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Peano arithmetic

Robinson’s arithmetic Q:
1. S(x) 6= 0;
2. S(x) = S(y)→ x = y ;
3. x ≤ 0↔ x = 0;
4. x ≤ S(y)↔ x ≤ y ∨ x = S(y);
5. x + 0 = x ;
6. x + S(y) = S(x + y);
7. x0 = 0;
8. x(Sy) = xy + x .

PA = Q + the following scheme:

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(Sx))→ ∀xϕ(x).



First incompleteness theorem

Theorem (Gödel’1931)
Suppose c.e. theory T contains PA and is arithmetically sound (e.g.
it doesn’t prove false sentences of first-order arithmetic). Then
there is a sentence ϕ such that T 0 ϕ and T 0 ¬ϕ.

Note: Actually Gödel worked over much stronger formal theory P
that was a variant of Principia Mathematica system. It contained
higher types, but it wasn’t important for Gödel’s argument. Also
Gödel used the notion ω-consistency instead of soundedness.

Theorem (Rosser’36; Tarski, Mostowski, Robinson’53)
Suppose T ⊇ Q and T is consistent. Then there is a sentence ϕ
such that T 0 ϕ and T 0 ¬ϕ.



Formalization of provability

We encode formulas by numbers:

string in finite alphabet ϕ 7−→ binary string α encoding ϕ 7−→
number n which binary expansion is 1α.

For a formula ϕ, the expression pϕq is the term Sn(0), where n is
the number corresponding to ϕ.
Recall that Hilbert-style proof is a list of formulas, where each
formula is either an axiom or is a result of application of an
inference rule to some preceding formulas.

For a given c.e. theory T we have predicate PrfT (x , y):

“number x encodes some proof in the theory T and the last
formula in it is y .”

PrvT (x) is the formula ∃y PrfT (y , x).



Second incompleteness theorem

The consistency assertion Con(T ) is ¬PrvT (p0 = S0q).

Theorem (Gödel’31)
Suppose c.e. theory T ⊇ PA and T is consistent. Then
T 0 Con(T ).

Note: In this case Göodel also considered extensions of system P.
Instead of c.e. extensions he considered extensions by primitive
recursive sets of axioms.



Hilbert-Bernays-Löb derivability conditions

Abbreviations:
I 2Tϕ is an abbreviation for PrvT (pϕq);
I 3Tϕ is an abbreviation for ¬PrvT (p¬ϕq);
I ⊥ is an abbreviation for 0 = S(0);
I > is an abbreviation for 0 = 0;

Note that Con(T ) is 3>.

Hilbert-Bernays-Löb derivability conditions:
HBL-1 T ` ϕ ⇒ T ` 2Tϕ;
HBL-2 T ` 2T (ϕ→ ψ)→ (2Tϕ→ 2Tψ);
HBL-3 T ` 2Tϕ→ 2T2Tϕ.

Theorem (Löb’55)
Suppose c.e. theory T ⊇ Q, T is consistent and the predicate PrvT
satisfies HBL conditions. Then T 0 Con(T ).



Fixed-point lemma
Lemma (Gödel’31)
For any formula ϕ(x) there is a sentence ψ such that

Q ` ψ ↔ ϕ(pψq).

Proof:
substx : 〈pϕ(x)q, pψq〉 7−→ pϕ(pψq)q.

For all ϕ,ψ: Q ` substx(pϕ(x)q, pψq) = pϕ(pψq)q.

Let χ(x) be ϕ(substx(x , x)). We put ψ to be χ(pχ(x)q).
Observe that

Q ` ψ ↔ χ(pχ(x)q)

↔ ϕ(substx(pχ(x)q, pχ(x)q))

↔ ϕ(pχ(pχ(x)q)q)

↔ ϕ(pψq).



Proof of second incompleteness theorem
Let ψ be such that Q ` ψ ↔ ¬2Tψ.
We reason in T :
1. ⊥ → ϕ;
2. 2T (⊥ → ϕ) (HBL-1);
3. 2T⊥ → 2Tϕ) (HBL-2);

4. 2Tϕ→ 2T2Tϕ (HBL-3);

5. 2Tϕ→ 2T¬2Tϕ (fixed-point property of ϕ);
6. 2Tϕ→ 2T⊥ (4., 5., and HBL-1+HBL-2);
7. 2Tϕ↔ 2T⊥;
8. ¬2Tϕ↔ ¬2T⊥;
9. ϕ↔ 3T>.

10. 3T> ↔ ¬2T3T>.

If T ` 3T> then T ` ¬2T3T> (by 10.) and T ` 2T3T> (by
HBL-1), hence T is inconsistent.



Proving HBL conditions

∆0 formulas are formulas built of propositional connectives and
bounded quantifiers ∀x ≤ t and ∃x ≤ t (here x 6∈ FV(t)).
Σ1 formulas are ∃~x ϕ, where ϕ is ∆0.

Note that 2Tϕ is a Σ1 sentence.
HBL-1: T ` ϕ⇒ T ` 2Tϕ.

Lemma
If ϕ is a true Σ1 sentence then Q ` ϕ.

HBL-2: T ` 2T (ϕ→ ψ)→ (2Tϕ→ 2Tψ).
To prove this T should be able to concatenate proofs of ϕ→ ψ
and ϕ and add formula ψ at the end.

HBL-3: T ` 2Tϕ→ 2T2Tϕ.
This requires formalization of HBL-1 in T . To prove the lemma
inside T we need to transform a proof p of ϕ into a proof q of the
fact that p is a proof of ϕ. Note that |q| is polynomial in |p|.



Theory I∆0 + Ω1

I∆0 = Q + the following scheme:

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(Sx))→ ∀xϕ(x), where ϕ is ∆0.

The length |x | = dlog2(x)e = min{y | exp(y) ≥ x}.

Smash function: x#y = 2|x ||y |.
Axiom Ω1 is ∀x , y∃z (x#y = z).

Proposition
If T ⊇ I∆0 + Ω1 is NP-axiomatizable theory. Then HBL conditions
hold for T with the natural provability predicate for it.

Corollary
If T ⊇ I∆0 + Ω1 is NP-axiomatizable consistent theory. Then
T 0 Con(T ).



Pudlak’s version of second incompleteness theorem
Theorem (Pudlak’85)
If T ⊇ Q is c.e. consistent theory. Then T 0 Con(T ).

Idea of proof (part 1):

A T -cut J(x) is a formula such that

T ` J(0) ∧ ∀x (J(x)→ (∀y ≤ S(x))J(y)).

A T -cut J(x) is called closed under the function f (x1, . . . , xk) if

T ` ∀x1, . . . , xk (J(x1) ∧ . . . ∧ J(xk)→ J(f (x1, . . . , xk)).

For a fornmula ϕ we denote by ϕJ the result of replacement of
each quantifier ∀x ϕ with the quantifier ∀x (J(x)→ ϕ) and each
quantifier ∃x ϕ with the quantifier ∃x (J(x) ∧ ϕ).
For T -cuts J(x) that are closed under + and · we have
absoluteness for ∆0 formulas:

T ` ∀~x(ϕ(~x)↔ (ϕ(~x))J), for ∆0 formulas ϕ.



Pudlak’s version of second incompleteness theorem

Theorem
If T ⊇ Q is c.e. consistent theory. Then T 0 Con(T ).

Idea of proof (part 2):

Lemma
In Q there is a cut I (x) that is closed under +, ·, and # and

Q ` ϕI , for any axiom ϕ of I∆0 + Ω1.

Assume for a contradiction that T ` Con(T ). By ∆0 absoluteness,
T ` (Con(T ))I . Let U be theory with NP axiomatization

{ϕ ∧ . . . ∧ ϕ︸ ︷︷ ︸
|p| times

| p : T ` ϕI}.

It is easy to see that I∆0 + Ω1 ` Con(T )→ Con(U). Thus
U ` Con(U), since U ⊇ I∆0 + Ω1 we get to a contradiction.



Weak set theory H.
Let us consider theory H in the language of set theory with
additional unary function V:
1. ∀z (z ∈ x ↔ z ∈ y)→ x = y (Extensionality);
2. ∃y∀z (z ∈ y ↔ z ∈ x ∧ ϕ(z)) (Separation);
3. y ∈ V(x)↔ ∃z ∈ x (y ⊆ V(z)).

Note that the last axiom essentially states

V(x) =
⋃
z∈x
P(V(z)).

In ZFC cummulative hierarchy Vα, for α ∈ On:
I V0 = ∅;
I Vα+1 = P(Vα);
I Vλ =

⋃
α<λ

Vα, for λ ∈ Lim.

It is easy to see that

V : x 7−→ Vα, where α is least such that x ⊆ Vα.

It is easy to prove that the models of second-order version of H up
to isomorphism are (Vα,∈,V).



Embedding of arithmetic in H
We make some standard definitions in H:
1. x ∈ Trans def⇐⇒ ∀y ∈ x (y ⊆ x);

2. x ∈ On def⇐⇒ x ∈ Trans ∧ ∀y ∈ x (y ∈ Trans);

3. x ≤ y
def⇐⇒ x ∈ On ∧ y ∈ On ∧ (x ∈ y ∨ x = y);

4. α = S(β)
def⇐⇒ α ∈ On ∧ β ∈ On ∧ (∀γ ∈ On)(γ ∈ β ↔ γ ∈

α ∨ γ = α);

5. α ∈ Nat def⇐⇒ α ∈ On ∧ (∀β ≤ α)(β = ∅ ∨ ∃γ (β = S(γ))).
Note that however we couldn’t prove totality of successor function
in H.
We define partial functions +: On× On→ On and
× : On× On→ On such that

I α + β =
⋃
{S(α + γ) | γ < β};

I αβ =
⋃
{αγ + α | γ < β}.

In the equalities above the left part should be defined whenever the
right part is defined.



H and H<ω are non-Gödelian
Theory H<ω is an extension of H by the infinite series of axioms
∃x Nmbn(x) stating that all individual natural numbers n exist

Nmb0(x)
def⇐⇒ (∀y ∈ x)y 6= y ,

Nmbn+1(x)
def⇐⇒ ∃y (Nmbn(y) ∧ ∀z (z ∈ x ↔ z ∈ y ∨ z = y).

Note that the theory H<ω could prove existence of all the individual
hereditary finite sets.
Since our interpretation of arithmetical functions isn’t total, we
naturally switch to the predicate only arithmetical signature:

x = y , x ≤ y , x = S(y), x = y + z , x = yz .

We could naturally express PrfH<ω(x , y) by a predicate-only Σ1
formula. And Con(H<ω) by a Π1 predicate-only formula.

Theorem
Theory H proves Con(H<ω).



Idea of proof of non-Gödelian property for H<ω

Argument outside of specific formal theory:

To prove consistency of H<ω one could assume for a contradiction
that there is a H<ω proof p of ∃x x 6= x . We consider number np
that is the maximum of all n s.t. the axiom ∃x Nmbn(x) appear in
p. Next we show that (Vnp+1,∈,V) is a model of all the axioms
that appear in p and hence p couldn’t exist.



Idea of proof of non-Gödelian property for H<ω

Intuition of why H ` Con(H<ω):

The number np ≤ bp/2c (moreover np ≤ blog2(p)c).
Hence for large enough p, from mere presence of a proof p we
could conclude that there is model (Vnp+1,∈,V) with a given
iteration of powerset on top of it. It is enough to formalize the
argument that there p isn’t a proof of inconsistency.



Conservation result between EA and H>ω

EA is Kalmar elementary functions arithmetic. It is the variant of
I∆0 in the language with binary exponentiation function exp(x).

Lemma
Let S(x) be superexponential cut in EA, e.g.

S(x)
def⇐⇒ “ 2...

2︸︷︷︸
n times

is defined.

Let Nat−n be the class in H that consists of all x s.t. Sn(x) is
defined. For each predicate-only Π1 sentence ϕ of the form
∀~x ψ(~x), where ψ is ∆0:

EA ` ϕS ⇐⇒ H ` ∀~x(~x ∈ Nat−n → ψ(~x)), for some n.



Thank you!


