Modal Logic, Constructive Mathematics, Computational Complexity, Reasoning Under Interval Uncertainty: Why and How It All Fits Together

Vladik Kreinovich

Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA vladik@utep.edu http://www.cs.utep.edu/vladik

Interval computations website: http://www.cs.utep.edu/interval-comp

1. Science in the Ideal World

- How can we make inference about the real world?
- How can we predict its future state?
- In the ideal world, we can measure everything with perfect accuracy.
- The only challenges are:
 - solving the corresponding equations and
 - making predictions based on these solutions.

2. Science in Real World

- In practice, measurement accuracy is limited.
- The measurement result \widetilde{x} is, in general, different from the actual value x: $\Delta x \stackrel{\text{def}}{=} \widetilde{x} x \neq 0$.
- Often, the only information we have about measurement error Δx is the upper bound Δ on $|\Delta x|$: $|\Delta x| \leq \Delta$.
- In this case, after each measurement, possible values of the quantity x form an interval $[\tilde{x} \Delta, \tilde{x} + \Delta]$.

3. Modal Logic Is Needed

- Under such interval uncertainty, for many properties, we cannot say for sure whether this property is true.
- For example, stability means that real parts r of eigenvalues are non-positive.
- If $r \in [-1, -2]$, the system is necessarily stable.
- If we only know that $r \in [-1, 1]$, the system is possibly stable and possibly not.
- In effect, we need modal logic (or, to be precise, modal mathematics).

General Problem of
Cauchy Deviates Method
Interval Arithmetic:
Case Study: Chip Design
Combining Interval
Case Study:
Case Study: Detecting
Home Page
Title Page
44 >>
•• ••
(1)
↓ ↓ Page 4 of 64
Image: A control of the second
Image 4 of 64 Go Back Full Screen
Image: A control of the second se
↓ ↓ Page 4 of 64 Go Back Full Screen Close
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4. Need to Compute

- And this all needs to be computed.
- So we need to use tools and results from constructive and computable mathematics.
- We also need to take computational complexity into account.
- In this talk, we show how all this is combined in interval mathematics.
- Yuri Matiyasevich, one of its pioneers and supporters, came from constructive mathematics.
- So, he used to call it applied constructive mathematics.
- However, it can be also called applied modal mathematics.
- Let's get to formulas.

- 5. General Problem of Data Processing under Uncertainty
 - *Indirect measurements:* way to measure y that are difficult (or even impossible) to measure directly.

• *Idea*:
$$y = f(x_1, ..., x_n)$$

$$\overbrace{\begin{array}{c} \widetilde{x}_1 \\ \widetilde{x}_2 \\ \ldots \\ \widetilde{x}_n \end{array}} f \qquad \widetilde{y} = f(\widetilde{x}_1, \ldots, \widetilde{x}_n)$$

• Problem: measurements are never 100% accurate: $\widetilde{x}_i \neq x_i \ (\Delta x_i \neq 0)$ hence

$$\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) \neq y = f(x_1, \dots, x_n).$$

What are bounds on $\Delta y \stackrel{\text{def}}{=} \widetilde{y} - y$?

General Problem of ... Cauchy Deviates Method Interval Arithmetic: ... Case Study: Chip Design Combining Interval . . . Case Study: . . . Case Study: Detecting. Home Page Title Page 44 Page 6 of 64 Go Back Full Screen Close Quit

6. Probabilistic and Interval Uncertainty

- Traditional approach: we know probability distribution for Δx_i (usually Gaussian).
- Where it comes from: calibration using standard MI.
- *Problem:* calibration is not possible in:
 - fundamental science
 - manufacturing
- Solution: we know upper bounds Δ_i on $|\Delta x_i|$ hence

$$x_i \in [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i].$$

7. Interval Computations: A Problem

$$\begin{array}{c|c} \mathbf{x}_1 \\ \hline \mathbf{x}_2 \\ \hline \\ \hline \\ \mathbf{x}_n \end{array} \qquad f \qquad \mathbf{y} = f(\mathbf{x}_1, \dots, \mathbf{x}_n) \end{array}$$

- Given: an algorithm $y = f(x_1, \ldots, x_n)$ and n intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i].$
- Compute: the corresponding range of y: $[y, \overline{y}] = \{f(x_1, \dots, x_n) \mid x_1 \in [\underline{x}_1, \overline{x}_1], \dots, x_n \in [\underline{x}_n, \overline{x}_n]\}.$
- Fact: NP-hard even for quadratic f.
- *Challenge:* when are feasible algorithms possible?
- Challenge: when computing $\mathbf{y} = [\underline{y}, \overline{y}]$ is not feasible, find a good approximation $\mathbf{Y} \supseteq \mathbf{y}$.

8. Alternative Approach: Maximum Entropy

- *Situation:* in many practical applications, it is very difficult to come up with the probabilities.
- *Traditional engineering approach:* use probabilistic techniques.
- *Problem:* many different probability distributions are consistent with the same observations.
- *Solution:* select one of these distributions e.g., the one with the largest entropy.
- Example single variable: if all we know is that $x \in [\underline{x}, \overline{x}]$, then MaxEnt leads to a uniform distribution.
- *Example multiple variables:* different variables are independently distributed.

9. Limitations of Maximum Entropy Approach

- Example: simplest algorithm $y = x_1 + \ldots + x_n$.
- Measurement errors: $\Delta x_i \in [-\Delta, \Delta]$.
- Analysis: $\Delta y = \Delta x_1 + \ldots + \Delta x_n$.
- Worst case situation: $\Delta y = n \cdot \Delta$.
- Maximum Entropy approach: due to Central Limit Theorem, Δy is \approx normal, with $\sigma = \Delta \cdot \frac{\sqrt{n}}{\sqrt{3}}$.
- Why this may be inadequate: we get $\Delta \sim \sqrt{n}$, but due to correlation, it is possible that $\Delta = n \cdot \Delta \sim n \gg \sqrt{n}$.
- *Conclusion:* using a single distribution can be very misleading, especially if we want guaranteed results.
- Examples: high-risk application areas such as space exploration or nuclear engineering.

	eneral Prol	blem of	
Cá	uchy Dev	iates Metho	d
In	terval Arit	hmetic:	
Cá	ise Study:	Chip Desig	n
Са	ombining I	nterval	
Cá	ise Study:		
Cá	se Study:	Detecting.	
	Ноте	e Page	
	Title	Page	
	••		
	•	•	
	◀ Page 1	0 of 64	
	◀ Page 1	• 0 of 64	
	◀ Page 1 Go	0 of 64 Back	
	Page 1 Go ↓ Full 5	0 of 64 Back	
	Page 1 Go Full 5 Cli	0 of 64 Back	
	Page 1 Go I Full S	0 of 64 Back Screen	

10. Linearization is Usually Possible

• In many practical situations, the errors Δx_i are small, so we can ignore quadratic terms:

$$\Delta y = \tilde{y} - y = f(\tilde{x}_1, \dots, \tilde{x}_n) - f(x_1, \dots, x_n) =$$

$$f(\tilde{x}_1, \dots, \tilde{x}_n) - f(\tilde{x}_1 - \Delta x_1, \dots, \tilde{x}_n - \Delta x_n) \approx$$

$$c_1 \cdot \Delta x_1 + \dots + c_n \cdot \Delta x_n,$$
where $c_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i}(\tilde{x}_1, \dots, \tilde{x}_n).$

• For a linear function, the largest Δy is obtained when each term $c_i \cdot \Delta x_i$ is the largest:

$$\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n$$

• Due to the linearization assumption, we can estimate each partial derivative c_i as

$$c_i \approx \frac{f(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, \widetilde{x}_i + h_i, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n) - \widetilde{y}}{h_i}.$$

11. Linearization: Algorithm

To compute the range \mathbf{y} of y, we do the following.

- First, we apply the algorithm f to the original estimates $\tilde{x}_1, \ldots, \tilde{x}_n$, resulting in the value $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$.
- Second, for all i from 1 to n,
 - we compute $f(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + h_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n)$ for some small h_i and then
 - we compute

$$c_i = \frac{f(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, \widetilde{x}_i + h_i, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n) - \widetilde{y}}{h_i}.$$

- Finally, we compute $\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n$ and the desired range $\mathbf{y} = [\widetilde{y} \Delta, \widetilde{y} + \Delta]$.
- *Problem:* we need n+1 calls to f, and this is often too long.

12. Cauchy Deviate Method: Idea

• For large n, we can further reduce the number of calls to f if we Cauchy distributions, w/pdf

$$\rho(z) = \frac{\Delta}{\pi \cdot (z^2 + \Delta^2)}$$

- Known property of Cauchy transforms:
 - if z_1, \ldots, z_n are independent Cauchy random variables w/parameters $\Delta_1, \ldots, \Delta_n$,
 - then $z = c_1 \cdot z_1 + \ldots + c_n \cdot z_n$ is also Cauchy distributed, w/parameter

$$\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n$$

• This is exactly what we need to estimate interval uncertainty!

- 13. Cauchy Deviate Method: Towards Implementation
 - To implement the Cauchy idea, we must answer the following questions:
 - how to simulate the Cauchy distribution; and
 - how to estimate the parameter Δ of this distribution from a finite sample.
 - Simulation can be based on the functional transformation of uniformly distributed sample values:

$$\delta_i = \Delta_i \cdot \tan(\pi \cdot (r_i - 0.5)), \text{ where } r_i \sim U([0, 1]).$$

• To estimate Δ , we can apply the Maximum Likelihood Method $\rho(\delta^{(1)}) \cdot \rho(\delta^{(2)}) \cdot \ldots \cdot \rho(\delta^{(N)}) \to \max$, i.e., solve

$$\frac{1}{1+\left(\frac{\delta^{(1)}}{\Delta}\right)^2}+\ldots+\frac{1}{1+\left(\frac{\delta^{(N)}}{\Delta}\right)^2}=\frac{N}{2}.$$

14. Cauchy Deviates Method: Algorithm

- Apply f to \widetilde{x}_i ; we get $\widetilde{y} := f(\widetilde{x}_1, \ldots, \widetilde{x}_n)$.
- For k = 1, 2, ..., N, repeat the following:
 - use the standard RNG to draw $r_i^{(k)} \sim U([0,1]),$ $i = 1, 2, \dots, n;$
 - compute Cauchy distributed values $c_i^{(k)} := \tan(\pi \cdot (r_i^{(k)} 0.5));$
 - compute $K := \max_i |c_i^{(k)}|$ and normalized errors $\delta_i^{(k)} := \Delta_i \cdot c_i^{(k)} / K;$
 - compute the simulated "actual values" $x_i^{(k)} := \widetilde{x}_i \delta_i^{(k)};$
 - compute simulated errors of indirect measurement: $\delta^{(k)} := K \cdot \left(\widetilde{y} - f\left(x_1^{(k)}, \dots, x_n^{(k)}\right) \right);$
- Compute Δ by applying the bisection method to solve the Maximum Likelihood equation.

15. Important Comment

- To avoid confusion, we should emphasize that:
 - in contrast to the Monte-Carlo solution for the probabilistic case,
 - the use of Cauchy distribution in the interval case is a computational trick,
 - it is *not* a truthful simulation of the actual measurement error Δx_i .
- Indeed:
 - we know that the actual value of Δx_i is always inside the interval $[-\Delta_i, \Delta_i]$, but
 - a Cauchy distributed random attains values outside this interval as well.

- 16. Approximate Methods Such As Linearizaion – Are Sometimes Not Sufficient
 - In many application areas, it is sufficient to have an *approximate* estimate of y.
 - Sometimes, we need to guarantee that y does not exceed a certain threshold y_0 . Examples:
 - in *nuclear engineering*, the temperatures and the neutron flows should not exceed the critical values;
 - a space ship lands on the planet and does not fly past it, etc.
 - The only way to guarantee this is to have an interval $\mathbf{Y} = [\underline{Y}, \overline{Y}]$ for which $\mathbf{y} \subseteq \mathbf{Y}$ and $\overline{Y} \leq y_0$.
 - Such an interval is called an *enclosure*.
 - Computing such an enclosure is one of the main tasks of interval computations.

17. Interval Computations: A Brief History

- Origins: Archimedes (Ancient Greece)
- Modern pioneers: Warmus (Poland), Sunaga (Japan), Moore (USA), 1956–59
- *First boom:* early 1960s.
- *First challenge:* taking interval uncertainty into account when planning spaceflights to the Moon.
- Current applications (sample):
 - design of elementary particle colliders: Berz, Kyoko (USA)
 - will a comet hit the Earth: Berz, Moore (USA)
 - robotics: Jaulin (France), Neumaier (Austria)
 - chemical engineering: Stadtherr (USA)

- 18. Interval Arithmetic: Foundations of Interval Techniques
 - *Problem:* compute the range

 $[\underline{y},\overline{y}] = \{f(x_1,\ldots,x_n) \mid x_1 \in [\underline{x}_1,\overline{x}_1],\ldots,x_n \in [\underline{x}_n,\overline{x}_n]\}.$

- Interval arithmetic: for arithmetic operations $f(x_1, x_2)$ (and for elementary functions), we have explicit formulas for the range.
- *Examples:* when $x_1 \in \mathbf{x}_1 = [\underline{x}_1, \overline{x}_1]$ and $x_2 \in \mathbf{x}_2 = [\underline{x}_2, \overline{x}_2]$, then:

- The range $\mathbf{x}_1 + \mathbf{x}_2$ for $x_1 + x_2$ is $[\underline{x}_1 + \underline{x}_2, \overline{x}_1 + \overline{x}_2]$.

- The range $\mathbf{x}_1 \mathbf{x}_2$ for $x_1 x_2$ is $[\underline{x}_1 \overline{x}_2, \overline{x}_1 \underline{x}_2]$.
- The range $\mathbf{x}_1 \cdot \mathbf{x}_2$ for $x_1 \cdot x_2$ is $[\underline{y}, \overline{y}]$, where

 $\underline{y} = \min(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2);$ $\overline{u} = \max(\underline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \overline{x}_2);$

 $\overline{y} = \max(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2).$

• The range $1/\mathbf{x}_1$ for $1/x_1$ is $[1/\overline{x}_1, 1/\underline{x}_1]$ (if $0 \notin \mathbf{x}_1$).

19. Straightforward Interval Computations: Example

- Example: $f(x) = (x-2) \cdot (x+2), x \in [1,2].$
- How will the computer compute it?
 - $r_1 := x 2;$
 - $r_2 := x + 2;$
 - $r_3 := r_1 \cdot r_2$.
- *Main idea:* perform the same operations, but with *intervals* instead of *numbers*:

•
$$\mathbf{r}_1 := [1, 2] - [2, 2] = [-1, 0];$$

• $\mathbf{r}_2 := [1, 2] + [2, 2] = [3, 4];$
• $\mathbf{r}_3 := [-1, 0] \cdot [3, 4] = [-4, 0].$

- Actual range: $f(\mathbf{x}) = [-3, 0]$.
- Comment: this is just a toy example, there are more efficient ways of computing an enclosure $\mathbf{Y} \supseteq \mathbf{y}$.

20. First Idea: Use of Monotonicity

- *Reminder:* for arithmetic, we had exact ranges.
- Reason: $+, -, \cdot$ are monotonic in each variable.
- How monotonicity helps: if $f(x_1, \ldots, x_n)$ is (non-strictly) increasing $(f \uparrow)$ in each x_i , then

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n) = [f(\underline{x}_1,\ldots,\underline{x}_n), f(\overline{x}_1,\ldots,\overline{x}_n)].$$

• Similarly: if $f \uparrow$ for some x_i and $f \downarrow$ for other x_j .

• Fact:
$$f \uparrow \text{ in } x_i \text{ if } \frac{\partial f}{\partial x_i} \ge 0.$$

- Checking monotonicity: check that the range $[\underline{r}_i, \overline{r}_i]$ of $\frac{\partial f}{\partial x_i}$ on \mathbf{x}_i has $\underline{r}_i \ge 0$.
- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating ranges of $\frac{\partial f}{\partial x_i}$: straightforward interval comp.

21. Monotonicity: Example

• *Idea:* if the range $[\underline{r}_i, \overline{r}_i]$ of each $\frac{\partial f}{\partial x_i}$ on \mathbf{x}_i has $\underline{r}_i \ge 0$, then

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n) = [f(\underline{x}_1,\ldots,\underline{x}_n), f(\overline{x}_1,\ldots,\overline{x}_n)].$$

- Example: $f(x) = (x 2) \cdot (x + 2), \mathbf{x} = [1, 2].$
- Case n = 1: if the range $[\underline{r}, \overline{r}]$ of $\frac{df}{dx}$ on \mathbf{x} has $\underline{r} \ge 0$, then

$$f(\mathbf{x}) = [f(\underline{x}), f(\overline{x})]$$

•
$$AD: \frac{df}{dx} = 1 \cdot (x+2) + (x-2) \cdot 1 = 2x.$$

- Checking: $[\underline{r}, \overline{r}] = [2, 4]$, with $2 \ge 0$.
- Result: f([1,2]) = [f(1), f(2)] = [-3,0].
- Comparison: this is the exact range.

Ge	eneral Pro	blem of	
Cá	auchy Dev	iates Metho	od
In	terval Arit	hmetic:	
Cá	ase Study:	Chip Desig	gn
Са	ombining I	Interval	
Cá	ase Study:		
Cá	ase Study:	Detecting .	
	Home	e Page	
	Title	Page	
	••	••	
	Page 2	22 of 64	
	Ga	Back	
	00	Dack	
	Full S	Screen	
	Full : Cl	Screen lose	
	Full : Cl	Screen Iose Duit	

22. Non-Monotonic Example

- Example: $f(x) = x \cdot (1 x), x \in [0, 1].$
- How will the computer compute it?
 - $r_1 := 1 x;$
 - $r_2 := x \cdot r_1$.
- Straightforward interval computations:

•
$$\mathbf{r}_1 := [1, 1] - [0, 1] = [0, 1];$$

• $\mathbf{r}_2 := [0, 1] \cdot [0, 1] = [0, 1].$

• Actual range: min, max of f at \underline{x} , \overline{x} , or when $\frac{df}{dx} = 0$.

• Here,
$$\frac{df}{dx} = 1 - 2x = 0$$
 for $x = 0.5$, thus we:

• compute f(0) = 0, f(0.5) = 0.25, and f(1) = 0, so

•
$$\underline{y} = \min(0, 0.25, 0) = 0, \, \overline{y} = \max(0, 0.25, 0) = 0.25.$$

• Resulting range: $f(\mathbf{x}) = [0, 0.25]$.

23. Second Idea: Centered Form

• Main idea: Intermediate Value Theorem

$$f(x_1,\ldots,x_n) = f(\widetilde{x}_1,\ldots,\widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \widetilde{x}_i)$$

for some $\chi_i \in \mathbf{x}_i$.

• Corollary: $f(x_1, \ldots, x_n) \in \mathbf{Y}$, where

$$\mathbf{Y} = \widetilde{y} + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i].$$

- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating the ranges of derivatives:
 - if appropriate, by monotonicity, or
 - by straightforward interval computations, or
 - by centered form (more time but more accurate).

General Problem of
Cauchy Deviates Method
Interval Arithmetic:
Case Study: Chip Design
Combining Interval
Case Study:
Case Study: Detecting
Home Page
Title Page
•• ••
(1)
 ↓ ↓ Page 24 of 64
Image 24 of 64
Image 24 of 64 Go Back
Image Page Qare Go Back Full Screen
 ↓ ↓ Page 24 of 64 Go Back Full Screen Close

24. Centered Form: Example

• General formula:

$$\mathbf{Y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i].$$

• Example:
$$f(x) = x \cdot (1 - x), \mathbf{x} = [0, 1].$$

• Here, $\mathbf{x} = [\widetilde{x} - \Delta, \widetilde{x} + \Delta]$, with $\widetilde{x} = 0.5$ and $\Delta = 0.5$.

• Case
$$n = 1$$
: $\mathbf{Y} = f(\tilde{x}) + \frac{df}{dx}(\mathbf{x}) \cdot [-\Delta, \Delta].$

•
$$AD: \frac{df}{dx} = 1 \cdot (1-x) + x \cdot (-1) = 1 - 2x.$$

- Estimation: we have $\frac{df}{dx}(\mathbf{x}) = 1 2 \cdot [0, 1] = [-1, 1].$
- Result: $\mathbf{Y} = 0.5 \cdot (1 0.5) + [-1, 1] \cdot [-0.5, 0.5] = 0.25 + [-0.5, 0.5] = [-0.25, 0.75].$
- Comparison: actual range [0, 0.25], straightforward [0, 1].

	eneral Prol	blem of
Ca	uchy Devi	iates Method
Int	terval Arit	hmetic:
Ca	ise Study:	Chip Design
Сс	ombining I	nterval
Ca	ise Study:	
Ca	se Study:	Detecting
	Ноте	e Page
	Title	Page
	4.4	bb
	٩٩	
[•	•
	◀ Page 2	15 of 64
	Page 2 Go i	▶ 25 of 64 Back
	Page 2 Go I Full S	5 of 64 Back
	Page 2 Go 1 Full 5	25 of 64 Back Screen

25. Third Idea: Bisection

• Known: accuracy $O(\Delta_i^2)$ of first order formula

$$f(x_1,\ldots,x_n) = f(\widetilde{x}_1,\ldots,\widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \widetilde{x}_i).$$

- *Idea:* if the intervals are too wide, we:
 - split one of them in half $(\Delta_i^2 \to \Delta_i^2/4)$; and - take the union of the resulting ranges.
- Example: $f(x) = x \cdot (1 x)$, where $x \in \mathbf{x} = [0, 1]$.
- Split: take $\mathbf{x}' = [0, 0.5]$ and $\mathbf{x}'' = [0.5, 1]$.
- 1st range: $1 2 \cdot \mathbf{x} = 1 2 \cdot [0, 0.5] = [0, 1]$, so $f \uparrow$ and $f(\mathbf{x}') = [f(0), f(0.5)] = [0, 0.25]$.
- 2nd range: $1 2 \cdot \mathbf{x} = 1 2 \cdot [0.5, 1] = [-1, 0]$, so $f \downarrow$ and $f(\mathbf{x}'') = [f(1), f(0.5)] = [0, 0.25]$.
- Result: $f(\mathbf{x}') \cup f(\mathbf{x}'') = [0, 0.25] \text{exact.}$

26. Alternative Approach: Affine Arithmetic

- So far: we compute the range of $x \cdot (1 x)$ by multiplying ranges of x and 1 x.
- We ignore: that both factors depend on x and are, thus, dependent.
- *Idea:* for each intermediate result a, keep an explicit dependence on $\Delta x_i = \tilde{x}_i x_i$ (at least its linear terms).
- *Implementation:*

$$a = a_0 + \sum_{i=1}^n a_i \cdot \Delta x_i + [\underline{a}, \overline{a}].$$

• We start: with $x_i = \tilde{x}_i - \Delta x_i$, i.e.,

 $\widetilde{x}_i + 0 \cdot \Delta x_1 + \ldots + 0 \cdot \Delta x_{i-1} + (-1) \cdot \Delta x_i + 0 \cdot \Delta x_{i+1} + \ldots + 0 \cdot \Delta x_n + [0, 0].$

• Description: $a_0 = \tilde{x}_i, a_i = -1, a_j = 0$ for $j \neq i$, and $[\underline{a}, \overline{a}] = [0, 0].$

27. Affine Arithmetic: Operations

• Representation:
$$a = a_0 + \sum_{i=1}^n a_i \cdot \Delta x_i + [\underline{a}, \overline{a}].$$

• Input:
$$a = a_0 + \sum_{i=1}^n a_i \cdot \Delta x_i + \mathbf{a}$$
 and $b = b_0 + \sum_{i=1}^n b_i \cdot \Delta x_i + \mathbf{b}$.

• Operations:
$$c = a \otimes b$$
.

• Addition:
$$c_0 = a_0 + b_0$$
, $c_i = a_i + b_i$, $\mathbf{c} = \mathbf{a} + \mathbf{b}$.

• Subtraction:
$$c_0 = a_0 - b_0$$
, $c_i = a_i - b_i$, $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

• Multiplication:
$$c_0 = a_0 \cdot b_0, c_i = a_0 \cdot b_i + b_0 \cdot a_i,$$

 $\mathbf{c} = a_0 \cdot \mathbf{b} + b_0 \cdot \mathbf{a} + \sum_{i \neq j} a_i \cdot b_j \cdot [-\Delta_i, \Delta_i] \cdot [-\Delta_j, \Delta_j] + \sum_i a_i \cdot b_i \cdot [-\Delta_i, \Delta_i]^2 + \left(\sum_i a_i \cdot [-\Delta_i, \Delta_i]\right) \cdot \mathbf{b} + \left(\sum_i b_i \cdot [-\Delta_i, \Delta_i]\right) \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b}.$

General Problem of ... Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting ... Home Page Title Page 44 ◀ Page 28 of 64 Go Back Full Screen Close Quit

28. Affine Arithmetic: Example

- Example: $f(x) = x \cdot (1 x), x \in [0, 1].$
- Here, n = 1, $\tilde{x} = 0.5$, and $\Delta = 0.5$.
- How will the computer compute it?
 - $r_1 := 1 x;$

•
$$r_2 := x \cdot r_1$$
.

• Affine arithmetic: we start with $x = 0.5 - \Delta x + [0, 0];$

•
$$\mathbf{r}_1 := 1 - (0.5 - \Delta x) = 0.5 + \Delta x;$$

• $\mathbf{r}_2 := (0.5 - \Delta x) \cdot (0.5 + \Delta x), \text{ i.e.},$
 $\mathbf{r}_2 = 0.25 + 0 \cdot \Delta x - [-\Delta, \Delta]^2 = 0.25 + [-\Delta^2, 0].$

- Resulting range: $\mathbf{y} = 0.25 + [-0.25, 0] = [0, 0.25].$
- Comparison: this is the exact range.

29. Affine Arithmetic: Towards More Accurate Estimates

- In our simple example: we got the exact range.
- In general: range estimation is NP-hard.
- *Meaning:* a feasible (polynomial-time) algorithm will sometimes lead to excess width: $\mathbf{Y} \supset \mathbf{y}$.
- *Conclusion:* affine arithmetic may lead to excess width.
- *Question:* how to get more accurate estimates?
- First idea: bisection.
- Second idea (Taylor arithmetic):
 - affine arithmetic: $a = a_0 + \sum a_i \cdot \Delta x_i + \mathbf{a};$
 - meaning: we keep linear terms in Δx_i ;
 - idea: keep, e.g., quadratic terms

$$a = a_0 + \sum a_i \cdot \Delta x_i + \sum a_{ij} \cdot \Delta x_i \cdot \Delta x_j + \mathbf{a}.$$

- 30. Interval Computations vs. Affine Arithmetic: Comparative Analysis
 - *Objective:* we want a method that computes a reasonable estimate for the range in reasonable time.
 - Conclusion how to compare different methods:
 - how accurate are the estimates, and
 - how fast we can compute them.
 - Accuracy: affine arithmetic leads to more accurate ranges.
 - Computation time:
 - Interval arithmetic: for each intermediate result a, we compute two values: endpoints \underline{a} and \overline{a} of $[\underline{a}, \overline{a}]$.
 - Affine arithmetic: for each a, we compute n + 3 values:

 $a_0 \quad a_1, \ldots, a_n \quad \underline{a}, \overline{a}.$

• Conclusion: affine arithmetic is $\sim n$ times slower.

- 31. Solving Systems of Equations: Extending Known Algorithms to Situations with Interval Uncertainty
 - We have: a system of equations $g_i(y_1, \ldots, y_n) = a_i$ with unknowns y_i ;
 - We know: a_i with interval uncertainty: $a_i \in [\underline{a}_i, \overline{a}_i]$;
 - We want: to find the corresponding ranges of y_j .
 - First case: for exactly known a_i , we have an algorithm $y_j = f_j(a_1, \ldots, a_n)$ for solving the system.
 - *Example:* system of linear equations.
 - Solution: apply interval computations techniques to find the range $f_j([\underline{a}_1, \overline{a}_1], \dots, [\underline{a}_n, \overline{a}_n])$.
 - *Better solution:* for specific equations, we often already know which ideas work best.
 - *Example:* linear equations Ay = b; y is monotonic in b.

- 32. Solving Systems of Equations When No Algorithm Is Known
 - Idea:
 - parse each equation into elementary constraints, and
 - use interval computations to improve original ranges until we get a narrow range (= solution).
 - First example: $x x^2 = 0.5$, $x \in [0, 1]$ (no solution).

• Parsing:
$$r_1 = x^2$$
, 0.5 $(= r_2) = x - r_1$.

• *Rules:* from $r_1 = x^2$, we extract two rules:

(1)
$$x \to r_1 = x^2$$
; (2) $r_1 \to x = \sqrt{r_1}$;

from $0.5 = x - r_1$, we extract two more rules:

(3)
$$x \to r_1 = x - 0.5;$$
 (4) $r_1 \to x = r_1 + 0.5.$

33. Solving Systems of Equations When No Algorithm Is Known: Example

• (1)
$$r = x^2$$
; (2) $x = \sqrt{r}$; (3) $r = x - 0.5$; (4) $x = r + 0.5$

• We start with:
$$\mathbf{x} = [0, 1], \mathbf{r} = (-\infty, \infty).$$

(1)
$$\mathbf{r} = [0, 1]^2 = [0, 1]$$
, so $\mathbf{r}_{new} = (-\infty, \infty) \cap [0, 1] = [0, 1]$.
(2) $\mathbf{x}_{new} = \sqrt{[0, 1]} \cap [0, 1] = [0, 1]$ – no change

(2)
$$\mathbf{r}_{\text{new}} = \sqrt{[0,1] + [0,1]} = [0,1]$$
 no enalge.
(3) $\mathbf{r}_{\text{new}} = ([0,1] - 0.5) \cap [0,1] = [-0.5, 0.5] \cap [0,1] = [0,0.5].$

(4)
$$\mathbf{x}_{new} = ([0, 0.5] + 0.5) \cap [0, 1] = [0.5, 1] \cap [0, 1] = [0.5, 1].$$

(1)
$$\mathbf{r}_{new} = [0.5, 1]^2 \cap [0, 0.5] = [0.25, 0.5].$$

(2)
$$\mathbf{x}_{\text{new}} = \sqrt{[0.25, 0.5]} \cap [0.5, 1] = [0.5, 0.71];$$

round \underline{a} down \downarrow and \overline{a} up \uparrow , to guarantee enclosure.

(3)
$$\mathbf{r}_{new} = ([0.5, 0.71] - 0.5) \cap [0.25, 5] = [0.0.21] \cap [0.25, 0.5],$$

i.e., $\mathbf{r}_{new} = \emptyset$.

• *Conclusion:* the original equation has no solutions.

34. Solving Systems of Equations: 2nd Example

• Example:
$$x - x^2 = 0, x \in [0, 1]$$
.

- Parsing: $r_1 = x^2$, $0 (= r_2) = x r_1$.
- Rules: (1) $r = x^2$; (2) $x = \sqrt{r}$; (3) r = x; (4) x = r.
- We start with: $\mathbf{x} = [0, 1], \mathbf{r} = (-\infty, \infty).$
- *Problem:* after Rule 1, we're stuck with $\mathbf{x} = \mathbf{r} = [0, 1]$.
- Solution: bisect $\mathbf{x} = [0, 1]$ into [0, 0.5] and [0.5, 1].
- For 1st subinterval:
 - Rule 1 leads to $\mathbf{r}_{new} = [0, 0.5]^2 \cap [0, 0.5] = [0, 0.25];$
 - Rule 4 leads to $\mathbf{x}_{new} = [0, 0.25];$
 - Rule 1 leads to $\mathbf{r}_{new} = [0, 0.25]^2 = [0, 0.0625];$
 - Rule 4 leads to $\mathbf{x}_{new} = [0, 0.0625];$ etc.
 - we converge to x = 0.
- For 2nd subinterval: we converge to x = 1.

General Problem of
Cauchy Deviates Method
Interval Arithmetic:
Case Study: Chip Design
Combining Interval
Case Study:
Case Study: Detecting
Home Page
Title Page
•• ••
Page 35 of 64
Go Back
Full Screen
Close
Quit

- 35. Optimization: Extending Known Algorithms to Situations with Interval Uncertainty
 - Problem: find y_1, \ldots, y_m for which

 $g(y_1,\ldots,y_m,a_1,\ldots,a_m) \to \max$.

- We know: a_i with interval uncertainty: $a_i \in [\underline{a}_i, \overline{a}_i]$;
- We want: to find the corresponding ranges of y_j .
- First case: for exactly known a_i , we have an algorithm $y_j = f_j(a_1, \ldots, a_n)$ for solving the optimization problem.
- *Example:* quadratic objective function g.
- Solution: apply interval computations techniques to find the range $f_j([\underline{a}_1, \overline{a}_1], \dots, [\underline{a}_n, \overline{a}_n])$.
- Better solution: for specific f, we often already know which ideas work best.

36. Optimization When No Algorithm Is Known

- *Idea:* divide the original box \mathbf{x} into subboxes \mathbf{b} .
- If $\max_{x \in \mathbf{b}} g(x) < g(x')$ for a known x', dismiss \mathbf{b} .
- Example: $g(x) = x \cdot (1 x), \mathbf{x} = [0, 1].$
- Divide into 10 (?) subboxes $\mathbf{b} = [0, 0.1], [0.1, 0.2], \dots$
- Find $g(\tilde{b})$ for each **b**; the largest is $0.45 \cdot 0.55 = 0.2475$.
- Compute $G(\mathbf{b}) = g(\widetilde{b}) + (1 2 \cdot \mathbf{b}) \cdot [-\Delta, \Delta].$
- Dismiss subboxes for which $\overline{Y} < 0.2475$.
- *Example:* for [0.2, 0.3], we have $0.25 \cdot (1 - 0.25) + (1 - 2 \cdot [0.2, 0.3]) \cdot [-0.05, 0.05].$
- Here $\overline{Y} = 0.2175 < 0.2475$, so we dismiss [0.2, 0.3].
- Result: keep only boxes $\subseteq [0.3, 0.7]$.
- Further subdivision: get us closer and closer to x = 0.5.

37. Case Study: Chip Design

- *Chip design:* one of the main objectives is to decrease the clock cycle.
- Current approach: uses worst-case (interval) techniques.
- *Problem:* the probability of the worst-case values is usually very small.
- *Result:* estimates are over-conservative unnecessary over-design and under-performance of circuits.
- *Difficulty:* we only have *partial* information about the corresponding probability distributions.
- *Objective:* produce estimates valid for all distributions which are consistent with this information.
- What we do: provide such estimates for the clock time.

38. Estimating Clock Cycle: a Practical Problem

- *Objective:* estimate the clock cycle on the design stage.
- The clock cycle of a chip is constrained by the maximum path delay over all the circuit paths

$$D \stackrel{\text{def}}{=} \max(D_1,\ldots,D_N).$$

- The path delay D_i along the *i*-th path is the sum of the delays corresponding to the gates and wires along this path.
- Each of these delays, in turn, depends on several factors such as:
 - the variation caused by the current design practices,
 - environmental design characteristics (e.g., variations in temperature and in supply voltage), etc.

- 39. Traditional (Interval) Approach to Estimating the Clock Cycle
 - *Traditional approach:* assume that each factor takes the worst possible value.
 - *Result:* time delay when all the factors are at their worst.
 - Problem:
 - different factors are usually independent;
 - combination of worst cases is improbable.
 - Computational result: current estimates are 30% above the observed clock time.
 - *Practical result:* the clock time is set too high chips are over-designed and under-performing.

40. Robust Statistical Methods Are Needed

- *Ideal case:* we know probability distributions.
- Solution: Monte-Carlo simulations.
- *In practice:* we only have *partial* information about the distributions of some of the parameters; usually:
 - the mean, and
 - some characteristic of the deviation from the mean
 e.g., the interval that is guaranteed to contain possible values of this parameter.
- *Possible approach:* Monte-Carlo with several possible distributions.
- *Problem:* no guarantee that the result is a valid bound for all possible distributions.
- *Objective:* provide *robust* bounds, i.e., bounds that work for all possible distributions.

- 41. Towards a Mathematical Formulation of the Problem
 - General case: each gate delay d depends on the difference x_1, \ldots, x_n between the actual and the nominal values of the parameters.
 - Main assumption: these differences are usually small.
 - Each path delay D_i is the sum of gate delays.
 - Conclusion: D_i is a linear function: $D_i = a_i + \sum_{j=1}^{n} a_{ij} \cdot x_j$ for some a_i and a_{ij} .
 - The desired maximum delay $D = \max_{i} D_i$ has the form

$$D = F(x_1, \ldots, x_n) \stackrel{\text{def}}{=} \max_i \left(a_i + \sum_{j=1}^n a_{ij} \cdot x_j \right).$$

- 42. Towards a Mathematical Formulation of the Problem (cont-d)
 - *Known:* maxima of linear function are exactly convex functions:

 $F(\alpha \cdot x + (1 - \alpha) \cdot y) \le \alpha \cdot F(x) + (1 - \alpha) \cdot F(y)$

for all x, y and for all $\alpha \in [0, 1];$

• We know: factors x_i are independent;

- we know distribution of some of the factors;

- for others, we know ranges $[\underline{x}_i, \overline{x}_j]$ and means E_j .

- Given: a convex function $F \ge 0$ and a number $\varepsilon > 0$.
- Objective: find the smallest y_0 s.t. for all possible distributions, we have $y \leq y_0$ with the probability $\geq 1 \varepsilon$.

- 43. Additional Property: Dependency is Non-Degenerate
 - Fact: sometimes, we learn additional information about one of the factors x_j .
 - *Example:* we learn that x_j actually belongs to a proper subinterval of the original interval $[\underline{x}_j, \overline{x}_j]$.
 - Consequence: the class \mathcal{P} of possible distributions is replaced with $\mathcal{P}' \subset \mathcal{P}$.
 - Result: the new value y'_0 can only decrease: $y'_0 \le y_0$.
 - Fact: if x_j is irrelevant for y, then $y'_0 = y_0$.
 - Assumption: irrelevant variables been weeded out.
 - Formalization: if we narrow down one of the intervals $[\underline{x}_j, \overline{x}_j]$, the resulting value y_0 decreases: $y'_0 < y_0$.

44. Formulation of the Problem

GIVEN: • $n, k \leq n, \varepsilon > 0;$

- a convex function $y = F(x_1, \ldots, x_n) \ge 0;$
- n-k cdfs $F_j(x), k+1 \le j \le n;$
- intervals $\mathbf{x}_1, \ldots, \mathbf{x}_k$, values E_1, \ldots, E_k ,

TAKE: all joint probability distributions on \mathbb{R}^n for which:

- all x_i are independent,
- $x_j \in \mathbf{x}_j, E[x_j] = E_j$ for $j \le k$, and
- x_j have distribution $F_j(x)$ for j > k.
- FIND: the smallest y_0 s.t. for all such distributions, $F(x_1, \ldots, x_n) \leq y_0$ with probability $\geq 1 - \varepsilon$.
- WHEN: the problem is *non-degenerate* if we narrow down one of the intervals \mathbf{x}_j , y_0 decreases.

45. Main Result and How We Can Use It

• Result: y_0 is attained when for each j from 1 to k,

•
$$x_j = \underline{x}_j$$
 with probability $\underline{p}_j \stackrel{\text{def}}{=} \frac{\overline{x}_j - E_j}{\overline{x}_j - \underline{x}_j}$, and
• $x_j = \overline{x}_j$ with probability $\overline{p}_j \stackrel{\text{def}}{=} \frac{E_j - \underline{x}_j}{\overline{x}_j - \underline{x}_j}$.

- Algorithm:
 - simulate these distributions for x_j , j < k;
 - simulate known distributions for j > k;
 - use the simulated values $x_i^{(s)}$ to find

$$y^{(s)} = F(x_1^{(s)}, \dots, x_n^{(s)});$$

- sort N values $y^{(s)}$: $y_{(1)} \le y_{(2)} \le \ldots \le y_{(N_i)}$;
- take $y_{(N_i \cdot (1-\varepsilon))}$ as y_0 .

46. Comment about Monte-Carlo Techniques

- *Traditional belief:* Monte-Carlo methods are inferior to analytical:
 - they are approximate;
 - they require large computation time;
 - simulations for *several* distributions, may mis-calculate the (desired) maximum over *all* distributions.
- We proved: the value corresponding to the selected distributions indeed provide the desired maximum value y_0 .
- General comment:
 - justified Monte-Carlo methods often lead to *faster* computations than analytical techniques;
 - example: multi-D integration where Monte-Carlo methods were originally invented.

47. Comment about Non-Linear Terms

• Reminder: in the above formula $D_i = a_i + \sum_{j=1}^n a_{ij} \cdot x_j$,

we ignored quadratic and higher order terms in the dependence of each path time D_i on parameters x_j .

- *In reality:* we may need to take into account some quadratic terms.
- Idea behind possible solution: it is known that the max $D = \max_{i} D_{i}$ of convex functions D_{i} is convex.
- Condition when this idea works: when each dependence $D_i(x_1, \ldots, x_k, \ldots)$ is still convex.
- Solution: in this case,
 - the function function D is still convex,
 - hence, our algorithm will work.

48. Conclusions

- Problem of chip design: decrease the clock cycle.
- *How this problem is solved now:* by using worst-case (interval) techniques.
- *Limitations of this solution:* the probability of the worst-case values is usually very small.
- *Consequence:* estimates are over-conservative, hence over-design and under-performance of circuits.
- Objective: find the clock time as y_0 s.t. for the actual delay y, we have $\operatorname{Prob}(y > y_0) \leq \varepsilon$ for given $\varepsilon > 0$.
- *Difficulty:* we only have *partial* information about the corresponding distributions.
- What we have described: a general technique that allows us, in particular, to compute y_0 .

- 49. Combining Interval and Probabilistic Uncertainty: General Case
 - *Problem:* there are many ways to represent a probability distribution.
 - *Idea:* look for an objective.
 - Objective: make decisions $E_x[u(x,a)] \to \max_{a}$.
 - Case 1: smooth u(x).
 - Analysis: we have $u(x) = u(x_0) + (x x_0) \cdot u'(x_0) + ...$
 - Conclusion: we must know moments to estimate E[u].
 - Case of uncertainty: interval bounds on moments.
 - Case 2: threshold-type u(x).
 - Conclusion: we need cdf $F(x) = \operatorname{Prob}(\xi \le x)$.
 - Case of uncertainty: p-box $[\underline{F}(x), \overline{F}(x)]$.

- 50. Extension of Interval Arithmetic to Probabilistic Case: Successes
 - General solution: parse to elementary operations +, $-, \cdot, 1/x$, max, min.
 - Explicit formulas for arithmetic operations known for intervals, for p-boxes $\mathbf{F}(x) = [\underline{F}(x), \overline{F}(x)]$, for intervals + 1st moments $E_i \stackrel{\text{def}}{=} E[x_i]$:

51. Successes (cont-d)

- Easy cases: +, -, product of independent x_i .
- Example of a non-trivial case: multiplication $y = x_1 \cdot x_2$, when we have no information about the correlation:

•
$$\underline{E} = \max(p_1 + p_2 - 1, 0) \cdot \overline{x}_1 \cdot \overline{x}_2 + \min(p_1, 1 - p_2) \cdot \overline{x}_1 \cdot \underline{x}_2 + \min(1 - p_1, p_2) \cdot \underline{x}_1 \cdot \overline{x}_2 + \max(1 - p_1 - p_2, 0) \cdot \underline{x}_1 \cdot \underline{x}_2;$$

• $\overline{E} = \min(p_1, p_2) \cdot \overline{x}_1 \cdot \overline{x}_2 + \max(p_1 - p_2, 0) \cdot \overline{x}_1 \cdot \underline{x}_2 + \max(p_2 - p_1, 0) \cdot \underline{x}_1 \cdot \overline{x}_2 + \min(1 - p_1, 1 - p_2) \cdot \underline{x}_1 \cdot \underline{x}_2,$

where $p_i \stackrel{\text{def}}{=} (E_i - \underline{x}_i) / (\overline{x}_i - \underline{x}_i)$.

Ge		
	eneral Pro	blem of
Cá	uchy Dev	iates Method
In	terval Arit	hmetic:
Cá	ise Study:	Chip Design
Са	ombining I	nterval
Cá	ise Study:	
Ca	ase Study:	Detecting
	Home	e Page
	Title	Page
	44	
	•	•
	•	•
	↓ Page 5	52 of 64
	Page 5 Go	52 of 64 Back
	Page 5 Go	52 of 64 Back
	Page 5 Go Full 5	52 of 64 Back
	Page 5 Go Full :	52 of 64 Back Screen
	Page 5 Go Full S	52 of 64 Back Screen
	Page 5 Go Full 3 CI	52 of 64 Back Screen ose

52. Challenges

• intervals + 2nd moments:

• moments + p-boxes; e.g.:

General Problem of
Cauchy Deviates Method
Interval Arithmetic:
Case Study: Chip Design
Combining Interval
Case Study:
Case Study: Detecting
Home Page
Title Page
•• ••
< →
Page 53 of 64
Page 53 of 64
Page 53 of 64 Go Back
Page 53 of 64 Go Back
Page 53 of 64 Go Back Full Screen
Page 53 of 64 Go Back Full Screen
Page 53 of 64 Go Back Full Screen Close

53. Case Study: Bioinformatics

- *Practical problem:* find genetic difference between cancer cells and healthy cells.
- *Ideal case:* we directly measure concentration c of the gene in cancer cells and h in healthy cells.
- In reality: difficult to separate.
- Solution: we measure $y_i \approx x_i \cdot c + (1 x_i) \cdot h$, where x_i is the percentage of cancer cells in *i*-th sample.
- Equivalent form: $a \cdot x_i + h \approx y_i$, where $a \stackrel{\text{def}}{=} c h$.

General Problem of
Cauchy Deviates Method
Interval Arithmetic:
Case Study: Chip Design
Combining Interval
Case Study:
Case Study: Detecting
cuse study. Detecting
Home Page
Title Page
44 >>
Page 54 of 64
Go Back
Full Screen
Close
Quit

54. Case Study: Bioinformatics (cont-d)

• If we know x_i exactly: Least Squares Method $\sum_{i=1}^{n} (a \cdot x_i + h - y_i)^2 \to \min_{a,h}, \text{ hence } a = \frac{C(x,y)}{V(x)} \text{ and } h = E(y) - a \cdot E(x), \text{ where } E(x) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i,$

$$V(x) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - E(x))^2,$$

$$C(x,y) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - E(x)) \cdot (y_i - E(y)).$$

- Interval uncertainty: experts manually count x_i , and only provide interval bounds \mathbf{x}_i , e.g., $x_i \in [0.7, 0.8]$.
- *Problem:* find the range of a and h corresponding to all possible values $x_i \in [\underline{x}_i, \overline{x}_i]$.

General Problem of ... Cauchy Deviates Method Interval Arithmetic: ... Case Study: Chip Design Combining Interval ... Case Study: . . . Case Study: Detecting. Home Page Title Page 44 • Page 55 of 64 Go Back Full Screen Close Quit

55. General Problem

• General problem:

- we know intervals
$$\mathbf{x}_1 = [\underline{x}_1, \overline{x}_1], \ldots, \mathbf{x}_n = [\underline{x}_n, \overline{x}_n],$$

- compute the range of $E(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$, population

variance
$$V = \frac{1}{n} \sum_{i=1}^{n} (x_i - E(x))^2$$
, etc.

• *Difficulty:* NP-hard even for variance.

• Known:

- efficient algorithms for \underline{V} ,
- efficient algorithms for \overline{V} and C(x, y) for reasonable situations.
- Bioinformatics case: find intervals for C(x, y) and for V(x) and divide.

56. Case Study: Detecting Outliers

- In many application areas, it is important to detect *outliers*, i.e., unusual, abnormal values.
- In *medicine*, unusual values may indicate disease.
- In *geophysics*, abnormal values may indicate a mineral deposit (or an erroneous measurement result).
- In *structural integrity* testing, abnormal values may indicate faults in a structure.
- Traditional engineering approach: a new measurement result x is classified as an outlier if $x \notin [L, U]$, where

$$L \stackrel{\text{def}}{=} E - k_0 \cdot \sigma, \quad U \stackrel{\text{def}}{=} E + k_0 \cdot \sigma,$$

and $k_0 > 1$ is pre-selected.

• Comment: most frequently, $k_0 = 2, 3, \text{ or } 6$.

- 57. Outlier Detection Under Interval Uncertainty: A Problem
 - In some practical situations, we only have intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i].$
 - Different $x_i \in \mathbf{x}_i$ lead to different intervals [L, U].
 - A *possible* outlier: outside *some* k_0 -sigma interval.
 - *Example:* structural integrity not to miss a fault.
 - A guaranteed outlier: outside all k_0 -sigma intervals.
 - *Example:* before a surgery, we want to make sure that there is a micro-calcification.
 - A value x is a possible outlier if $x \notin [\overline{L}, \underline{U}]$.
 - A value x is a guaranteed outlier if $x \notin [\underline{L}, \overline{U}]$.
 - Conclusion: to detect outliers, we must know the ranges of $L = E - k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.

- 58. Outlier Detection Under Interval Uncertainty: A Solution
 - We need: to detect outliers, we must compute the ranges of $L = E k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.
 - We know: how to compute the ranges E and [σ, σ] for E and σ.
 - Possibility: use interval computations to conclude that $L \in \mathbf{E} k_0 \cdot [\underline{\sigma}, \overline{\sigma}]$ and $L \in \mathbf{E} + k_0 \cdot [\underline{\sigma}, \overline{\sigma}]$.
 - *Problem:* the resulting intervals for L and U are *wider* than the actual ranges.
 - Reason: E and σ use the same inputs x_1, \ldots, x_n and are hence not independent from each other.
 - *Practical consequence:* we miss some outliers.
 - Desirable: compute exact ranges for L and U.
 - Application: detecting outliers in gravity measurements.

59. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
- DUE-0926721.

60. Fuzzy Computations: A Problem

$$\begin{array}{c|c} \mu_1(x_1) \\ \hline \mu_2(x_2) \\ \hline \\ \dots \\ \mu_n(x_n) \end{array} f \qquad \mu = f(\mu_1, \dots, \mu_n) \\ \hline \end{array}$$

- Given: an algorithm $y = f(x_1, \ldots, x_n)$ and n fuzzy numbers $\mu_i(x_i)$.
- Compute: $\mu(y) = \max_{x_1, \dots, x_n: f(x_1, \dots, x_n) = y} \min(\mu_1(x_1), \dots, \mu_n(x_n)).$
- Motivation: y is a possible value of $Y \leftrightarrow \exists x_1, \ldots, x_n$ s.t. each x_i is a possible value of X_i and $f(x_1, \ldots, x_n) = y$.
- Details: "and" is min, \exists ("or") is max, hence

 $\mu(y) = \max_{x_1,...,x_n} \min(\mu_1(x_1),...,\mu_n(x_n), t(f(x_1,...,x_n) = y)),$ where t(true) = 1 and t(false) = 0.

61. Fuzzy Computations: Reduction to Interval Computations

• Problem (reminder):

- Given: an algorithm $y = f(x_1, \ldots, x_n)$ and n fuzzy numbers X_i described by membership functions $\mu_i(x_i)$.

- Compute: $Y = f(X_1, \ldots, X_n)$, where Y is defined by Zadeh's extension principle:

$$\mu(y) = \max_{x_1, \dots, x_n: f(x_1, \dots, x_n) = y} \min(\mu_1(x_1), \dots, \mu_n(x_n)).$$

• *Idea:* represent each X_i by its α -cuts

 $X_i(\alpha) = \{x_i : \mu_i(x_i) \ge \alpha\}.$

- Advantage: for continuous f, for every α , we have $Y(\alpha) = f(X_1(\alpha), \dots, X_n(\alpha)).$
- Resulting algorithm: for $\alpha = 0, 0.1, 0.2, ..., 1$ apply interval computations techniques to compute $Y(\alpha)$.

62. Proof of the Result about Chips

• Let us fix the optimal distributions for x_2, \ldots, x_n ; then,

$$Prob(D \le y_0) = \sum_{(x_1, \dots, x_n): D(x_1, \dots, x_n) \le y_0} p_1(x_1) \cdot p_2(x_2) \cdot \dots$$

• So,
$$\operatorname{Prob}(D \leq y_0) = \sum_{i=0}^N c_i \cdot q_i$$
, where $q_i \stackrel{\text{def}}{=} p_1(v_i)$.

• Restrictions:
$$q_i \ge 0$$
, $\sum_{i=0}^N q_i = 1$, and $\sum_{i=0}^N q_i \cdot v_i = E_1$.

• Thus, the worst-case distribution for x_1 is a solution to the following linear programming (LP) problem:

Minimize
$$\sum_{i=0}^{N} c_i \cdot q_i$$
 under the constraints $\sum_{i=0}^{N} q_i = 1$ and $\sum_{i=0}^{N} q_i \cdot v_i = E_1, q_i \ge 0, \quad i = 0, 1, 2, \dots, N.$

63. Proof of the Result about Chips (cont-d)

• Minimize:
$$\sum_{i=0}^{N} c_i \cdot q_i$$
 under the constraints $\sum_{i=0}^{N} q_i = 1$ and $\sum_{i=0}^{N} q_i \cdot v_i = E_1, q_i \ge 0, \quad i = 0, 1, 2, \dots, N.$

- Known: in LP with N + 1 unknowns q_0, q_1, \ldots, q_N , $\geq N + 1$ constraints are equalities.
- In our case: we have 2 equalities, so at least N 1 constraints $q_i \ge 0$ are equalities.
- Hence, no more than 2 values $q_i = p_1(v_i)$ are non-0.
- If corresponding v or v' are in $(\underline{x}_1, \overline{x}_1)$, then for $[v, v'] \subset \mathbf{x}_1$ we get the same y_0 in contradiction to non-degeneracy.
- Thus, the worst-case distribution is located at \underline{x}_1 and \overline{x}_1 .
- The condition that the mean of x_1 is E_1 leads to the desired formulas for \underline{p}_1 and \overline{p}_1 .

General Problem of ... Cauchy Deviates Method Interval Arithmetic: ... Case Study: Chip Design Combining Interval... Case Study: ... Case Study: Detecting Home Page Title Page 44 Page 64 of 64 Go Back Full Screen Close Quit