Modal Logic, Constructive Mathematics,
Computational Complexity, Reasoning

Under Interval Uncertainty:
Why and How It All Fits Together

Vladik Kreinovich

Department of Computer Science,
University of Texas at El Paso,
El Paso, TX 79968, USA
vladik@utep.edu
http://www.cs.utep.edu/vladik

Interval computations website:
http://www.cs.utep.edu/interval-comp

General Problem of. ..

1. Science in the Ideal World

e How can we make inference about the real world?
e How can we predict its future state?

e In the ideal world, we can measure everything with
perfect accuracy.

e The only challenges are:

— solving the corresponding equations and

— making predictions based on these solutions.

2.

Science in Real World

e In practice, measurement accuracy is limited.

e The measurement result 7 is, in general, different from

the actual value z: Az & 7 — 2 # 0.

e Often, the only information we have about measure-
ment error Az is the upper bound A on |Az|: |Az| <
A.

e In this case, after each measurement, possible values
of the quantity « form an interval [z — A, 7 + A].

Cauchy Deviates Method

3. Modal Logic Is Needed

Interval Arithmetic: . ..

e Under such interval uncertainty, for many properties,
we cannot say for sure whether this property is true.

e For example, stability means that real parts r of eigen-
values are non-positive.

o If r € [—1, —2], the system is necessarily stable.

e If we only know that r € [—1, 1], the system is possibly
stable and possibly not.

e In effect, we need modal logic (or, to be precise, modal
mathematics).

4.

Need to Compute

e And this all needs to be computed.

e So we need to use tools and results from constructive
and computable mathematics.

e We also need to take computational complexity into
account.

e In this talk, we show how all this is combined in interval
mathematics.

e Yuri Matiyasevich, one of its pioneers and supporters,
came from constructive mathematics.

e So, he used to call it applied constructive mathematics.

e However, it can be also called applied modal mathe-
madtics.

e Let’s get to formulas.

Case Study: Chip Design

5. General Problem of Data Processing
under Uncertainty

e Indirect measurements: way to measure y that are dif-
ficult (or even impossible) to measure directly. Gty st

o [dea: y= f(x1,...,7p)

T

~

X2

foly=r@,. . 1)

~

Ln

e Problem: measurements are never 100% accurate: x; #
z; (Az; # 0) hence

y=[f(@,....2) #y= f(z1,...,20).
What are bounds on Ay o y—y?

6. Probabilistic and Interval Uncertainty

Aa:l

A
) f Ay

Case Study: . ..

Az,

e Traditional approach: we know probability distribution
for Az; (usually Gaussian).

o Where it comes from: calibration using standard MI.
e Problem: calibration is not possible in:

— fundamental science

— manufacturing
e Solution: we know upper bounds A; on |Az;| hence

x; € [CAE/Z AV T Az]

7.

Interval Computations: A Problem

X1

X—Q. f y:f(xl7"'7xn)

Xn

—

e Given: an algorithm y = f(x1,...,2,) and n intervals
Xi = [mel]

e Compute: the corresponding range of y:

Wy, 7] = {f(z1,...,20) |21 € [29,71],..., 2, € [z, T0]}.
e Fuact: NP-hard even for quadratic f.
e Challenge: when are feasible algorithms possible?

e Challenge: when computing y = [y,7] is not feasible,

find a good approximation Y D y.

Case Study: Detecting . . .

|
—

Kl XN
KN N

8. Alternative Approach: Maximum Entropy
e Situation: in many practical applications, it is very
difficult to come up with the probabilities.

e Traditional engineering approach: use probabilistic tech-
niques.

e Problem: many different probability distributions are
consistent with the same observations.

e Solution: select one of these distributions — e.g., the
one with the largest entropy.

o Fxample — single variable: if all we know is that x €
[z, Z], then MaxEnt leads to a uniform distribution.

e Fxample — multiple variables: different variables are
independently distributed.

9. Limitations of Maximum Entropy Approach

e Fxample: simplest algorithm y =21+ ... 4+ x,,.

e Measurement errors: Ax; € [—A, Al.

o Analysis: Ay = Az + ...+ Ax,.

o Worst case situation: Ay =n - A.

o Maximum Entropy approach: due to Central Limit The-

Vn

orem, Ay is ~ normal, with o = A - —.

V3

o Why this may be inadequate: we get A ~ /n, but due
to correlation, it is possible that A =n-A ~n > /n.

e Conclusion: using a single distribution can be very
misleading, especially if we want guaranteed results.

e Examples: high-risk application areas such as space
exploration or nuclear engineering.

10. Linearization is Usually Possible

e In many practical situations, the errors Ax; are small,
so we can ignore quadratic terms:
Ay=y—y=f(Z1,....,7,) — f(x1,...,2)
f(%l,. .. ,%n) — f(%l — ASEl,. .. 755n — ALCn) ~
c1-Axy+...+c¢, Axy,,
def af ~

where ¢; = %(:cl, ey Tp).
(3

e For a linear function, the largest Ay is obtained when
each term ¢; - Ax; is the largest:

A=|01|A1++|Cn|An

e Due to the linearization assumption, we can estimate
each partial derivative ¢; as
N f(il)l, e X1, X 4 Ry, T, .. ,Jin) -y
C =~ .
h;

11. Linearization: Algorithm

To compute the range y of y, we do the following.

e First, we apply the algorithm f to the original esti-
mates Ty, . .., Tp, resulting in the value y = f(71,...,T,).

e Second, for all ¢ from 1 to n,
— we compute f(T1,...,Ti 1, T; + i, Tiv1,- .., Tp) for
some small h; and then

— we compute

~

f(%/l; e 7%/1’—17 fz + hi, %/H-la . ,fn) -y

hi

C;, =
e Finally, we compute A = |c1] - Ay + ... + |¢| - A, and
the desired range y = [y — A,y + A].

e Problem: we need n+1 calls to f, and this is often too
long.

12. Cauchy Deviate Method: Idea

e For large n, we can further reduce the number of calls
to f if we Cauchy distributions, w/pdf

A
P2 = T Ay

e Known property of Cauchy transforms:

—if 2z1,...,z, are independent Cauchy random vari-
ables w/parameters Ay, ..., A,,

—then z =c¢; - 21+ ...+ ¢, - 2, is also Cauchy dis-
tributed, w/parameter

A:|61|A1—|——|—|Cn|An

e This is exactly what we need to estimate interval un-
certainty!

13. Cauchy Deviate Method: Towards Implemen-
tation

e To implement the Cauchy idea, we must answer the
following questions:
— how to simulate the Cauchy distribution; and
— how to estimate the parameter A of this distribu-

tion from a finite sample.

e Simulation can be based on the functional transforma-
tion of uniformly distributed sample values:

0; = A; - tan(w - (r; — 0.5)), where r; ~ U([0, 1]).
e To estimate A, we can apply the Maximum Likelihood
Method p(6M) - p(6@®)) - ... p(6™) = max, i.e., solve
1 1 N

1 5(1)2+...+1 T
(5) (%)

14. Cauchy Deviates Method: Algorithm

e Apply f to z;; we get y := f(z1,...,Ty).
e For k=1,2,..., N, repeat the following:

e use the standard RNG to draw rgk) ~ U([0,1]),
i=1,2,...,n;

e compute Cauchy distributed values
) = tan(m - (rgk) —0.5));

(3
k :
e compute K = max; |cz()| and normalized errors

7
e compute the simulated “actual values”

:cgk) =T — 5£k);

e compute simulated errors of indirect measurement:
sk = K . (g— f (a:(lk), e ,x%k))> ;

e Compute A by applying the bisection method to solve
the Maximum Likelihood equation.

15. Important Comment

e To avoid confusion, we should emphasize that:
— in contrast to the Monte-Carlo solution for the prob-
abilistic case,

— the use of Cauchy distribution in the interval case
is a computational trick,

— it is not a truthful simulation of the actual mea-
surement error Ax;.

e Indeed:

— we know that the actual value of Ax; is always in-
side the interval [—A;, A;], but

— a Cauchy distributed random attains values outside
this interval as well.

16. Approximate Methods — Such As Linearizaion
— Are Sometimes Not Sufficient

e In many application areas, it is sufficient to have an
approrimate estimate of .

e Sometimes, we need to guarantee that y does not ex-
ceed a certain threshold yy. Examples:

—in nuclear engineering, the temperatures and the
neutron flows should not exceed the critical values;

— a space ship lands on the planet and does not fly
past it, etc.

e The only way to guarantee this is to have an interval
Y =[Y,Y] for whichy CY and Y < y.

e Such an interval is called an enclosure.

e Computing such an enclosure is one of the main tasks
of interval computations.

17. Interval Computations: A Brief History

e Origins: Archimedes (Ancient Greece)

o Modern pioneers: Warmus (Poland), Sunaga (Japan),

Moore (USA), 1956-59
e First boom: early 1960s.

e First challenge: taking interval uncertainty into ac-
count when planning spaceflights to the Moon.

e Current applications (sample):

— design of elementary particle colliders: Berz, Kyoko

(USA)
— will a comet hit the Earth: Berz, Moore (USA)
— robotics: Jaulin (France), Neumaier (Austria)

— chemical engineering: Stadtherr (USA)

18. Interval Arithmetic: Foundations of Interval
Techniques

e Problem: compute the range
[Qay] - {f(xlv s 73771) |.’L’1 S [glafl]a ce,Tp € [&nvfn]}

e Interval arithmetic: for arithmetic operations f(xy, z2)
(and for elementary functions), we have explicit formu-
las for the range.

e Ezxamples: when x1 € x1 = [z1,71] and x5 € x9 =
[£2af2]7 then:

— The range x; + x5 for x; + 9 i [z + 2y, T1 + T2
— The range x; — xy for x1 — x9 is [x; — Ta, T1 — Z4).
— The range x; - Xy for z; - x5 is [y, 7], where
Y = min(z; - To, Ty - Ta, T1 * Lo, T1 - T2);
Y =max(z, - Ty, T, * Ta, T1 * Ty, T1 * T2).
e The range 1/x; for 1/zy is [1/71,1/z;] (if 0 & x1).

19. Straightforward Interval Computations:
Example

e Example: f(x) = (r —2) - (x+2), xz € [1,2].
e How will the computer compute it?

®r =x— 2

oy :=x+2;

® 13 =771 To.

e Main idea: perform the same operations, but with in-
tervals instead of numbers:

or; = [1,2] —[2,2] = [-1,0];
o ry:=[1,2] 4+ [2,2] = [3,4];

or;:=[—1,0]-[3,4 = [-4,0].
= [-3,0].

e Comment: this is just a toy example, there are more
efficient ways of computing an enclosure Y O y.

e Actual range: f(x)

20. First Idea: Use of Monotonicity

e Reminder: for arithmetic, we had exact ranges.
e Reason: 4+, —, - are monotonic in each variable.

e How monotonicity helps: if f(x1, ..., z,) is (non-strictly)
increasing (f 1) in each z;, then

f(x1, .. ,xn) = [f(zq,...,2,), f(T1, ..., Tn)].

o Similarly: if f 1 for some x; and f | for other z;.

e Fact: f 1 in x; if gf

> 0.

e Checking monotonicity: check that the range [r;,7;] of
of
8:13@-

e Differentiation: by Automatic Differentiation (AD) tools.

on x; has r; > 0.

e FEstimating ranges of ——: straightforward interval comp.

&Ui

21. Monotonicity: Example

e [dea: if the range [r;, ;] of each

then

on X; has r; > 0,
T

f(x1, .., x0) = [f(zy,...,2,), f(T1,. .., Tn)].
e Example: f(x)=(x—2)-(x+2), x=1,2].

e Case n = 1: if the range [r,7] of — on x has r > 0,
x
then

0AD.‘j—f:1-($+2)+(.’L’—2>-1:2$.
T

e Checking: [r,7] = [2,4], with 2 > 0.
® Result: f([lv 2]) - [f(l)v f(2)] - [_37 0]'

e Comparison: this is the exact range.

22. Non-Monotonic Example

e Example: f(x) =z (1 —x), xz € [0,1].
e How will the computer compute it?
o :=1—u;
® 7y =1 T7.
o Straightforward interval computations:
or; :=[1,1]—1[0,1] = [0, 1];
er,:=[0,1]-1[0,1] = [0, 1].

d
e Actual range: min, max of f at x, ¥, or when é = 0.
df
e Here, pri 1 —2x =0 for x = 0.5, thus we:
x

e compute f(0) =0, f(0.5) = 0.25, and f(1) =0, so
e y = min(0,0.25,0) = 0, 7 = max(0, 0.25,0) = 0.25.

e Resulting range: f(x) = 0,0.25].

23. Second Idea: Centered Form

o Main idea: Intermediate Value Theorem

f(l'l,...,xn) Zf(§1,,%n)—|-

for some y; € x;.

e Corollary: f(x1,...,x,) € Y, where

0
Y = y—l— Z 8$f~(X1,' .. ,Xn) . [—A“Az]
i=1 ¢

e Differentiation: by Automatic Differentiation (AD) tools.
e FEstimating the ranges of derivatives:

— if appropriate, by monotonicity, or
— by straightforward interval computations, or

— by centered form (more time but more accurate).

24. Centered Form: Example

e General formula:

Y = f:L‘l,.. ﬂjn -I-Za

e Example: f(zx)=xz-(1—1z),x=10,1].
e Here, x = [z — A,z + A], with 7 = 0.5 and A = 0.5.

Xp) - [— A, Al

o Casen=1:Y = f(z) + ﬁ(x) AV AL

dx
d
e AD: d]::: 1-Ql—2)+z-(-1)=1-2ax.
df
e Estimation: we have %(x)=1-2-[0,1] = [-1,1].

e Result: Y = 05-(1—0.5)+ [-1,1] - [-0.5,0.5] =
0.25 + [0.5,0.5] = [0.25, 0.75].

e Comparison: actual range [0, 0.25], straightforward [0, 1].

25. Third Idea: Bisection

e Known: accuracy O(A?) of first order formula

f(:z:l,...,xn) =f<f1,,5n)+

e [dea: if the intervals are too wide, we:
— split one of them in half (A? — A?/4); and
— take the union of the resulting ranges.
o FExample: f(x) =z (1 —x), where x € x = [0, 1].
o Split: take x’ = [0,0.5] and x” = [0.5, 1].
o /st range: 1 —2-x=1-2-[0,0.5] =[0,1], so f 1 and
Fx) = [£(0), £(0.5)] = [0,0.25].
e 2nd range: 1 —2-x=1-2-10.5,1] = [-1,0], so f |
and f(x") = [f(1), f(0.5)] = [0,0.25].
e Result: f(x')U f(x") =10,0.25] — exact.

26. Alternative Approach: Affine Arithmetic
e So far: we compute the range of x - (1 —) by multi-
plying ranges of x and 1 — .

e We ignore: that both factors depend on z and are,
thus, dependent.

e [dea: for each intermediate result a, keep an explicit
dependence on Ax; = ; —x; (at least its linear terms).

e Implementation:
a = agy+ Zai - Azx; + [a,a].
i=1
o We start: with z; = z; — Ax;, i.e.,

e Description: ay = Z;, a; = —1, a;j = 0 for 7 # 7, and
[Q7 a] - [0’0]'

27. Affine Arithmetic: Operations
n
e Representation: a = ag+ Y, a; - Az; + [a,a.
i=1

e Input: a = CLO—|—Z a;-Ax;+aand b = bO"’Z bi-Ax;+b.
=1 1=1

e Operations: ¢ = a ® b.
e Addition: co = ayg+ by, ¢; = a; + b;, c =a+ b.
e Subtraction: cy = ag — by, ¢; = a; — b;, c =a — b.
e Multiplication: co = ag - by, ¢; = ag - b; + by - a;,
c=ag-btby-a+t Y ai-bj-[-A;A]-[-A; A+
7]

Zaz [— A, AP+

(Zai-[—Ai,A) b+ (Zb —AL A,)-a+a-b.

28. Affine Arithmetic: Example

e Example: f(x) =z (1 —x), xz € [0,1].
e Here, n =1,z =0.5, and A =0.5.
e How will the computer compute it?

o =1—u;

® 7y =X-T1.
e Affine arithmetic: we start with x = 0.5 — Az + [0, 0];

or; :=1—(0.5—-Az)=0.5+ Ax;
ory:=(0.5—Ax) (054 Ax), i.e,

ry =0.254+0-Ar — [-A, A = 0.25 + [-A% 0].
e Resulting range: y = 0.25 + [—0.25,0] = [0, 0.25].

e Comparison: this is the exact range.

29. Affine Arithmetic: Towards More Accurate
Estimates
e In our simple example: we got the exact range.
e In general: range estimation is NP-hard.

e Meaning: a feasible (polynomial-time) algorithm will
sometimes lead to excess width: Y D y.

e Conclusion: affine arithmetic may lead to excess width.
e (Question: how to get more accurate estimates?

e First idea: bisection.

e Second idea (Taylor arithmetic):

— affine arithmetic: a = apg+ > a; - Ax; + a;
— meaning: we keep linear terms in Ax;;
— idea: keep, e.g., quadratic terms

a:a0+2ai-Axi+Zaij-Aa:i-ijJra.

30. Interval Computations vs. Affine Arithmetic:
Comparative Analysis

e Objective: we want a method that computes a reason-
able estimate for the range in reasonable time.

e Conclusion — how to compare different methods:

— how accurate are the estimates, and

— how fast we can compute them.
e Accuracy: affine arithmetic leads to more accurate ranges.
e Computation time:

— Interval arithmetic: for each intermediate result a,
we compute two values: endpoints a and @ of [a, a].

— Affine arithmetic: for each a, we compute n + 3
values:
ag Q1y...,0yn Qa,a.

e Conclusion: affine arithmetic is ~ n times slower.

31. Solving Systems of Equations: Extending Known
Algorithms to Situations with Interval
Uncertainty

e We have: a system of equations g;(y1, ..., y,) = a; with
unknowns ;;

o We know: a; with interval uncertainty: a; € [a;, @;);

o We want: to find the corresponding ranges of y;.

e First case: for exactly known a;, we have an algorithm
y; = fi(a1,...,a,) for solving the system.

e Fxample: system of linear equations.

e Solution: apply interval computations techniques to
find the range f;([a;, @], ..., |[a,, @)

e Better solution: for specific equations, we often already
know which ideas work best.

e Fxample: linear equations Ay = b; y is monotonic in b.

32. Solving Systems of Equations When No
Algorithm Is Known

e [dea:

— parse each equation into elementary constraints,
and

— use interval computations to improve original ranges
until we get a narrow range (= solution).

o First example: v — x> = 0.5, x € [0, 1] (no solution).
o Parsing: ry = 2%, 0.5 (=13) = —ry.

2

e Rules: from r; = z°, we extract two rules:

(D) z—r=2% (2)r — 2=/
from 0.5 = z — ry, we extract two more rules:

B)x—=r=x—-05 (4 rn—>x=r+0.5.

33. Solving Systems of Equations When No
Algorithm Is Known: Example

e ()r=2%2)x=r;(3)r=2-0.5; (4) 2 =r+0.5.
o We start with: x = [0,1], r = (—00, 00).

(1) v =1[0,1]> = [0,1], 50 Tpew = (—00,00) N [0,1] = [0, 1].
(2) Xpew = 1/[0,1]N[0,1] = [0, 1] — no change.

(3) rpew = ([0,1]—0.5)N[0, 1} = [-0.5,0.5]N[0, 1] = [0, 0.5].
(4) Xpew = ([0,0.5] +0.5) N[0, 1] = [0.5,1] N0, 1] = [0.5, 1].
(1) rpew = [0.5,1]* N [0,0.5] = [0.25,0.5].

(2) Xnew = 1/[0.25,0.5] N [0.5, 1] = [0.5,0.71];

round a down | and @ up T, to guarantee enclosure.

(3) Taew = ([0.5,0.71]—0.5)1[0.25, 5] = [0.0.21]M[0.25, 0.5],
i.e., rpew = 0.

e Conclusion: the original equation has no solutions.

34. Solving Systems of Equations: 2nd Example

o Example: v —2®> =0, x € [0,1].

o Parsing: ry = 2%, 0 (=19) =2 —11.

o Rules: (1) r=a2% 2 z=vr;) r=x;(4) z=r.

o We start with: x = [0,1], r = (—00, 00).

e Problem: after Rule 1, we're stuck with x =r = [0, 1].
e Solution: bisect x = [0, 1] into [0, 0.5] and [0.5, 1].

o For 1st subinterval:

— Rule 1 leads to ryey = [0,0.512N[0,0.5] = [0,0.25];
— Rule 4 leads to Xpew = [0,0.25];

— Rule 1 leads to ryey = [0,0.25]% = [0, 0.0625];

— Rule 4 leads to xyey = [0,0.0625]; etc.

— we converge to x = 0.

e For 2nd subinterval: we converge to x = 1.

35. Optimization: Extending Known Algorithms
to Situations with Interval Uncertainty

e Problem: find vy, ...,y for which
g(yla"‘)ym;a/]_,---,am) — max.

e We know: a; with interval uncertainty: a; € [a;, @;|;
o We want: to find the corresponding ranges of y;.

e First case: for exactly known a;, we have an algorithm
y; = fi(ai,...,a,) for solving the optimization prob-
lem.

e Fxample: quadratic objective function g.

e Solution: apply interval computations techniques to
find the range f;([a;, @], ..., [a,, @)

e Better solution: for specific f, we often already know
which ideas work best.

36. Optimization When No Algorithm Is Known

e [dea: divide the original box x into subboxes b.

o If max g(x) < g(2) for a known 2/, dismiss b.
re

e Ezxample: g(xz) =z - (1 —x), x = [0, 1].
e Divide into 10 (7) subboxes b = [0,0.1],[0.1,0.2],. ..
e Find ¢(b) for each b; the largest is 0.45 - 0.55 = 0.2475.
e Compute G(b) = g(b) + (1 —2-b) - [-A, A].
e Dismiss subboxes for which Y < 0.2475.
e Ezxample: for [0.2,0.3], we have
0.25 - (1 —0.25) + (1 —2-[0.2,0.3]) - [~0.05,0.05)].
e Here Y = 0.2175 < 0.2475, so we dismiss [0.2,0.3].
e Result: keep only boxes C [0.3,0.7].

e Further subdivision: get us closer and closer to z = 0.5.

37. Case Study: Chip Design
e Chip design: one of the main objectives is to decrease
the clock cycle.
e Current approach: uses worst-case (interval) techniques.

e Problem: the probability of the worst-case values is
usually very small.

e Result: estimates are over-conservative — unnecessary
over-design and under-performance of circuits.

e Difficulty: we only have partial information about the
corresponding probability distributions.

e Objective: produce estimates valid for all distributions
which are consistent with this information.

e What we do: provide such estimates for the clock time.

38. Estimating Clock Cycle: a Practical Problem

e Objective: estimate the clock cycle on the design stage.

e The clock cycle of a chip is constrained by the maxi-

mum path delay over all the circuit paths
D ¥ max(D,,..., Dy).

e The path delay D; along the i-th path is the sum of
the delays corresponding to the gates and wires along
this path.

e Each of these delays, in turn, depends on several factors
such as:

— the variation caused by the current design prac-
tices,

— environmental design characteristics (e.g., variations
in temperature and in supply voltage), etc.

39. Traditional (Interval) Approach to Estimating
the Clock Cycle

e Traditional approach: assume that each factor takes
the worst possible value.

e Result: time delay when all the factors are at their
worst.

e Problem:

— different factors are usually independent;

— combination of worst cases is improbable.

e Computational result: current estimates are 30% above
the observed clock time.

e Practical result: the clock time is set too high — chips
are over-designed and under-performing.

40. Robust Statistical Methods Are Needed

e [deal case: we know probability distributions.
e Solution: Monte-Carlo simulations.

e In practice: we only have partial information about the
distributions of some of the parameters; usually:

— the mean, and

— some characteristic of the deviation from the mean
— e.g., the interval that is guaranteed to contain
possible values of this parameter.

e Possible approach: Monte-Carlo with several possible
distributions.

e Problem: no guarantee that the result is a valid bound
for all possible distributions.

e Objective: provide robust bounds, i.e., bounds that
work for all possible distributions.

41. Towards a Mathematical Formulation of the
Problem

e General case: each gate delay d depends on the dif-
ference x4, ..., x, between the actual and the nominal
values of the parameters.

o Main assumption: these differences are usually small.

e Each path delay D; is the sum of gate delays.
n
e Conclusion: D, is a linear function: D; = CLH‘Z Ajj+T;
j=1
for some a; and a;;.

e The desired maximum delay D = max D; has the form

n
D= F(xy,...,z,) défmax (ai—kZaij-xj) .
1

j=1

42. Towards a Mathematical Formulation of the
Problem (cont-d)

e Known: maxima of linear function are exactly convex
functions:

Fla-z+(1-a)-y)<a-Flr)+(1—a)- F(y)
for all 2,y and for all « € [0, 1];

o We know: factors x; are independent;

— we know distribution of some of the factors;

— for others, we know ranges [z, ;] and means Ej.
o (Given: a convex function F' > 0 and a number £ > 0.

e Objective: find the smallest g, s.t. for all possible dis-
tributions, we have y < yy with the probability > 1—e.

43. Additional Property: Dependency is
Non-Degenerate

e Fact: sometimes, we learn additional information about
one of the factors z;.

e Fzample: we learn that x; actually belongs to a proper
subinterval of the original interval [z;, T;].

e Consequence: the class P of possible distributions is
replaced with P’ C P.

e Result: the new value y;, can only decrease: y < yo.
e Fuct: if x; is irrelevant for y, then y; = yo.
o Assumption: irrelevant variables been weeded out.

e Formalization: if we narrow down one of the intervals

[2;,7;], the resulting value yo decreases: y; < yo.

44. Formulation of the Problem

GIVEN:

TAKE:

FIND:

WHEN:

oen, k<n,e>0;

e a convex function y = F(xq,...,x,) > 0;
oen—Fkcdfs Fj(x), k+1<j<mn;

e intervals xq,...,xy, values Fy,..., Ey,

all joint probability distributions on R" for which:
e all x; are independent,
o r; € X, Elxj| = Ej for j <k, and
e z; have distribution Fj(x) for j > k.
the smallest 1, s.t. for all such distributions,
F(xy,...,x,) <y with probability > 1 — «.

the problem is non-degenerate — if we narrow down
one of the intervals x;, yo decreases.

45. Main Result and How We Can Use It

e Result: yy is attained when for each j from 1 to k,

T, — F;

e 1; = x; with probability P, aof M, and
E; —x,
e r; = T; with probability p; aof =

e Algorithm:

e simulate these distributions for z;, j < k;
e simulate known distributions for j > k;

e use the simulated values :(:(2 to find
y(s) = F(:Ugs), . ,a:,(f>);

e sort IV values y(s) Y < Y(2) <...< YNy
e take y(n,.(1-¢)) as Yo.

46. Comment about Monte-Carlo Techniques

e Traditional belief: Monte-Carlo methods are inferior to
analytical:
— they are approximate;
— they require large computation time;
— simulations for several distributions, may mis-calculate

the (desired) maximum over all distributions.

e We proved: the value corresponding to the selected dis-
tributions indeed provide the desired maximum value yy.

e (General comment:

— justified Monte-Carlo methods often lead to faster
computations than analytical techniques;

— example: multi-D integration — where Monte-Carlo
methods were originally invented.

47. Comment about Non-Linear Terms

n
e Reminder: in the above formula D; = a; + Z aij - T,
j=1
we ignored quadratic and higher order terms in the
dependence of each path time D; on parameters z;.

e In reality: we may need to take into account some
quadratic terms.

e [dea behind possible solution: it is known that the max
D = max D; of convex functions D; is convex.
1

e Condition when this idea works: when each depen-
dence Dj(x1,...,x,...) is still convex,

e Solution: in this case,

— the function function D is still convex,

— hence, our algorithm will work.

48. Conclusions

e Problem of chip design: decrease the clock cycle.

e How this problem 1is solved mow: by using worst-case
(interval) techniques.

o Limitations of this solution: the probability of the worst-
case values is usually very small.

e Consequence: estimates are over-conservative, hence
over-design and under-performance of circuits.

e Objective: find the clock time as yq s.t. for the actual
delay y, we have Prob(y > yy) < ¢ for given £ > 0.

e Difficulty: we only have partial information about the
corresponding distributions.

o What we have described: a general technique that al-
lows us, in particular, to compute .

49. Combining Interval and Probabilistic
Uncertainty: General Case

e Problem: there are many ways to represent a probabil-
ity distribution.

e [dea: look for an objective.

e Objective: make decisions F,[u(x,a)] — max.
a

e Case 1: smooth u(x).

o Analysis: we have u(z) = u(xg) + (x —x0) - ' (xo) +. ..
e Conclusion: we must know moments to estimate E[u].
e Case of uncertainty: interval bounds on moments.

e Case 2: threshold-type u(z).

e Conclusion: we need cdf F(z) = Prob(¢ < z).
e Case of uncertainty: p-box [F(z), F(x)].

50. Extension of Interval Arithmetic to
Probabilistic Case: Successes

e General solution: parse to elementary operations +,
—, -, 1/x, max, min.

e Explicit formulas for arithmetic operations known for
intervals, for p-boxes F(z) = [F(x), F(z)], for intervals

+ 1st moments E; & F [2]:

X1, El
X9, E2

Xp, By

51. Successes (cont-d)

e Fasy cases: +, —, product of independent ;.

o Erample of a non-trivial case: multiplication y = 1 -
T9, when we have no information about the correlation:

e £ = max(p1+p2—1,0)-T1-To+min(py, 1—p2)-T1 29+
min(1 — py, p2) - 2, - To + max(1 — p; — p2,0) - 21 - Ty;
o E = min(py, p2) - Ty - To + max(p; — p2,0) - Ty - 29+
max(ps — p1,0) - 2y - To+min(1 — p1, 1 — po) - ; - T,

where p; o (B —)/ (@i — z;).

52. Challenges

e intervals + 2nd moments:

X17E17V1
X2, B9, Vo

f yv.EV

XmEn;Vn

e moments + p-boxes; e.g.:

El, Fl(ﬂf)
EQ, FQ(QZ)

f | EF(

E,,F,(x)

53. Case Study: Bioinformatics

e Practical problem: find genetic difference between can-
cer cells and healthy cells.

e [deal case: we directly measure concentration c of the
gene in cancer cells and h in healthy cells.

e In reality: difficult to separate.

e Solution: we measure y; ~ x; - c+ (1 — x;) - h, where z;
is the percentage of cancer cells in ¢-th sample.

e Fquivalent form: a - x; + h = y;, where a e h

54. Case Study: Bioinformatics (cont-d)

o [f we know x; exactly: Least Squares Method

= : C(x,y)
o 2 _ ,
;(a r; +h—y) — rzl,lhn, hence a V@) and
h=FE(y) —a- E(x), where E(x sz,
1 n
V(r) = 3 (- B@)

i=1

Cloy) = — Do~ B@) - (o~ B()

e Interval uncertainty: experts manually count z;, and
only provide interval bounds x;, e.g., z; € [0.7,0.8].

e Problem: find the range of a and h corresponding to
all possible values z; € [z;, T;].

55. General Problem

e General problem:

— we know intervals x1 = [z, T1], ..., X, = [Z,,, Tn),

1 n
— compute the range of F(z) = — in, population
n <
1 -
‘ V== i — E(1))?, etc.
variance - ZZ:;(:U (x))7, etc

e Difficulty: NP-hard even for variance.
e Known:

— efficient algorithms for V/,
— efficient algorithms for V and C'(x, y) for reasonable
situations.

e Bioinformatics case: find intervals for C'(z,y) and for
V(z) and divide.

56. Case Study: Detecting Outliers

e In many application areas, it is important to detect
outliers, i.e., unusual, abnormal values.

e In medicine, unusual values may indicate disease.

e In geophysics, abnormal values may indicate a mineral
deposit (or an erroneous measurement result).

e In structural integrity testing, abnormal values may in-
dicate faults in a structure.

e Traditional engineering approach: a new measurement
result x is classified as an outlier if « ¢ [L, U], where

LYE ko, U E+k- o,

and ky > 1 is pre-selected.

e Comment: most frequently, kg = 2, 3, or 6.

57. Outlier Detection Under Interval Uncertainty:
A Problem

e In some practical situations, we only have intervals
xX; = |z;, Ti].

e Different z; € x; lead to different intervals [L, U].

e A possible outlier: outside some ky-sigma interval.

e Fxample: structural integrity — not to miss a fault.

e A guaranteed outlier: outside all ky-sigma intervals.

e Frample: before a surgery, we want to make sure that
there is a micro-calcification.

e A value z is a possible outlier if z ¢ [L, U].

e A value z is a guaranteed outlier if « & [L, U].

e Conclusion: to detect outliers, we must know the ranges
of L=F—ky-cand U =FE+ky-o.

58. OQOutlier Detection Under Interval Uncertainty:
A Solution

e Ve need: to detect outliers, we must compute the
rangesof L=F —ky-cand U = E + ky - 0.

e We know: how to compute the ranges E and [0, 7] for
E and o.

e Possibility: use interval computations to conclude that
LeE—ky-[g,0)and L € E+ky-[g,7].

e Problem: the resulting intervals for L and U are wider
than the actual ranges.

e Reason: E and o use the same inputs x1,...,x, and
are hence not independent from each other.

e Practical consequence: we miss some outliers.
e Desirable: compute ezxact ranges for L and U.

e Application: detecting outliers in gravity measurements.

59. Acknowledgments

This work was supported in part by the National Science
Foundation grants:

e HRD-0734825 and HRD-1242122
(Cyber-ShARE Center of Excellence) and

e DUE-0926721.

60. Fuzzy Computations: A Problem

H1(T1

),
p2(xo)
(),

folu= s i)

Hn Tn

—

e Given: an algorithm y = f(x1,...,2,) and n fuzzy BN
numbers p;(z;).

—te

C te: = a i . .
* wompuie 'u<y) :c1,...,:cn:5"I(1x3,(...,xn)=y IIllIl(,LL1 (331) Mn(xn)) ‘ ’7
e Motivation: y is a possible value of Y <+ dzq, ..., x, s.t.

each x; is a possible value of X; and f(z1,...,2,) =v.

e Details: “and” is min, 3 (“or”) is max, hence S iseme |

TL1yeeesLn

where t(true) = 1 and t¢(false) = 0.

N(y) = max min(:ul(xl)’ E ,:UJn(xn)’ t(f(xla cee axn) = y)): [—

61. Fuzzy Computations: Reduction to Interval
Computations
e Problem (reminder):

— Given: an algorithm y = f(x1,...,x,) and n fuzzy
numbers X; described by membership functions p;(z;).

— Compute: Y = f(Xy,...,X,), where Y is defined
by Zadeh’s extension principle:

ply) = max min(u(e), o ()

e [dea: represent each X; by its a-cuts
Xi(a) ={x; : pi(wi) > .
e Advantage: for continuous f, for every a, we have
Y(a) = f(Xi(a),..., X,(a)).

e Resulting algorithm: for « = 0,0.1,0.2,...,1 apply in-
terval computations techniques to compute Y («).

62. Proof of the Result about Chips

e Let us fix the optimal distributions for xs, ..., z,; then,

Prob(D <) = Z p1(xy) - pa(za) - ...

(Z1,eesn): D (21,020) <yo

N
e So, Prob(D <) = > ¢; - ¢;, where g; dof p1(v;).

1=0
N N

e Restrictions: ¢; >0, Y ¢, =1, and > _ ¢ - v; = Fy.
i=0 i=0

e Thus, the worst-case distribution for z; is a solution to
the following linear programming (LP) problem:

N N
Minimize Y ¢; - ¢; under the constraints > ¢; = 1 and
i=0 i=0

N
ZQi'vi:Eh %207 i:O71727"'7N‘
i=0

63. Proof of the Result about Chips (cont-d)

N N
e Minimize: Y ¢;-q; under the constraints > ¢; = 1 and
1=0 i=0

N
ZQi'Ui:El, q; 20, ’i=0,1,2,...,N.
i=0
e Known: in LP with N + 1 unknowns qo,q1,...,qn,
> N + 1 constraints are equalities.

e In our case: we have 2 equalities, so at least N — 1
constraints ¢; > 0 are equalities.

e Hence, no more than 2 values ¢; = p1(v;) are non-0.

e If corresponding v or v’ are in (z,, 71), then for [v,v'] C
x1 we get the same gy — in contradiction to non-degeneracy.

e Thus, the worst-case distribution is located at z; and 7;.

e The condition that the mean of z; is E; leads to the
desired formulas for p, and p,.

	Science in the Ideal World
	Science in Real World
	Modal Logic Is Needed
	Need to Compute
	General Problem of Data Processingunder Uncertainty
	Probabilistic and Interval Uncertainty
	Interval Computations: A Problem
	Alternative Approach: Maximum Entropy
	Limitations of Maximum Entropy Approach
	Linearization is Usually Possible
	Linearization: Algorithm
	Cauchy Deviate Method: Idea
	Cauchy Deviate Method: Towards Implementation
	Cauchy Deviates Method: Algorithm
	Important Comment
	Approximate Methods – Such As Linearizaion – Are Sometimes Not Sufficient
	Interval Computations: A Brief History
	Interval Arithmetic: Foundations of Interval Techniques
	Straightforward Interval Computations: Example
	First Idea: Use of Monotonicity
	Monotonicity: Example
	Non-Monotonic Example
	Second Idea: Centered Form
	Centered Form: Example
	Third Idea: Bisection
	Alternative Approach: Affine Arithmetic
	Affine Arithmetic: Operations
	Affine Arithmetic: Example
	Affine Arithmetic: Towards More Accurate Estimates
	Interval Computations vs. Affine Arithmetic: Comparative Analysis
	Solving Systems of Equations: Extending Known Algorithms to Situations with IntervalUncertainty
	Solving Systems of Equations When NoAlgorithm Is Known
	Solving Systems of Equations When NoAlgorithm Is Known: Example
	Solving Systems of Equations: 2nd Example
	Optimization: Extending Known Algorithms to Situations with Interval Uncertainty
	Optimization When No Algorithm Is Known
	Case Study: Chip Design
	Estimating Clock Cycle: a Practical Problem
	Traditional (Interval) Approach to Estimating the Clock Cycle
	Robust Statistical Methods Are Needed
	Towards a Mathematical Formulation of the Problem
	Towards a Mathematical Formulation of the Problem (cont-d)
	Additional Property: Dependency is Non-Degenerate
	Formulation of the Problem
	Main Result and How We Can Use It
	Comment about Monte-Carlo Techniques
	Comment about Non-Linear Terms
	Conclusions
	Combining Interval and Probabilistic Uncertainty: General Case
	Extension of Interval Arithmetic to Probabilistic Case: Successes
	Successes (cont-d)
	Challenges
	Case Study: Bioinformatics
	Case Study: Bioinformatics (cont-d)
	General Problem
	Case Study: Detecting Outliers
	Outlier Detection Under Interval Uncertainty: A Problem
	Outlier Detection Under Interval Uncertainty: A Solution
	Acknowledgments
	Fuzzy Computations: A Problem
	Fuzzy Computations: Reduction to Interval Computations
	Proof of the Result about Chips
	Proof of the Result about Chips (cont-d)

