On limits of applicability of Gödel's second incompleteness theorem

F.N. Pakhomov Steklov Mathematical Institute, Moscow pakhf@mi-ras.ru

> PDMI Logic Seminar, March 06, 2019

> > (日)

Peano arithmetic

Robinson's arithmetic Q:

1.
$$S(x) \neq 0$$
;
2. $S(x) = S(y) \rightarrow x = y$;
3. $x \leq 0 \leftrightarrow x = 0$;
4. $x \leq S(y) \leftrightarrow x \leq y \lor x = S(y)$;
5. $x + 0 = x$;
6. $x + S(y) = S(x + y)$;
7. $x0 = 0$;
8. $x(Sy) = xy + x$.

PA = Q + the following scheme:

$$\varphi(0) \land \forall x \ (\varphi(x) \to \varphi(Sx)) \to \forall x \varphi(x).$$

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへぐ

First incompleteness theorem

Theorem (Gödel'1931)

Suppose c.e. theory T contains PA and is arithmetically sound (e.g. it doesn't prove false sentences of first-order arithmetic). Then there is a sentence φ such that $T \nvDash \varphi$ and $T \nvDash \neg \varphi$.

Note: Actually Gödel worked over much stronger formal theory P that was a variant of Principia Mathematica system. It contained higher types, but it wasn't important for Gödel's argument. Also Gödel used the notion ω -consistency instead of soundedness.

Theorem (Rosser'36; Tarski, Mostowski, Robinson'53) Suppose $T \supseteq Q$ and T is consistent. Then there is a sentence φ such that $T \nvDash \varphi$ and $T \nvDash \neg \varphi$.

Formalization of provability

We encode formulas by numbers:

string in finite alphabet $\varphi \mapsto$ binary string α encoding $\varphi \mapsto$ number *n* which binary expansion is 1α .

For a formula φ , the expression $\lceil \varphi \rceil$ is the term $S^n(0)$, where *n* is the number corresponding to φ .

Recall that Hilbert-style proof is a list of formulas, where each formula is either an axiom or is a result of application of an inference rule to some preceding formulas.

For a given c.e. theory T we have predicate $Prf_T(x, y)$:

"number x encodes some proof in the theory T and the last formula in it is y."

 $\Pr_{\mathcal{T}}(x)$ is the formula $\exists y \Pr_{\mathcal{T}}(y, x)$.

Second incompleteness theorem

The consistency assertion Con(T) is $\neg Prv_T(\ulcorner 0 = S0\urcorner)$.

Theorem (Gödel'31)

Suppose c.e. theory $T \supseteq PA$ and T is consistent. Then $T \nvDash Con(T)$.

Note: In this case Göodel also considered extensions of system P. Instead of c.e. extensions he considered extensions by primitive recursive sets of axioms.

(日)

Hilbert-Bernays-Löb derivability conditions

Abbreviations:

- $\Box_T \varphi$ is an abbreviation for $\operatorname{Prv}_T(\ulcorner \varphi \urcorner)$;
- $\diamond_T \varphi$ is an abbreviation for $\neg \operatorname{Prv}_T(\ulcorner \neg \varphi \urcorner)$;
- \perp is an abbreviation for 0 = S(0);
- \top is an abbreviation for 0 = 0;

Note that Con(T) is $\diamond \top$.

Hilbert-Bernays-Löb derivability conditions:

```
\begin{aligned} \mathsf{HBL-1} \ \ T \vdash \varphi \ \ \Rightarrow \ \ T \vdash \Box_T \varphi; \\ \mathsf{HBL-2} \ \ T \vdash \Box_T (\varphi \to \psi) \to (\Box_T \varphi \to \Box_T \psi); \\ \mathsf{HBL-3} \ \ T \vdash \Box_T \varphi \to \Box_T \Box_T \varphi. \end{aligned}
```

Theorem (Löb'55)

Suppose c.e. theory $T \supseteq Q$, T is consistent and the predicate Prv_T satisfies HBL conditions. Then $T \nvDash Con(T)$.

Fixed-point lemma

Lemma (Gödel'31)

For any formula $\varphi(x)$ there is a sentence ψ such that

 $\mathsf{Q} \vdash \psi \leftrightarrow \varphi(\ulcorner \psi \urcorner).$

Proof:

subst_x:
$$\langle \ulcorner \varphi(x) \urcorner, \ulcorner \psi \urcorner \rangle \longmapsto \ulcorner \varphi(\ulcorner \psi \urcorner) \urcorner$$
.
For all φ, ψ : Q \vdash subst_x($\ulcorner \varphi(x) \urcorner, \ulcorner \psi \urcorner) = \ulcorner \varphi(\ulcorner \psi \urcorner) \urcorner$.
Let $\chi(x)$ be φ (subst_x(x, x)). We put ψ to be $\chi(\ulcorner \chi(x) \urcorner)$.
Observe that

$$Q \vdash \psi \leftrightarrow \chi(\lceil \chi(x) \rceil) \leftrightarrow \varphi(\operatorname{subst}_{x}(\lceil \chi(x) \rceil, \lceil \chi(x) \rceil)) \leftrightarrow \varphi(\lceil \chi(\lceil \chi(x) \rceil) \rceil) \leftrightarrow \varphi(\lceil \psi \rceil).$$

(日)

Proof of second incompleteness theorem

Let ψ be such that $\mathbf{Q} \vdash \psi \leftrightarrow \neg \Box_{\mathcal{T}} \psi$.

We reason in T:

1.
$$\bot \to \varphi$$
;

2.
$$\Box_T(\bot \rightarrow \varphi)$$
 (HBL-1);

3. $\Box_T \bot \rightarrow \Box_T \varphi$) (HBL-2);

4.
$$\Box_T \varphi \rightarrow \Box_T \Box_T \varphi$$
 (HBL-3);

5. $\Box_T \varphi \rightarrow \Box_T \neg \Box_T \varphi$ (fixed-point property of φ);

6.
$$\Box_T \varphi \rightarrow \Box_T \bot$$
 (4., 5., and HBL-1+HBL-2);

- 7. $\Box_T \varphi \leftrightarrow \Box_T \bot;$
- 8. $\neg \Box_T \varphi \leftrightarrow \neg \Box_T \bot;$
- 9. $\varphi \leftrightarrow \diamond_T \top$.

10. $\diamond_T \top \leftrightarrow \neg \Box_T \diamond_T \top$.

If $T \vdash \diamond_T \top$ then $T \vdash \neg \Box_T \diamond_T \top$ (by 10.) and $T \vdash \Box_T \diamond_T \top$ (by HBL-1), hence T is inconsistent.

Proving HBL conditions

 Δ_0 formulas are formulas built of propositional connectives and bounded quantifiers $\forall x \leq t$ and $\exists x \leq t$ (here $x \notin FV(t)$). Σ_1 formulas are $\exists \vec{x} \varphi$, where φ is Δ_0 .

Note that $\Box_T \varphi$ is a Σ_1 sentence. HBL-1: $T \vdash \varphi \Rightarrow T \vdash \Box_T \varphi$.

Lemma

If φ is a true Σ_1 sentence then $Q \vdash \varphi$.

HBL-2: $T \vdash \Box_T(\varphi \rightarrow \psi) \rightarrow (\Box_T \varphi \rightarrow \Box_T \psi)$. To prove this T should be able to concatenate proofs of $\varphi \rightarrow \psi$ and φ and add formula ψ at the end.

HBL-3: $T \vdash \Box_T \varphi \rightarrow \Box_T \Box_T \varphi$.

This requires formalization of HBL-1 in T. To prove the lemma inside T we need to transform a proof p of φ into a proof q of the fact that p is a proof of φ . Note that |q| is polynomial in |p|.

Theory $I\Delta_0+\Omega_1$

 $\mathsf{I}\Delta_0 = \mathsf{Q} + \ \text{the following scheme:}$

 $\varphi(0) \land \forall x \ (\varphi(x) \to \varphi(Sx)) \to \forall x \varphi(x), \text{ where } \varphi \text{ is } \Delta_0.$

The length $|x| = \lceil \log_2(x) \rceil = \min\{y \mid \exp(y) \ge x\}$. Smash function: $x \# y = 2^{|x||y|}$. Axiom Ω_1 is $\forall x, y \exists z \ (x \# y = z)$.

Proposition

If $T \supseteq I\Delta_0 + \Omega_1$ is NP-axiomatizable theory. Then HBL conditions hold for T with the natural provability predicate for it.

Corollary

If $T \supseteq I\Delta_0 + \Omega_1$ is NP-axiomatizable consistent theory. Then $T \nvDash Con(T)$.

Pudlak's version of second incompleteness theorem Theorem (Pudlak'85)

If $T \supseteq Q$ is c.e. consistent theory. Then $T \nvDash Con(T)$. Idea of proof (part 1):

A T-cut J(x) is a formula such that

$$Tdash J(0)\wedge orall x\ (J(x) o (orall y\leq S(x))J(y)).$$

A *T*-cut J(x) is called closed under the function $f(x_1, \ldots, x_k)$ if

 $T \vdash \forall x_1,\ldots,x_k \ (J(x_1) \land \ldots \land J(x_k) \to J(f(x_1,\ldots,x_k)).$

For a fornmula φ we denote by φ^J the result of replacement of each quantifier $\forall x \varphi$ with the quantifier $\forall x (J(x) \rightarrow \varphi)$ and each quantifier $\exists x \varphi$ with the quantifier $\exists x (J(x) \land \varphi)$. For *T*-cuts J(x) that are closed under + and \cdot we have absoluteness for Δ_0 formulas:

 $T \vdash \forall \vec{x}(\varphi(\vec{x}) \leftrightarrow (\varphi(\vec{x}))^J), \text{ for } \Delta_0 \text{ formulas } \varphi.$

Pudlak's version of second incompleteness theorem

Theorem

If $T \supseteq Q$ is c.e. consistent theory. Then $T \nvDash Con(T)$.

Idea of proof (part 2):

Lemma

In Q there is a cut I(x) that is closed under $+, \cdot, and \#$ and

$$\mathsf{Q} \vdash \varphi'$$
, for any axiom φ of $\mathsf{I}\Delta_0 + \Omega_1$.

Assume for a contradiction that $T \vdash Con(T)$. By Δ_0 absoluteness, $T \vdash (Con(T))^I$. Let U be theory with NP axiomatization

$$\{\underbrace{\varphi \land \ldots \land \varphi}_{|p| \text{ times}} \mid p : T \vdash \varphi'\}.$$

It is easy to see that $|\Delta_0 + \Omega_1 \vdash \operatorname{Con}(T) \to \operatorname{Con}(U)$. Thus $U \vdash \operatorname{Con}(U)$, since $U \supseteq |\Delta_0 + \Omega_1$ we get to a contradiction.

Weak set theory H.

Let us consider theory *H* in the language of set theory with additional unary function \overline{V} :

1.
$$\forall z \ (z \in x \leftrightarrow z \in y) \rightarrow x = y$$
 (Extensionality);
2. $\exists y \forall z \ (z \in y \leftrightarrow z \in x \land \varphi(z))$ (Separation);
3. $y \in \overline{V}(x) \leftrightarrow \exists z \in x \ (y \subseteq \overline{V}(z)).$

Note that the last axiom essentially states

$$\overline{\mathsf{V}}(x) = \bigcup_{z \in x} \mathcal{P}(\overline{\mathsf{V}}(z)).$$

In ZFC cummulative hierarchy V_{α} , for $\alpha \in On$:

It is easy to see that

$$\overline{\mathsf{V}} \colon x \longmapsto V_{lpha}$$
, where $lpha$ is least such that $x \subseteq V_{lpha}$.

It is easy to prove that the models of second-order version of H up to isomorphism are $(V_{\alpha}, \in, \overline{V})$.

Embedding of arithmetic in H

We make some standard definitions in H:

1.
$$x \in \text{Trans} \stackrel{\text{def}}{\iff} \forall y \in x (y \subseteq x);$$

2. $x \in \text{On} \stackrel{\text{def}}{\iff} x \in \text{Trans} \land \forall y \in x (y \in \text{Trans});$
3. $x \leq y \stackrel{\text{def}}{\iff} x \in \text{On} \land y \in \text{On} \land (x \in y \lor x = y);$
4. $\alpha = S(\beta) \stackrel{\text{def}}{\iff} \alpha \in \text{On} \land \beta \in \text{On} \land (\forall \gamma \in \text{On})(\gamma \in \beta \leftrightarrow \gamma \in \alpha \lor \gamma = \alpha);$

5. $\alpha \in \mathsf{Nat} \iff \alpha \in \mathsf{On} \land (\forall \beta \leq \alpha)(\beta = \emptyset \lor \exists \gamma \ (\beta = S(\gamma))).$

Note that however we couldn't prove totality of successor function in $\ensuremath{\mathsf{H}}.$

We define partial functions $+\colon On\times On\to On$ and $\times\colon On\times On\to On$ such that

•
$$\alpha + \beta = \bigcup \{ S(\alpha + \gamma) \mid \gamma < \beta \};$$

$$\bullet \ \alpha\beta = \bigcup \{\alpha\gamma + \alpha \mid \gamma < \beta\}.$$

In the equalities above the left part should be defined whenever the right part is defined.

H and $H_{<\omega}$ are non-Gödelian

Theory $H_{<\omega}$ is an extension of H by the infinite series of axioms $\exists x \operatorname{Nmb}_n(x)$ stating that all individual natural numbers *n* exist

$$\mathsf{Nmb}_0(x) \iff (\forall y \in x)y \neq y,$$

 $\mathsf{Nmb}_{n+1}(x) \iff \exists y \; (\mathsf{Nmb}_n(y) \land \forall z \; (z \in x \leftrightarrow z \in y \lor z = y).$

Note that the theory $H_{<\omega}$ could prove existence of all the individual hereditary finite sets.

Since our interpretation of arithmetical functions isn't total, we naturally switch to the predicate only arithmetical signature:

$$x = y$$
, $x \le y$, $x = S(y)$, $x = y + z$, $x = yz$.

We could naturally express $Prf_{H_{<\omega}}(x, y)$ by a predicate-only Σ_1 formula. And $Con(H_{<\omega})$ by a Π_1 predicate-only formula.

Theorem

Theory H proves $Con(H_{<\omega})$.

Idea of proof of non-Gödelian property for $H_{<\omega}$

Argument outside of specific formal theory:

To prove consistency of $H_{<\omega}$ one could assume for a contradiction that there is a $H_{<\omega}$ proof p of $\exists x \ x \neq x$. We consider number n_p that is the maximum of all n s.t. the axiom $\exists x \ Nmb_n(x)$ appear in p. Next we show that $(V_{n_p+1}, \in, \overline{V})$ is a model of all the axioms that appear in p and hence p couldn't exist.

Idea of proof of non-Gödelian property for $H_{<\omega}$

Intuition of why $H \vdash Con(H_{<\omega})$:

The number $n_p \leq \lfloor p/2 \rfloor$ (moreover $n_p \leq \lfloor \log_2(p) \rfloor$). Hence for large enough p, from mere presence of a proof p we could conclude that there is model $(V_{n_p+1}, \in, \overline{V})$ with a given iteration of powerset on top of it. It is enough to formalize the argument that there p isn't a proof of inconsistency. Conservation result between EA and $H_{>\omega}$

EA is Kalmar elementary functions arithmetic. It is the variant of $I\Delta_0$ in the language with binary exponentiation function exp(x).

Lemma

Let S(x) be superexponential cut in EA, e.g.

Let Nat⁻ⁿ be the class in H that consists of all x s.t. $S^n(x)$ is defined. For each predicate-only Π_1 sentence φ of the form $\forall \vec{x} \ \psi(\vec{x})$, where ψ is Δ_0 :

$$\mathsf{EA} \vdash \varphi^{\mathsf{S}} \iff \mathsf{H} \vdash \forall \vec{x} (\vec{x} \in \mathsf{Nat}^{-n} \to \psi(\vec{x})), \text{ for some } n.$$

Thank you!

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへぐ