О полноте трансфинитных итераций схем рефлексии

Пахомов Ф.Н.
Институт Математики Академии Наук Чешской Республики,
Прага
Математический Институт им. В.А. Стеклова Российской
Академии наук
рakhfn@gmail.com
Совместная работа с М. Ратьеном, Д. Россегером

Петербургского логического семинар, 12 Мая. 2020

Формальная арифметика РА

Сигнатура: $0, 1, +, \times, 2^{\times}, =, \leq$ Аксиомы:

- ► Набор базовых свойств $0, 1, +, \times, 2^{\cdot}, \le$
- Схема индукции:

$$\varphi(0) \land \forall x \ (\varphi(x) \to \varphi(x+1)) \to \forall x \ \varphi(x)$$

Класс Δ_0 , состоит из формул, где все кванторы имеют вид $\forall x \leq t$ или $\exists x \leq t$ с $x \notin FV(t)$.

Класс Π_n состоит из всех формул вида $\forall \vec{x_1} \exists \vec{x_2} \dots Q \vec{x_n} \varphi$, где $\varphi \in \Delta_0$.

Класс Σ_n состоит из всех формул вида $\exists \vec{x_1} \forall \vec{x_2} \dots Q \vec{x_n} \varphi$, где $\varphi \in \Delta_0$.

Формализованная доказуемость

Фиксирует естественную гёделеву нумерацию арифметических формул.

Например, формулу φ можно кодировать строкой в двоичном алфавите $a_0 \dots a_{n-1}$, которую в свою очередь можно кодировать числом $2^n + \sum_{i < n} 2^i a_i$.

Можно выписать арифметическую формулу $Prv_{PA}(x)$, которая является формализацией в PA следующего утверждения:

"x это гёделев номер арифметической формулы φ и существует доказательство φ из аксиом PA"

Далее $\Pr_{\mathsf{PA}}(\varphi)$ означает $\Pr_{\mathsf{PA}}(\underbrace{1+\ldots+1}_{n \; \mathsf{pas}})$, где n это гёделев номер φ .

Аналогично мы рассматриваем формулы $\Pr_T(x)$ для других теорий T с перечислимой аксиоматизацией.

Вторая теорема Гёделя о неполноте

Формула Con(T) — это $\neg Prv_T(0=1)$.

Теорема (К. Гёдель, 1931)

Для непротиворечивых перечислимых $T\supseteq \mathsf{PA}$,

 $T \nvdash Con(T)$.

Доказательство.

Лемма (о неподвижной точке)

Для всякой формулы arphi(x) найдется формула ψ такая, что

$$\mathsf{PA} \vdash \psi \leftrightarrow \varphi(\psi).$$

Рассмотрим ψ такую, что PA $\vdash \psi \leftrightarrow \neg \mathsf{Prv}_T(\psi)$. Легко видеть, что непротиворечивая T не докажет ψ . Далее можно показать, что PA $\vdash \psi \leftrightarrow \mathsf{Con}(T)$.

Конечные прогрессии Тьюринга

Положим

$$T_0 = T$$
, $T_{n+1} = T_n + \operatorname{Con}(T_n)$

Если T была корректна, т.е. $\mathbb{N} \models T$, то по 2-ой теореме Гёделя о неполноте

$$T_0 \subsetneq T_1 \subsetneq T_2 \subsetneq \ldots \subsetneq T_n \subsetneq \ldots$$

Прогрессии Тьюринга

Пусть (A, \prec) элементарное $(\Delta_0$ в языке с $2^x)$ вполне упорядочивание (система ординальных обозначений). Естественным образом мы отождествляем элементы A с ординалами $<\Lambda={\rm ot}(A,\prec)$.

Положим

$$T_{\alpha} = T + \{ \mathsf{Con}(T_{\beta}) \mid \beta \prec \alpha \}.$$

Для того, чтобы сделать определение выше формально корректным мы строим как неподвижную точку формулу $\mathsf{Ax}_{\mathcal{T}_\star}(\alpha,\varphi)$, которая выражает тот факт, что φ является аксиомой \mathcal{T}_α .

Теорема (А. Тьюринг, 1938)

Для всякого Π_1 предложения φ найдутся система ординальных обозначений (A, \prec) и ординал $\alpha \in A$ такие, что $\mathsf{PA}_\alpha \vdash \varphi$.

Схемы равномерной рефлексии

$$\mathsf{RFN}(T): \quad \forall \vec{x} \ (\mathsf{Prv}_T(\varphi(\vec{x})) o \varphi(\vec{x})), \ \mathsf{где} \ \vec{x} = \mathsf{FV}(\varphi)$$

Легко видеть, что $PA + RFN(T) \vdash Con(T)$.

Положим

$$T_{\alpha}^{\omega} = T + \{ \mathsf{RFN}(T_{\beta}^{\omega}) \mid \beta \prec \alpha \}.$$

Теорема (С. Феферман, 1962)

Для любого истинного арифметического предложения φ найдутся система ординальных обозначений (A,\prec) и ординал $\alpha\in A$ такие, что $\mathsf{PA}^\omega_\alpha\vdash\varphi.$

Схема трансфинитной индукции

Схема $TI(A, \prec)$:

$$\forall x \in A(\forall y \prec x\varphi(y) \to \varphi(x)) \to \forall x \in A \varphi(x).$$

Лемма

$$\mathsf{PA}^{\omega}_{\alpha+1} \vdash \mathsf{TI}(A \upharpoonright_{\prec \alpha}, \prec)$$

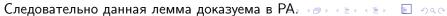
Доказательство.

2-я теорема о неполноте для теории $\mathsf{PA} + \neg \varphi$ дает

Теорема (М.Х. Лёб, 1955)

Для предложений φ , если PA \vdash Prv_{PA} $(\varphi) \to \varphi$, то PA $\vdash \varphi$. Легко убедиться, что

$$\mathsf{PA} \vdash \mathsf{Prv}_{\mathsf{PA}} \Big(\forall \alpha \in \mathcal{A} \left(\mathsf{PA}^{\omega}_{\alpha+1} \vdash \mathsf{TI} \big(\mathcal{A} \upharpoonright_{\prec \alpha}, \prec \big) \right) \Big) \rightarrow \\ \forall \alpha \in \mathcal{A} \left(\mathsf{PA}^{\omega}_{\alpha+1} \vdash \mathsf{TI} \big(\mathcal{A} \upharpoonright_{\prec \alpha}, \prec \big) \right)$$



Теория АСА0

 ACA_0 — это двусортная теория расширяющая РА. Второй сорт переменных X_1, X_2, \ldots понимается как сорт множеств натуральных чисел Сигнатура ACA_0 содержит дополнительный предикатный символ $x \in X$

Аксиомы АСА₀:

- ► PA
- ▶ $\exists X \forall x \ (\varphi(x) \leftrightarrow x \in X)$, где φ пробегает формулы без второпорядковых кванторов и $X \notin FV(\varphi)$

Предложение

Первопорядковая часть АСА0 это в точности РА.

Предложение

Пусть (A,\prec) — это элементарный линейный порядок. Первопорядковая часть $\mathsf{ACA}_0 + \mathsf{WO}(A,\prec)$ это в точности $\mathsf{PA} + \mathsf{TI}(A,\prec)$.

Π^1_1 -полнота множества ординальных обозначений

Класс Π^1_1 состоит из всех формул вида $\forall \vec{X} \ \varphi$, где φ не содержит второпорядковых кванторов.

Предложение

Для всякого Π^1_1 -предложения φ найдется элементарный линейный порядок (A,\prec) такой, что

$$ACA_0 \vdash \varphi \leftrightarrow WO(A, \prec).$$

Для целей доказательства теоремы Фефермана мы ограничимся только случаем, когда φ первопорядковая формула.

ω -логика

Рассмотрим формулы составлены с помощью связок \land, \lor и кванторов \forall, \exists из литералов, т.е. атомарных формул или их отрицани.

Секвенции Γ, Δ — это конечные последовательности арифметических предложений указанного выше вида.

$$\frac{\Gamma, \psi, \varphi, \Delta}{\Gamma, \varphi, \psi, \Delta} \quad \frac{\Gamma, \varphi, \varphi}{\Gamma, \varphi} \quad \frac{\Gamma}{\Gamma, \varphi} \quad \frac{\Gamma}{\Gamma}$$

$$\frac{\Gamma, t = v}{\Gamma, t = v}, \text{ где } \varphi \text{ истинный литерал (Ax);}$$

$$\frac{\Gamma, \varphi}{\Gamma, \varphi \wedge \psi} \quad (\land \text{-Int}); \quad \frac{\Gamma, \varphi, \psi}{\Gamma, \varphi \vee \psi} \quad (\lor \text{-Int});$$

$$\frac{\Gamma, \varphi(t)}{\Gamma, \exists x \; \varphi(x)}, \text{ где } t \text{ замкнутый терм (\exists-Int);}$$

$$\frac{\Gamma, \varphi(\underline{n}), \quad \text{для всевозожных } n \in \mathbb{N}}{\Gamma, \forall x \; \varphi(x)} \quad (\forall^{\omega} \text{-Int}).$$

Канонические преддоказательства

Преддоказательство — это дерево вывода, которое локально подчиняется правилам логики, но не обязано быть фундированным.

Каноническое преддоказательства C_{Γ} :

$$ightharpoonup C_{\Gamma, \varphi} \colon rac{\Gamma, \varphi}{\Gamma, \varphi}$$
, если φ истинный литерал

$$ightharpoonup C_{\Gamma,\varphi}$$
: $\frac{C_{\Gamma}}{\Gamma,\varphi}$, если φ ложный литерал

$$\begin{array}{c} \blacktriangleright \quad C_{\Gamma,\varphi \wedge \psi} : \frac{C_{\Gamma,\varphi}}{\Gamma,\varphi} \quad \frac{C_{\Gamma,\psi}}{\Gamma,\psi}, \quad C_{\Gamma,\varphi \vee \psi} : \frac{C_{\Gamma,\varphi,\psi}}{\Gamma,\varphi \vee \psi} \quad \mathbf{u} \\ \\ C_{\Gamma,\forall x \; \varphi(x)} : \frac{C_{\Gamma,\varphi(n)}}{\Gamma,\forall x \; \varphi(x)}, \quad n \in \mathbb{N} \\ \hline C_{\Gamma,\forall x \; \varphi(x)} : \frac{C_{\Gamma,\varphi(n)}}{\Gamma,\forall x \; \varphi(x)} \end{array}$$

$$C_{\Gamma,\forall x \ \varphi(x)} : \frac{\frac{C_{\Gamma,\varphi(n)}}{\Gamma,\varphi(n)}, \ n \in \mathbb{N}}{\Gamma,\forall x \ \varphi(x)}$$

$$ightharpoonup C_{\emptyset}: \frac{C_{\emptyset}}{\emptyset}$$

Канонические преддоказательства

Теорема (К. Шутте)

 $\mathbb{N} \models \Gamma \iff$ дерево C_{Γ} фундировано.

Более того, $ACA_0 \vdash \bigvee \Gamma \leftrightarrow WF(C_{\Gamma})$.

Таким образом, $ACA_0 \vdash \bigvee \Gamma \leftrightarrow WO(KB_\Gamma)$, где KB_Γ — это порядок Клини-Брауэра на C_Γ .

Простое доказательство теоремы Фефермана

Теорема (С. Феферман, 1962)

Для любого истинного арифметического предложения φ найдутся система ординальных обозначений (A,\prec) и ординал $\alpha\in A$ такие, что $\mathsf{PA}^\omega_\alpha\vdash\varphi.$

Доказательство.

Возьмем в качестве (A,\prec) порядок $KB_{\varphi}+1$ и в качестве α его наибольший элемент

Из того, что мы доказали про трансфинитную индукцию и прогрессии Тьюринга-Фефермана следует, что

$$\mathsf{PA}^{\omega}_{\alpha} \vdash \mathsf{TI}(\mathit{KB}_{\varphi}).$$

Таким образом,

$$\mathsf{PA}^{\omega}_{\alpha} \supseteq (\mathsf{ACA}_0 + \mathsf{WO}(\mathsf{KB}_{\varphi})) \cap \mathcal{L}(\mathsf{PA}) = (\mathsf{ACA}_0 + \varphi) \cap \mathcal{L}(\mathsf{PA}) = \mathsf{PA} + \varphi.$$



Оптимальное значение α

Отметим, что конструкция выше дает неоптимальные значения lpha. В частности они могут быть болше, чем $\omega^\omega.$

Теорема (П., М. Ратьен, Д. Россегер)

Для всякого истинного $\varphi \in \Pi_{2n+1}$ можно найти (A, \prec) и α соответствующий $\omega^n + 1$ такие, что $\mathsf{PA}^\omega_\alpha \vdash \varphi$. Ординал $\omega^n + 1$ — это минимально возможный ординал для которого такое утверждение истинно.

Спасибо!