired formulas for p

1
and p1.
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