On limits of applicability of Gödel's second incompleteness theorem

F.N. Pakhomov
Steklov Mathematical Institute, Moscow
pakhf@mi-ras.ru

PDMI Logic Seminar,
March 06, 2019

Peano arithmetic

Robinson's arithmetic Q :

$$
\begin{aligned}
& \text { 1. } S(x) \neq 0 \\
& \text { 2. } S(x)=S(y) \rightarrow x=y \\
& \text { 3. } x \leq 0 \leftrightarrow x=0 ; \\
& \text { 4. } x \leq S(y) \leftrightarrow x \leq y \vee x=S(y) \text {; } \\
& \text { 5. } x+0=x \\
& \text { 6. } x+S(y)=S(x+y) \\
& \text { 7. } x 0=0 \\
& \text { 8. } x(S y)=x y+x .
\end{aligned}
$$

$P A=Q+$ the following scheme:

$$
\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \varphi(x)
$$

First incompleteness theorem

Theorem (Gödel'1931)
Suppose c.e. theory T contains PA and is arithmetically sound (e.g. it doesn't prove false sentences of first-order arithmetic). Then there is a sentence φ such that $T \nvdash \varphi$ and $T \nvdash \neg \varphi$.

Note: Actually Gödel worked over much stronger formal theory P that was a variant of Principia Mathematica system. It contained higher types, but it wasn't important for Gödel's argument. Also Gödel used the notion ω-consistency instead of soundedness.

Theorem (Rosser'36; Tarski, Mostowski, Robinson'53)
Suppose $T \supseteq \mathrm{Q}$ and T is consistent. Then there is a sentence φ such that $T \nvdash \varphi$ and $T \nvdash \neg \varphi$.

Formalization of provability

We encode formulas by numbers:
string in finite alphabet $\varphi \longmapsto$ binary string α encoding $\varphi \longmapsto$ number n which binary expansion is 1α.

For a formula φ, the expression $\ulcorner\varphi\urcorner$ is the term $S^{n}(0)$, where n is the number corresponding to φ.
Recall that Hilbert-style proof is a list of formulas, where each formula is either an axiom or is a result of application of an inference rule to some preceding formulas.
For a given c.e. theory T we have predicate $\operatorname{Prf}_{T}(x, y)$:
"number x encodes some proof in the theory T and the last formula in it is y."
$\operatorname{Prv}_{T}(x)$ is the formula $\exists y \operatorname{Prf}_{T}(y, x)$.

Second incompleteness theorem

The consistency assertion $\operatorname{Con}(T)$ is $\neg \operatorname{Prv}_{T}(\ulcorner 0=S 0\urcorner)$.
Theorem (Gödel'31)
Suppose c.e. theory $T \supseteq$ PA and T is consistent. Then $T \nvdash \operatorname{Con}(T)$.

Note: In this case Göodel also considered extensions of system P. Instead of c.e. extensions he considered extensions by primitive recursive sets of axioms.

Hilbert-Bernays-Löb derivability conditions

Abbreviations:

- $\square_{T} \varphi$ is an abbreviation for $\operatorname{Prv}_{T}(\ulcorner\varphi\urcorner)$;
$-\diamond_{T} \varphi$ is an abbreviation for $\neg \operatorname{Prv}_{T}(\ulcorner\neg \varphi\urcorner)$;
- \perp is an abbreviation for $0=S(0)$;
- \top is an abbreviation for $0=0$;

Note that $\operatorname{Con}(T)$ is $\diamond T$.
Hilbert-Bernays-Löb derivability conditions:
HBL-1 $T \vdash \varphi \Rightarrow T \vdash \square_{T \varphi}$;
$\mathrm{HBL}-2 T \vdash \square_{T}(\varphi \rightarrow \psi) \rightarrow\left(\square_{T} \varphi \rightarrow \square_{T} \psi\right)$;
HBL-3 $T \vdash \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$.
Theorem (Löb'55)
Suppose c.e. theory $T \supseteq$ Q, T is consistent and the predicate Prv_{T} satisfies HBL conditions. Then $T \nvdash \operatorname{Con}(T)$.

Fixed-point lemma

Lemma (Gödel'31)
For any formula $\varphi(x)$ there is a sentence ψ such that

$$
\text { Q } \vdash \psi \leftrightarrow \varphi(\ulcorner\psi\urcorner) .
$$

Proof:

$$
\text { subst }_{x}:\langle\ulcorner\varphi(x)\urcorner,\ulcorner\psi\urcorner\rangle \longmapsto\ulcorner\varphi(\ulcorner\psi\urcorner)\urcorner \text {. }
$$

For all $\varphi, \psi: \mathrm{Q} \vdash \operatorname{subst}_{x}(\ulcorner\varphi(x)\urcorner,\ulcorner\psi\urcorner)=\ulcorner\varphi(\ulcorner\psi\urcorner)\urcorner$.
Let $\chi(x)$ be $\varphi\left(\operatorname{subst}_{x}(x, x)\right)$. We put ψ to be $\chi(\ulcorner\chi(x)\urcorner)$.
Observe that

$$
\begin{aligned}
\mathrm{Q} \vdash \psi & \leftrightarrow \chi(\ulcorner\chi(x)\urcorner) \\
& \leftrightarrow \varphi\left(\operatorname{subst}_{x}(\ulcorner\chi(x)\urcorner,\ulcorner\chi(x)\urcorner)\right) \\
& \leftrightarrow \varphi(\ulcorner\chi(\ulcorner\chi(x)\urcorner)\urcorner) \\
& \leftrightarrow \varphi(\ulcorner\psi\urcorner) .
\end{aligned}
$$

Proof of second incompleteness theorem

Let ψ be such that $\mathrm{Q} \vdash \psi \leftrightarrow \neg \square_{T} \psi$.
We reason in T :

1. $\perp \rightarrow \varphi$;
2. $\square_{T}(\perp \rightarrow \varphi)(\mathrm{HBL}-1)$;
3. $\left.\square_{T} \perp \rightarrow \square_{T \varphi}\right)(\mathrm{HBL}-2)$;
4. $\square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$ (HBL-3);
5. $\square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$ (fixed-point property of φ);
6. $\square_{T \varphi} \rightarrow \square_{T} \perp$ (4., 5., and HBL-1+HBL-2);
7. $\square_{T} \varphi \leftrightarrow \square_{T} \perp$;
8. $\neg \square_{T} \varphi \leftrightarrow \neg \square_{T} \perp$;
9. $\varphi \leftrightarrow \diamond_{T} \top$.
10. $\diamond_{T} \top \leftrightarrow \neg \square_{T} \diamond_{T} \top$.

If $T \vdash \diamond_{T} \top$ then $T \vdash \neg \square_{T} \diamond_{T} \top$ (by 10.) and $T \vdash \square_{T} \diamond_{T} \top$
(by
HBL-1), hence T is inconsistent.

Proving HBL conditions

Δ_{0} formulas are formulas built of propositional connectives and bounded quantifiers $\forall x \leq t$ and $\exists x \leq t$ (here $x \notin \mathrm{FV}(t)$).
Σ_{1} formulas are $\exists \vec{x} \varphi$, where φ is Δ_{0}.
Note that $\square_{T} \varphi$ is a Σ_{1} sentence.
HBL-1: $T \vdash \varphi \Rightarrow T \vdash \square_{T} \varphi$.
Lemma
If φ is a true Σ_{1} sentence then $\mathrm{Q} \vdash \varphi$.
HBL-2: $T \vdash \square_{T}(\varphi \rightarrow \psi) \rightarrow\left(\square_{T} \varphi \rightarrow \square_{T} \psi\right)$.
To prove this T should be able to concatenate proofs of $\varphi \rightarrow \psi$ and φ and add formula ψ at the end.

HBL-3: $T \vdash \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$.
This requires formalization of HBL-1 in T. To prove the lemma inside T we need to transform a proof p of φ into a proof q of the fact that p is a proof of φ. Note that $|q|$ is polynomial in $|p|$.

Theory $I \Delta_{0}+\Omega_{1}$

$1 \Delta_{0}=Q+$ the following scheme:

$$
\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \varphi(x), \text { where } \varphi \text { is } \Delta_{0}
$$

The length $|x|=\left\lceil\log _{2}(x)\right\rceil=\min \{y \mid \exp (y) \geq x\}$.
Smash function: $x \# y=2^{|x||y|}$.
Axiom Ω_{1} is $\forall x, y \exists z(x \# y=z)$.

Proposition

If $T \supseteq \mathrm{I} \Delta_{0}+\Omega_{1}$ is NP-axiomatizable theory. Then HBL conditions hold for T with the natural provability predicate for it.

Corollary
If $T \supseteq I \Delta_{0}+\Omega_{1}$ is NP-axiomatizable consistent theory. Then
$T \nvdash \operatorname{Con}(T)$.

Pudlak's version of second incompleteness theorem

Theorem (Pudlak'85)
If $T \supseteq \mathrm{Q}$ is c.e. consistent theory. Then $T \nvdash \operatorname{Con}(T)$. Idea of proof (part 1):
A T-cut $J(x)$ is a formula such that

$$
T \vdash J(0) \wedge \forall x(J(x) \rightarrow(\forall y \leq S(x)) J(y)) .
$$

A T-cut $J(x)$ is called closed under the function $f\left(x_{1}, \ldots, x_{k}\right)$ if

$$
T \vdash \forall x_{1}, \ldots, x_{k}\left(J\left(x_{1}\right) \wedge \ldots \wedge J\left(x_{k}\right) \rightarrow J\left(f\left(x_{1}, \ldots, x_{k}\right)\right) .\right.
$$

For a fornmula φ we denote by φ^{J} the result of replacement of each quantifier $\forall x \varphi$ with the quantifier $\forall x(J(x) \rightarrow \varphi)$ and each quantifier $\exists x \varphi$ with the quantifier $\exists x(J(x) \wedge \varphi)$.
For T-cuts $J(x)$ that are closed under + and \cdot we have absoluteness for Δ_{0} formulas:

$$
T \vdash \forall \vec{x}\left(\varphi(\vec{x}) \leftrightarrow(\varphi(\vec{x}))^{J}\right) \text {, for } \Delta_{0} \text { formulas } \varphi \text {. }
$$

Pudlak's version of second incompleteness theorem

Theorem
If $T \supseteq \mathrm{Q}$ is c.e. consistent theory. Then $T \nvdash \operatorname{Con}(T)$.
Idea of proof (part 2):
Lemma
In Q there is a cut $I(x)$ that is closed under,$+ \cdot$, and \# and

$$
Q \vdash \varphi^{\prime} \text {, for any axiom } \varphi \text { of } I \Delta_{0}+\Omega_{1} \text {. }
$$

Assume for a contradiction that $T \vdash \operatorname{Con}(T)$. By Δ_{0} absoluteness, $T \vdash(\operatorname{Con}(T))^{\prime}$. Let U be theory with NP axiomatization

$$
\{\underbrace{\varphi \wedge \ldots \wedge \varphi}_{|p| \text { times }} \mid p: T \vdash \varphi^{\prime}\} .
$$

It is easy to see that $I \Delta_{0}+\Omega_{1} \vdash \operatorname{Con}(T) \rightarrow \operatorname{Con}(U)$. Thus $U \vdash \operatorname{Con}(U)$, since $U \supseteq I \Delta_{0}+\Omega_{1}$ we get to a contradiction.

Weak set theory H .

Let us consider theory H in the language of set theory with additional unary function $\overline{\mathrm{V}}$:

1. $\forall z(z \in x \leftrightarrow z \in y) \rightarrow x=y$ (Extensionality);
2. $\exists y \forall z(z \in y \leftrightarrow z \in x \wedge \varphi(z))$ (Separation);
3. $y \in \overline{\mathrm{~V}}(x) \leftrightarrow \exists z \in x(y \subseteq \overline{\mathrm{~V}}(z))$.

Note that the last axiom essentially states

$$
\overline{\mathrm{V}}(x)=\bigcup_{z \in x} \mathcal{P}(\overline{\mathrm{~V}}(z))
$$

In ZFC cummulative hierarchy V_{α}, for $\alpha \in$ On:

- $V_{0}=\emptyset$;
- $V_{\alpha+1}=\mathcal{P}\left(V_{\alpha}\right)$;
- $V_{\lambda}=\bigcup_{\alpha<\lambda} V_{\alpha}$, for $\lambda \in \operatorname{Lim}$.

It is easy to see that $\overline{\mathrm{V}}: x \longmapsto V_{\alpha}$, where α is least such that $x \subseteq V_{\alpha}$.

It is easy to prove that the models of second-order version of H up to isomorphism are $\left(V_{\alpha}, \in, \bar{V}\right)$.

Embedding of arithmetic in H

We make some standard definitions in H :

1. $x \in$ Trans $\stackrel{\text { def }}{\Longleftrightarrow} \forall y \in x(y \subseteq x)$;
2. $x \in \mathrm{On} \stackrel{\text { def }}{\Longleftrightarrow} x \in \operatorname{Trans} \wedge \forall y \in x(y \in$ Trans $)$;
3. $x \leq y \stackrel{\text { def }}{\Longleftrightarrow} x \in \mathrm{On} \wedge y \in \mathrm{On} \wedge(x \in y \vee x=y)$;
4. $\alpha=S(\beta) \stackrel{\text { def }}{\Longleftrightarrow} \alpha \in \mathrm{On} \wedge \beta \in \mathrm{On} \wedge(\forall \gamma \in \mathrm{On})(\gamma \in \beta \leftrightarrow \gamma \in$ $\alpha \vee \gamma=\alpha$);
5. $\alpha \in \mathrm{Nat} \stackrel{\text { def }}{\Longleftrightarrow} \alpha \in \mathrm{On} \wedge(\forall \beta \leq \alpha)(\beta=\emptyset \vee \exists \gamma(\beta=S(\gamma)))$.

Note that however we couldn't prove totality of successor function in H .
We define partial functions + : $\mathrm{On} \times \mathrm{On} \rightarrow \mathrm{On}$ and
\times : On $\times \mathrm{On} \rightarrow$ On such that

- $\alpha+\beta=\bigcup\{S(\alpha+\gamma) \mid \gamma<\beta\}$;
- $\alpha \beta=\bigcup\{\alpha \gamma+\alpha \mid \gamma<\beta\}$.

In the equalities above the left part should be defined whenever the right part is defined.

H and $\mathrm{H}_{<\omega}$ are non-Gödelian

Theory $\mathrm{H}_{<\omega}$ is an extension of H by the infinite series of axioms $\exists x \operatorname{Nmb}_{n}(x)$ stating that all individual natural numbers n exist

$$
\operatorname{Nmb}_{0}(x) \stackrel{\text { def }}{\Longleftrightarrow}(\forall y \in x) y \neq y
$$

$$
\mathrm{Nmb}_{n+1}(x) \stackrel{\text { def }}{\Longleftrightarrow} \exists y\left(\operatorname{Nmb}_{n}(y) \wedge \forall z(z \in x \leftrightarrow z \in y \vee z=y)\right.
$$

Note that the theory $\mathrm{H}_{<\omega}$ could prove existence of all the individual hereditary finite sets.
Since our interpretation of arithmetical functions isn't total, we naturally switch to the predicate only arithmetical signature:

$$
x=y, \quad x \leq y, \quad x=S(y), \quad x=y+z, \quad x=y z
$$

We could naturally express $\operatorname{Prf}_{\mathrm{H}_{<\omega}}(x, y)$ by a predicate-only Σ_{1} formula. And $\mathrm{Con}\left(\mathrm{H}_{<\omega}\right)$ by a Π_{1} predicate-only formula.

Theorem
Theory H proves $\mathrm{Con}\left(\mathrm{H}_{<\omega}\right)$.

Idea of proof of non-Gödelian property for $\mathrm{H}_{<\omega}$

Argument outside of specific formal theory:
To prove consistency of $\mathrm{H}_{<\omega}$ one could assume for a contradiction that there is a $\mathrm{H}_{<\omega}$ proof p of $\exists x x \neq x$. We consider number n_{p} that is the maximum of all n s.t. the axiom $\exists x \operatorname{Nmb}_{n}(x)$ appear in p. Next we show that $\left(V_{n_{p}+1}, \in, \overline{\mathrm{~V}}\right)$ is a model of all the axioms that appear in p and hence p couldn't exist.

Idea of proof of non-Gödelian property for $\mathrm{H}_{<\omega}$

Intuition of why $\mathrm{H} \vdash \operatorname{Con}\left(\mathrm{H}_{<\omega}\right)$:
The number $n_{p} \leq\lfloor p / 2\rfloor$ (moreover $\left.n_{p} \leq\left\lfloor\log _{2}(p)\right\rfloor\right)$. Hence for large enough p, from mere presence of a proof p we could conclude that there is model $\left(V_{n_{p}+1}, \in, \bar{V}\right)$ with a given iteration of powerset on top of it. It is enough to formalize the argument that there p isn't a proof of inconsistency.

Conservation result between EA and $\mathrm{H}_{>\omega}$

EA is Kalmar elementary functions arithmetic. It is the variant of $1 \Delta_{0}$ in the language with binary exponentiation function $\exp (x)$.
Lemma
Let $S(x)$ be superexponential cut in EA, e.g.

$$
S(x) \stackrel{\text { def }}{\Longleftrightarrow} " \underbrace{2 \cdots \omega^{2}}_{n \text { times }} \text { is defined. }
$$

Let Nat^{-n} be the class in H that consists of all x s.t. $S^{n}(x)$ is defined. For each predicate-only Π_{1} sentence φ of the form $\forall \vec{x} \psi(\vec{x})$, where ψ is Δ_{0} :
$\mathrm{EA} \vdash \varphi^{S} \Longleftrightarrow \mathrm{H} \vdash \forall \vec{x}\left(\vec{x} \in \mathrm{Nat}^{-n} \rightarrow \psi(\vec{x})\right)$, for some n.

Thank you!

