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General Problem of. ..

1. Science in the Ideal World

e How can we make inference about the real world?
e How can we predict its future state?

e In the ideal world, we can measure everything with
perfect accuracy.

e The only challenges are:

— solving the corresponding equations and

— making predictions based on these solutions.




2.

Science in Real World

e In practice, measurement accuracy is limited.

e The measurement result 7 is, in general, different from

the actual value z: Az & 7 — 2 # 0.

e Often, the only information we have about measure-
ment error Az is the upper bound A on |Az|: |Az| <
A.

e In this case, after each measurement, possible values
of the quantity « form an interval [z — A, 7 + A].

Cauchy Deviates Method




3. Modal Logic Is Needed

Interval Arithmetic: . ..

e Under such interval uncertainty, for many properties,
we cannot say for sure whether this property is true.

e For example, stability means that real parts r of eigen-
values are non-positive.

o If r € [—1, —2], the system is necessarily stable.

e If we only know that r € [—1, 1], the system is possibly
stable and possibly not.

e In effect, we need modal logic (or, to be precise, modal
mathematics).




4.

Need to Compute

e And this all needs to be computed.

e So we need to use tools and results from constructive
and computable mathematics.

e We also need to take computational complexity into
account.

e In this talk, we show how all this is combined in interval
mathematics.

e Yuri Matiyasevich, one of its pioneers and supporters,
came from constructive mathematics.

e So, he used to call it applied constructive mathematics.

e However, it can be also called applied modal mathe-
madtics.

e Let’s get to formulas.

Case Study: Chip Design




5. General Problem of Data Processing
under Uncertainty

e Indirect measurements: way to measure y that are dif-
ficult (or even impossible) to measure directly. Gty st

o [dea: y= f(x1,...,7p)

T

~

X2

foly=r@,. . 1)

~

Ln

e Problem: measurements are never 100% accurate: x; #
z; (Az; # 0) hence

y=[f(@,....2) #y= f(z1,...,20).
What are bounds on Ay o y—y?




6. Probabilistic and Interval Uncertainty

Aa:l

A
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Case Study: . ..

Az,

e Traditional approach: we know probability distribution
for Az; (usually Gaussian).

o Where it comes from: calibration using standard MI.
e Problem: calibration is not possible in:

— fundamental science

— manufacturing
e Solution: we know upper bounds A; on |Az;| hence

x; € [CAE/Z AV T Az]




7.

Interval Computations: A Problem

X1

X—Q. f y:f(xl7"'7xn)

Xn

—

e Given: an algorithm y = f(x1,...,2,) and n intervals
Xi = [mel]

e Compute: the corresponding range of y:

Wy, 7] = {f(z1,...,20) |21 € [29,71],..., 2, € [z, T0]}.
e Fuact: NP-hard even for quadratic f.
e Challenge: when are feasible algorithms possible?

e Challenge: when computing y = [y,7] is not feasible,

find a good approximation Y D y.

Case Study: Detecting . . .
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8. Alternative Approach: Maximum Entropy
e Situation: in many practical applications, it is very
difficult to come up with the probabilities.

e Traditional engineering approach: use probabilistic tech-
niques.

e Problem: many different probability distributions are
consistent with the same observations.

e Solution: select one of these distributions — e.g., the
one with the largest entropy.

o Fxample — single variable: if all we know is that x €
[z, Z], then MaxEnt leads to a uniform distribution.

e Fxample — multiple variables: different variables are
independently distributed.




9. Limitations of Maximum Entropy Approach

e Fxample: simplest algorithm y =21+ ... 4+ x,,.

e Measurement errors: Ax; € [—A, Al.

o Analysis: Ay = Az + ...+ Ax,.

o Worst case situation: Ay =n - A.

o Maximum Entropy approach: due to Central Limit The-

Vn

orem, Ay is ~ normal, with o = A - —.

V3

o Why this may be inadequate: we get A ~ /n, but due
to correlation, it is possible that A =n-A ~n > /n.

e Conclusion: using a single distribution can be very
misleading, especially if we want guaranteed results.

e Examples: high-risk application areas such as space
exploration or nuclear engineering.




10. Linearization is Usually Possible

e In many practical situations, the errors Ax; are small,
so we can ignore quadratic terms:
Ay=y—y=f(Z1,....,7,) — f(x1,...,2)
f(%l,. .. ,%n) — f(%l — ASEl,. .. 755n — ALCn) ~
c1-Axy+...+c¢, Axy,,
def af ~

where ¢; = %(:cl, ey Tp).
(3

e For a linear function, the largest Ay is obtained when
each term ¢; - Ax; is the largest:

A=|01|A1++|Cn|An

e Due to the linearization assumption, we can estimate
each partial derivative ¢; as
N f(il)l, e X1, X 4 Ry, T, .. ,Jin) -y
C =~ .
h;




11. Linearization: Algorithm

To compute the range y of y, we do the following.

e First, we apply the algorithm f to the original esti-
mates Ty, . .., Tp, resulting in the value y = f(71,...,T,).

e Second, for all ¢ from 1 to n,
— we compute f(T1,...,Ti 1, T; + i, Tiv1,- .., Tp) for
some small h; and then

— we compute

~

f(%/l; e 7%/1’—17 fz + hi, %/H-la . ,fn) -y

hi

C;, =
e Finally, we compute A = |c1] - Ay + ... + |¢| - A, and
the desired range y = [y — A,y + A].

e Problem: we need n+1 calls to f, and this is often too
long.




12. Cauchy Deviate Method: Idea

e For large n, we can further reduce the number of calls
to f if we Cauchy distributions, w/pdf

A
P2 = T Ay

e Known property of Cauchy transforms:

—if 2z1,...,z, are independent Cauchy random vari-
ables w/parameters Ay, ..., A,,

—then z =c¢; - 21+ ...+ ¢, - 2, is also Cauchy dis-
tributed, w/parameter

A:|61|A1—|——|—|Cn|An

e This is exactly what we need to estimate interval un-
certainty!




13. Cauchy Deviate Method: Towards Implemen-
tation

e To implement the Cauchy idea, we must answer the
following questions:
— how to simulate the Cauchy distribution; and
— how to estimate the parameter A of this distribu-

tion from a finite sample.

e Simulation can be based on the functional transforma-
tion of uniformly distributed sample values:

0; = A; - tan(w - (r; — 0.5)), where r; ~ U([0, 1]).
e To estimate A, we can apply the Maximum Likelihood
Method p(6M) - p(6@®)) - ... p(6™) = max, i.e., solve
1 1 N

1 5(1)2+...+1 T
(5) (%)




14. Cauchy Deviates Method: Algorithm

e Apply f to z;; we get y := f(z1,...,Ty).
e For k=1,2,..., N, repeat the following:

e use the standard RNG to draw rgk) ~ U([0,1]),
i=1,2,...,n;

e compute Cauchy distributed values
) = tan(m - (rgk) —0.5));

(3
k :
e compute K = max; |cz( )| and normalized errors

7
e compute the simulated “actual values”

:cgk) =T — 5£k);

e compute simulated errors of indirect measurement:
sk = K . (g— f (a:(lk), e ,x%k))> ;

e Compute A by applying the bisection method to solve
the Maximum Likelihood equation.




15. Important Comment

e To avoid confusion, we should emphasize that:
— in contrast to the Monte-Carlo solution for the prob-
abilistic case,

— the use of Cauchy distribution in the interval case
is a computational trick,

— it is not a truthful simulation of the actual mea-
surement error Ax;.

e Indeed:

— we know that the actual value of Ax; is always in-
side the interval [—A;, A;], but

— a Cauchy distributed random attains values outside
this interval as well.




16. Approximate Methods — Such As Linearizaion
— Are Sometimes Not Sufficient

e In many application areas, it is sufficient to have an
approrimate estimate of .

e Sometimes, we need to guarantee that y does not ex-
ceed a certain threshold yy. Examples:

—in nuclear engineering, the temperatures and the
neutron flows should not exceed the critical values;

— a space ship lands on the planet and does not fly
past it, etc.

e The only way to guarantee this is to have an interval
Y =[Y,Y] for whichy CY and Y < y.

e Such an interval is called an enclosure.

e Computing such an enclosure is one of the main tasks
of interval computations.




17. Interval Computations: A Brief History

e Origins: Archimedes (Ancient Greece)

o Modern pioneers: Warmus (Poland), Sunaga (Japan),

Moore (USA), 1956-59
e First boom: early 1960s.

e First challenge: taking interval uncertainty into ac-
count when planning spaceflights to the Moon.

e Current applications (sample):

— design of elementary particle colliders: Berz, Kyoko

(USA)
— will a comet hit the Earth: Berz, Moore (USA)
— robotics: Jaulin (France), Neumaier (Austria)

— chemical engineering: Stadtherr (USA)




18. Interval Arithmetic: Foundations of Interval
Techniques

e Problem: compute the range
[Qay] - {f(xlv s 73771) |.’L’1 S [glafl]a ce,Tp € [&nvfn]}

e Interval arithmetic: for arithmetic operations f(xy, z2)
(and for elementary functions), we have explicit formu-
las for the range.

e Ezxamples: when x1 € x1 = [z1,71] and x5 € x9 =
[£2af2]7 then:

— The range x; + x5 for x; + 9 i [z + 2y, T1 + T2
— The range x; — xy for x1 — x9 is [x; — Ta, T1 — Z4).
— The range x; - Xy for z; - x5 is [y, 7], where
Y = min(z; - To, Ty - Ta, T1 * Lo, T1 - T2);
Y =max(z, - Ty, T, * Ta, T1 * Ty, T1 * T2).
e The range 1/x; for 1/zy is [1/71,1/z;] (if 0 & x1).




19. Straightforward Interval Computations:
Example

e Example: f(x) = (r —2) - (x+2), xz € [1,2].
e How will the computer compute it?

®r =x— 2

oy :=x+2;

® 13 =771 To.

e Main idea: perform the same operations, but with in-
tervals instead of numbers:

or; = [1,2] —[2,2] = [-1,0];
o ry:=[1,2] 4+ [2,2] = [3,4];

or;:=[—1,0]-[3,4 = [-4,0].
= [-3,0].

e Comment: this is just a toy example, there are more
efficient ways of computing an enclosure Y O y.

e Actual range: f(x)




20. First Idea: Use of Monotonicity

e Reminder: for arithmetic, we had exact ranges.
e Reason: 4+, —, - are monotonic in each variable.

e How monotonicity helps: if f(x1, ..., z,) is (non-strictly)
increasing (f 1) in each z;, then

f(x1, .. ,xn) = [f(zq,...,2,), f(T1, ..., Tn)].

o Similarly: if f 1 for some x; and f | for other z;.

e Fact: f 1 in x; if gf

> 0.

e Checking monotonicity: check that the range [r;,7;] of
of
8:13@-

e Differentiation: by Automatic Differentiation (AD) tools.

on x; has r; > 0.

e FEstimating ranges of ——: straightforward interval comp.

&Ui




21. Monotonicity: Example

e [dea: if the range [r;, ;] of each

then

on X; has r; > 0,
T

f(x1, .., x0) = [f(zy,...,2,), f(T1,. .., Tn)].
e Example: f(x)=(x—2)-(x+2), x=1,2].

e Case n = 1: if the range [r,7] of — on x has r > 0,
x
then

0AD.‘j—f:1-($+2)+(.’L’—2>-1:2$.
T

e Checking: [r,7] = [2,4], with 2 > 0.
® Result: f([lv 2]) - [f(l)v f(2)] - [_37 0]'

e Comparison: this is the exact range.




22. Non-Monotonic Example

e Example: f(x) =z (1 —x), xz € [0,1].
e How will the computer compute it?
o :=1—u;
® 7y =1 T7.
o Straightforward interval computations:
or; :=[1,1]—1[0,1] = [0, 1];
er,:=[0,1]-1[0,1] = [0, 1].

d
e Actual range: min, max of f at x, ¥, or when é = 0.
df
e Here, pri 1 —2x =0 for x = 0.5, thus we:
x

e compute f(0) =0, f(0.5) = 0.25, and f(1) =0, so
e y = min(0,0.25,0) = 0, 7 = max(0, 0.25,0) = 0.25.

e Resulting range: f(x) = 0,0.25].




23. Second Idea: Centered Form

o Main idea: Intermediate Value Theorem

f(l'l,...,xn) Zf(§1,,%n)—|-

for some y; € x;.

e Corollary: f(x1,...,x,) € Y, where

0
Y = y—l— Z 8$f~(X1,' .. ,Xn) . [—A“Az]
i=1 ¢

e Differentiation: by Automatic Differentiation (AD) tools.
e FEstimating the ranges of derivatives:

— if appropriate, by monotonicity, or
— by straightforward interval computations, or

— by centered form (more time but more accurate).




24. Centered Form: Example

e General formula:

Y = f:L‘l,.. ﬂjn -I-Za

e Example: f(zx)=xz-(1—1z),x=10,1].
e Here, x = [z — A,z + A], with 7 = 0.5 and A = 0.5.

Xp) - [— A, Al

o Casen=1:Y = f(z) + ﬁ(x) AV AL

dx
d
e AD: d]::: 1-Ql—2)+z-(-1)=1-2ax.
df
e Estimation: we have %( x)=1-2-[0,1] = [-1,1].

e Result: Y = 05-(1—0.5)+ [-1,1] - [-0.5,0.5] =
0.25 + [0.5,0.5] = [0.25, 0.75].

e Comparison: actual range [0, 0.25], straightforward [0, 1].




25. Third Idea: Bisection

e Known: accuracy O(A?) of first order formula

f(:z:l,...,xn) =f<f1,,5n)+

e [dea: if the intervals are too wide, we:
— split one of them in half (A? — A?/4); and
— take the union of the resulting ranges.
o FExample: f(x) =z (1 —x), where x € x = [0, 1].
o Split: take x’ = [0,0.5] and x” = [0.5, 1].
o /st range: 1 —2-x=1-2-[0,0.5] =[0,1], so f 1 and
Fx) = [£(0), £(0.5)] = [0,0.25].
e 2nd range: 1 —2-x=1-2-10.5,1] = [-1,0], so f |
and f(x") = [f(1), f(0.5)] = [0,0.25].
e Result: f(x')U f(x") =10,0.25] — exact.




26. Alternative Approach: Affine Arithmetic
e So far: we compute the range of x - (1 — ) by multi-
plying ranges of x and 1 — .

e We ignore: that both factors depend on z and are,
thus, dependent.

e [dea: for each intermediate result a, keep an explicit
dependence on Ax; = ; —x; (at least its linear terms).

e Implementation:
a = agy+ Zai - Azx; + [a,a].
i=1
o We start: with z; = z; — Ax;, i.e.,

e Description: ay = Z;, a; = —1, a;j = 0 for 7 # 7, and
[Q7 a] - [0’0]'




27. Affine Arithmetic: Operations
n
e Representation: a = ag+ Y, a; - Az; + [a,a.
i=1

e Input: a = CLO—|—Z a;-Ax;+aand b = bO"’Z bi-Ax;+b.
=1 1=1

e Operations: ¢ = a ® b.
e Addition: co = ayg+ by, ¢; = a; + b;, c =a+ b.
e Subtraction: cy = ag — by, ¢; = a; — b;, c =a — b.
e Multiplication: co = ag - by, ¢; = ag - b; + by - a;,
c=ag-btby-a+t Y ai-bj-[-A;A]-[-A; A+
7]

Zaz [— A, AP+

(Zai-[—Ai,A ) b+ (Zb —AL A, )-a+a-b.




28. Affine Arithmetic: Example

e Example: f(x) =z (1 —x), xz € [0,1].
e Here, n =1,z =0.5, and A =0.5.
e How will the computer compute it?

o =1—u;

® 7y =X-T1.
e Affine arithmetic: we start with x = 0.5 — Az + [0, 0];

or; :=1—(0.5—-Az)=0.5+ Ax;
ory:=(0.5—Ax) (054 Ax), i.e,

ry =0.254+0-Ar — [-A, A = 0.25 + [-A% 0].
e Resulting range: y = 0.25 + [—0.25,0] = [0, 0.25].

e Comparison: this is the exact range.




29. Affine Arithmetic: Towards More Accurate
Estimates
e In our simple example: we got the exact range.
e In general: range estimation is NP-hard.

e Meaning: a feasible (polynomial-time) algorithm will
sometimes lead to excess width: Y D y.

e Conclusion: affine arithmetic may lead to excess width.
e (Question: how to get more accurate estimates?

e First idea: bisection.

e Second idea (Taylor arithmetic):

— affine arithmetic: a = apg+ > a; - Ax; + a;
— meaning: we keep linear terms in Ax;;
— idea: keep, e.g., quadratic terms

a:a0+2ai-Axi+Zaij-Aa:i-ijJra.




30. Interval Computations vs. Affine Arithmetic:
Comparative Analysis

e Objective: we want a method that computes a reason-
able estimate for the range in reasonable time.

e Conclusion — how to compare different methods:

— how accurate are the estimates, and

— how fast we can compute them.
e Accuracy: affine arithmetic leads to more accurate ranges.
e Computation time:

— Interval arithmetic: for each intermediate result a,
we compute two values: endpoints a and @ of [a, a].

— Affine arithmetic: for each a, we compute n + 3
values:
ag Q1y...,0yn Qa,a.

e Conclusion: affine arithmetic is ~ n times slower.




31. Solving Systems of Equations: Extending Known
Algorithms to Situations with Interval
Uncertainty

e We have: a system of equations g;(y1, ..., y,) = a; with
unknowns ;;

o We know: a; with interval uncertainty: a; € [a;, @;);

o We want: to find the corresponding ranges of y;.

e First case: for exactly known a;, we have an algorithm
y; = fi(a1,...,a,) for solving the system.

e Fxample: system of linear equations.

e Solution: apply interval computations techniques to
find the range f;([a;, @], ..., |[a,, @)

e Better solution: for specific equations, we often already
know which ideas work best.

e Fxample: linear equations Ay = b; y is monotonic in b.




32. Solving Systems of Equations When No
Algorithm Is Known

e [dea:

— parse each equation into elementary constraints,
and

— use interval computations to improve original ranges
until we get a narrow range (= solution).

o First example: v — x> = 0.5, x € [0, 1] (no solution).
o Parsing: ry = 2%, 0.5 (=13) = —ry.

2

e Rules: from r; = z°, we extract two rules:

(D) z—r=2% (2)r — 2=/
from 0.5 = z — ry, we extract two more rules:

B)x—=r=x—-05 (4 rn—>x=r+0.5.




33. Solving Systems of Equations When No
Algorithm Is Known: Example

e ()r=2%2)x=r;(3)r=2-0.5; (4) 2 =r+0.5.
o We start with: x = [0,1], r = (—00, 00).

(1) v =1[0,1]> = [0,1], 50 Tpew = (—00,00) N [0,1] = [0, 1].
(2) Xpew = 1/[0,1]N[0,1] = [0, 1] — no change.

(3) rpew = ([0,1]—0.5)N[0, 1} = [-0.5,0.5]N[0, 1] = [0, 0.5].
(4) Xpew = ([0,0.5] +0.5) N[0, 1] = [0.5,1] N0, 1] = [0.5, 1].
(1) rpew = [0.5,1]* N [0,0.5] = [0.25,0.5].

(2) Xnew = 1/[0.25,0.5] N [0.5, 1] = [0.5,0.71];

round a down | and @ up T, to guarantee enclosure.

(3) Taew = ([0.5,0.71]—0.5)1[0.25, 5] = [0.0.21]M[0.25, 0.5],
i.e., rpew = 0.

e Conclusion: the original equation has no solutions.




34. Solving Systems of Equations: 2nd Example

o Example: v —2®> =0, x € [0,1].

o Parsing: ry = 2%, 0 (=19) =2 —11.

o Rules: (1) r=a2% 2 z=vr; ) r=x;(4) z=r.

o We start with: x = [0,1], r = (—00, 00).

e Problem: after Rule 1, we're stuck with x =r = [0, 1].
e Solution: bisect x = [0, 1] into [0, 0.5] and [0.5, 1].

o For 1st subinterval:

— Rule 1 leads to ryey = [0,0.512N[0,0.5] = [0,0.25];
— Rule 4 leads to Xpew = [0,0.25];

— Rule 1 leads to ryey = [0,0.25]% = [0, 0.0625];

— Rule 4 leads to xyey = [0,0.0625]; etc.

— we converge to x = 0.

e For 2nd subinterval: we converge to x = 1.




35. Optimization: Extending Known Algorithms
to Situations with Interval Uncertainty

e Problem: find vy, ...,y for which
g(yla"‘)ym;a/]_,---,am) — max.

e We know: a; with interval uncertainty: a; € [a;, @;|;
o We want: to find the corresponding ranges of y;.

e First case: for exactly known a;, we have an algorithm
y; = fi(ai,...,a,) for solving the optimization prob-
lem.

e Fxample: quadratic objective function g.

e Solution: apply interval computations techniques to
find the range f;([a;, @], ..., [a,, @)

e Better solution: for specific f, we often already know
which ideas work best.




36. Optimization When No Algorithm Is Known

e [dea: divide the original box x into subboxes b.

o If max g(x) < g(2) for a known 2/, dismiss b.
re

e Ezxample: g(xz) =z - (1 —x), x = [0, 1].
e Divide into 10 (7) subboxes b = [0,0.1],[0.1,0.2],. ..
e Find ¢(b) for each b; the largest is 0.45 - 0.55 = 0.2475.
e Compute G(b) = g(b) + (1 —2-b) - [-A, A].
e Dismiss subboxes for which Y < 0.2475.
e Ezxample: for [0.2,0.3], we have
0.25 - (1 —0.25) + (1 —2-[0.2,0.3]) - [~0.05,0.05)].
e Here Y = 0.2175 < 0.2475, so we dismiss [0.2,0.3].
e Result: keep only boxes C [0.3,0.7].

e Further subdivision: get us closer and closer to z = 0.5.




37. Case Study: Chip Design
e Chip design: one of the main objectives is to decrease
the clock cycle.
e Current approach: uses worst-case (interval) techniques.

e Problem: the probability of the worst-case values is
usually very small.

e Result: estimates are over-conservative — unnecessary
over-design and under-performance of circuits.

e Difficulty: we only have partial information about the
corresponding probability distributions.

e Objective: produce estimates valid for all distributions
which are consistent with this information.

e What we do: provide such estimates for the clock time.




38. Estimating Clock Cycle: a Practical Problem

e Objective: estimate the clock cycle on the design stage.

e The clock cycle of a chip is constrained by the maxi-

mum path delay over all the circuit paths
D ¥ max(D,,..., Dy).

e The path delay D; along the i-th path is the sum of
the delays corresponding to the gates and wires along
this path.

e Each of these delays, in turn, depends on several factors
such as:

— the variation caused by the current design prac-
tices,

— environmental design characteristics (e.g., variations
in temperature and in supply voltage), etc.




39. Traditional (Interval) Approach to Estimating
the Clock Cycle

e Traditional approach: assume that each factor takes
the worst possible value.

e Result: time delay when all the factors are at their
worst.

e Problem:

— different factors are usually independent;

— combination of worst cases is improbable.

e Computational result: current estimates are 30% above
the observed clock time.

e Practical result: the clock time is set too high — chips
are over-designed and under-performing.




40. Robust Statistical Methods Are Needed

e [deal case: we know probability distributions.
e Solution: Monte-Carlo simulations.

e In practice: we only have partial information about the
distributions of some of the parameters; usually:

— the mean, and

— some characteristic of the deviation from the mean
— e.g., the interval that is guaranteed to contain
possible values of this parameter.

e Possible approach: Monte-Carlo with several possible
distributions.

e Problem: no guarantee that the result is a valid bound
for all possible distributions.

e Objective: provide robust bounds, i.e., bounds that
work for all possible distributions.




41. Towards a Mathematical Formulation of the
Problem

e General case: each gate delay d depends on the dif-
ference x4, ..., x, between the actual and the nominal
values of the parameters.

o Main assumption: these differences are usually small.

e Each path delay D; is the sum of gate delays.
n
e Conclusion: D, is a linear function: D; = CLH‘Z Ajj+T;
j=1
for some a; and a;;.

e The desired maximum delay D = max D; has the form

n
D= F(xy,...,z,) défmax (ai—kZaij-xj) .
1

j=1




42. Towards a Mathematical Formulation of the
Problem (cont-d)

e Known: maxima of linear function are exactly convex
functions:

Fla-z+(1-a)-y)<a-Flr)+(1—a)- F(y)
for all 2,y and for all « € [0, 1];

o We know: factors x; are independent;

— we know distribution of some of the factors;

— for others, we know ranges [z, ;] and means Ej.
o (Given: a convex function F' > 0 and a number £ > 0.

e Objective: find the smallest g, s.t. for all possible dis-
tributions, we have y < yy with the probability > 1—e.




43. Additional Property: Dependency is
Non-Degenerate

e Fact: sometimes, we learn additional information about
one of the factors z;.

e Fzample: we learn that x; actually belongs to a proper
subinterval of the original interval [z;, T;].

e Consequence: the class P of possible distributions is
replaced with P’ C P.

e Result: the new value y;, can only decrease: y < yo.
e Fuct: if x; is irrelevant for y, then y; = yo.
o Assumption: irrelevant variables been weeded out.

e Formalization: if we narrow down one of the intervals

[2;,7;], the resulting value yo decreases: y; < yo.




44. Formulation of the Problem

GIVEN:

TAKE:

FIND:

WHEN:

oen, k<n,e>0;

e a convex function y = F(xq,...,x,) > 0;
oen—Fkcdfs Fj(x), k+1<j<mn;

e intervals xq,...,xy, values Fy,..., Ey,

all joint probability distributions on R" for which:
e all x; are independent,
o r; € X, Elxj| = Ej for j <k, and
e z; have distribution Fj(x) for j > k.
the smallest 1, s.t. for all such distributions,
F(xy,...,x,) <y with probability > 1 — «.

the problem is non-degenerate — if we narrow down
one of the intervals x;, yo decreases.




45. Main Result and How We Can Use It

e Result: yy is attained when for each j from 1 to k,

T, — F;

e 1; = x; with probability P, aof M, and
E; —x,
e r; = T; with probability p; aof =

e Algorithm:

e simulate these distributions for z;, j < k;
e simulate known distributions for j > k;

e use the simulated values :(:( 2 to find
y(s) = F(:Ugs), . ,a:,(f>);

e sort IV values y(s) Y < Y(2) <...< YNy
e take y(n,.(1-¢)) as Yo.




46. Comment about Monte-Carlo Techniques

e Traditional belief: Monte-Carlo methods are inferior to
analytical:
— they are approximate;
— they require large computation time;
— simulations for several distributions, may mis-calculate

the (desired) maximum over all distributions.

e We proved: the value corresponding to the selected dis-
tributions indeed provide the desired maximum value yy.

e (General comment:

— justified Monte-Carlo methods often lead to faster
computations than analytical techniques;

— example: multi-D integration — where Monte-Carlo
methods were originally invented.




47. Comment about Non-Linear Terms

n
e Reminder: in the above formula D; = a; + Z aij - T,
j=1
we ignored quadratic and higher order terms in the
dependence of each path time D; on parameters z;.

e In reality: we may need to take into account some
quadratic terms.

e [dea behind possible solution: it is known that the max
D = max D; of convex functions D; is convex.
1

e Condition when this idea works: when each depen-
dence Dj(x1,...,x,...) is still convex,

e Solution: in this case,

— the function function D is still convex,

— hence, our algorithm will work.




48. Conclusions

e Problem of chip design: decrease the clock cycle.

e How this problem 1is solved mow: by using worst-case
(interval) techniques.

o Limitations of this solution: the probability of the worst-
case values is usually very small.

e Consequence: estimates are over-conservative, hence
over-design and under-performance of circuits.

e Objective: find the clock time as yq s.t. for the actual
delay y, we have Prob(y > yy) < ¢ for given £ > 0.

e Difficulty: we only have partial information about the
corresponding distributions.

o What we have described: a general technique that al-
lows us, in particular, to compute .




49. Combining Interval and Probabilistic
Uncertainty: General Case

e Problem: there are many ways to represent a probabil-
ity distribution.

e [dea: look for an objective.

e Objective: make decisions F,[u(x,a)] — max.
a

e Case 1: smooth u(x).

o Analysis: we have u(z) = u(xg) + (x —x0) - ' (xo) +. ..
e Conclusion: we must know moments to estimate E[u].
e Case of uncertainty: interval bounds on moments.

e Case 2: threshold-type u(z).

e Conclusion: we need cdf F(z) = Prob(¢ < z).
e Case of uncertainty: p-box [F(z), F(x)].




50. Extension of Interval Arithmetic to
Probabilistic Case: Successes

e General solution: parse to elementary operations +,
—, -, 1/x, max, min.

e Explicit formulas for arithmetic operations known for
intervals, for p-boxes F(z) = [F(x), F(z)], for intervals

+ 1st moments E; & F [2]:

X1, El
X9, E2

Xp, By




51. Successes (cont-d)

e Fasy cases: +, —, product of independent ;.

o Erample of a non-trivial case: multiplication y = 1 -
T9, when we have no information about the correlation:

e £ = max(p1+p2—1,0)-T1-To+min(py, 1—p2)-T1 29+
min(1 — py, p2) - 2, - To + max(1 — p; — p2,0) - 21 - Ty;
o E = min(py, p2) - Ty - To + max(p; — p2,0) - Ty - 29+
max(ps — p1,0) - 2y - To+min(1 — p1, 1 — po) - ; - T,

where p; o (B — )/ (@i — z;).




52. Challenges

e intervals + 2nd moments:

X17E17V1
X2, B9, Vo

f yv.EV

XmEn;Vn

e moments + p-boxes; e.g.:

El, Fl(ﬂf)
EQ, FQ(QZ)

f | EF(

E,,F,(x)




53. Case Study: Bioinformatics

e Practical problem: find genetic difference between can-
cer cells and healthy cells.

e [deal case: we directly measure concentration c of the
gene in cancer cells and h in healthy cells.

e In reality: difficult to separate.

e Solution: we measure y; ~ x; - c+ (1 — x;) - h, where z;
is the percentage of cancer cells in ¢-th sample.

e Fquivalent form: a - x; + h = y;, where a e h




54. Case Study: Bioinformatics (cont-d)

o [f we know x; exactly: Least Squares Method

= : C(x,y)
o 2 _ ,
;(a r; +h—y) — rzl,lhn, hence a V@) and
h=FE(y) —a- E(x), where E(x sz,
1 n
V(r) = 3 (- B@)

i=1

Cloy) = — Do~ B@) - (o~ B()

e Interval uncertainty: experts manually count z;, and
only provide interval bounds x;, e.g., z; € [0.7,0.8].

e Problem: find the range of a and h corresponding to
all possible values z; € [z;, T;].




55. General Problem

e General problem:

— we know intervals x1 = [z, T1], ..., X, = [Z,,, Tn),

1 n
— compute the range of F(z) = — in, population
n <
1 -
‘ V== i — E(1))?, etc.
variance - ZZ:;(:U (x))7, etc

e Difficulty: NP-hard even for variance.
e Known:

— efficient algorithms for V/,
— efficient algorithms for V and C'(x, y) for reasonable
situations.

e Bioinformatics case: find intervals for C'(z,y) and for
V(z) and divide.




56. Case Study: Detecting Outliers

e In many application areas, it is important to detect
outliers, i.e., unusual, abnormal values.

e In medicine, unusual values may indicate disease.

e In geophysics, abnormal values may indicate a mineral
deposit (or an erroneous measurement result).

e In structural integrity testing, abnormal values may in-
dicate faults in a structure.

e Traditional engineering approach: a new measurement
result x is classified as an outlier if « ¢ [L, U], where

LYE ko, U E+k- o,

and ky > 1 is pre-selected.

e Comment: most frequently, kg = 2, 3, or 6.




57. Outlier Detection Under Interval Uncertainty:
A Problem

e In some practical situations, we only have intervals
xX; = |z;, Ti].

e Different z; € x; lead to different intervals [L, U].

e A possible outlier: outside some ky-sigma interval.

e Fxample: structural integrity — not to miss a fault.

e A guaranteed outlier: outside all ky-sigma intervals.

e Frample: before a surgery, we want to make sure that
there is a micro-calcification.

e A value z is a possible outlier if z ¢ [L, U].

e A value z is a guaranteed outlier if « & [L, U].

e Conclusion: to detect outliers, we must know the ranges
of L=F—ky-cand U =FE+ky-o.




58. OQOutlier Detection Under Interval Uncertainty:
A Solution

e Ve need: to detect outliers, we must compute the
rangesof L=F —ky-cand U = E + ky - 0.

e We know: how to compute the ranges E and [0, 7] for
E and o.

e Possibility: use interval computations to conclude that
LeE—ky-[g,0)and L € E+ky-[g,7].

e Problem: the resulting intervals for L and U are wider
than the actual ranges.

e Reason: E and o use the same inputs x1,...,x, and
are hence not independent from each other.

e Practical consequence: we miss some outliers.
e Desirable: compute ezxact ranges for L and U.

e Application: detecting outliers in gravity measurements.
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60. Fuzzy Computations: A Problem

H1(T1

),
p2(xo)
(),

folu= s i)

Hn Tn

—

e Given: an algorithm y = f(x1,...,2,) and n fuzzy BN
numbers p;(z;).

—te

C te: = a i . .
* wompuie 'u<y) :c1,...,:cn:5"I(1x3,(...,xn)=y IIllIl(,LL1 (331) Mn(xn)) ‘ ’7
e Motivation: y is a possible value of Y <+ dzq, ..., x, s.t.

each x; is a possible value of X; and f(z1,...,2,) =v.

e Details: “and” is min, 3 (“or”) is max, hence S iseme |

TL1yeeesLn

where t(true) = 1 and t¢(false) = 0.

N(y) = max min(:ul(xl)’ E ,:UJn(xn)’ t(f(xla cee axn) = y)): [—




61. Fuzzy Computations: Reduction to Interval
Computations
e Problem (reminder):

— Given: an algorithm y = f(x1,...,x,) and n fuzzy
numbers X; described by membership functions p;(z;).

— Compute: Y = f(Xy,...,X,), where Y is defined
by Zadeh’s extension principle:

ply) = max min(u(e), o ()

e [dea: represent each X; by its a-cuts
Xi(a) ={x; : pi(wi) > .
e Advantage: for continuous f, for every a, we have
Y(a) = f(Xi(a),..., X,(a)).

e Resulting algorithm: for « = 0,0.1,0.2,...,1 apply in-
terval computations techniques to compute Y («).




62. Proof of the Result about Chips

e Let us fix the optimal distributions for xs, ..., z,; then,

Prob(D <) = Z p1(xy) - pa(za) - ...

(Z1,eesn): D (21,020 ) <yo

N
e So, Prob(D <) = > ¢; - ¢;, where g; dof p1(v;).

1=0
N N

e Restrictions: ¢; >0, Y ¢, =1, and > _ ¢ - v; = Fy.
i=0 i=0

e Thus, the worst-case distribution for z; is a solution to
the following linear programming (LP) problem:

N N
Minimize Y ¢; - ¢; under the constraints > ¢; = 1 and
i=0 i=0

N
ZQi'vi:Eh %207 i:O71727"'7N‘
i=0




63. Proof of the Result about Chips (cont-d)

N N
e Minimize: Y ¢;-q; under the constraints > ¢; = 1 and
1=0 i=0

N
ZQi'Ui:El, q; 20, ’i=0,1,2,...,N.
i=0
e Known: in LP with N + 1 unknowns qo,q1,...,qn,
> N + 1 constraints are equalities.

e In our case: we have 2 equalities, so at least N — 1
constraints ¢; > 0 are equalities.

e Hence, no more than 2 values ¢; = p1(v;) are non-0.

e If corresponding v or v’ are in (z,, 71 ), then for [v,v'] C
x1 we get the same gy — in contradiction to non-degeneracy.

e Thus, the worst-case distribution is located at z; and 7;.

e The condition that the mean of z; is E; leads to the
desired formulas for p, and p,.
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