Random noise increases Kolmogorov complexity

alexander.shen@lirmm.fr, wWw.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter Gacs

LIRMM CNRS \& University of Montpellier, supported by RaCAF

Decreasing complexity by changing bits

- string $x \in \mathbb{B}^{n}$ has some complexity $\mathrm{C}(x)<n$
- $\mathrm{C}(x)=\alpha n$
- change some small fraction of bits in x
- what happens with $\mathrm{C}(x)$?
- may increase or decrease: how much?
- decrease: $\min \{\mathrm{C}(y): d(x, y) \leqslant \tau n\}$ as a function of τ $d(x, y)$: the Hamming distance (the number of changed bits)
- τn-balls: what is the complexity of their simplest elements?
- depends not only on $\mathrm{C}(x)$, but on the properties of x
- algorithmic statistics for restricted families of models (Vereshchagin, Vitanyi) tells us what functions are possible
- [random bits]000 ... 000
- random codeword: no decrease

Increasing complexity by changing bits

- $x \in \mathbb{B}^{n}, \mathrm{C}(x)=\alpha n$
- changing τ-fraction of bits: $d(x, y) \leqslant \tau n$
- is it always possible to increase complexity?
- $\tau \mapsto \max \{\mathrm{C}(y): d(x, y) \leqslant \tau n\}$
- Buhrman, Fortnow, Newman, Vereshchagin: $\Omega(n)$ increase is always possible
- the amount of increase depends on x
- open question: what functions can appear here?
- maximal possible increase for random codewords
- BFNV: minimal possible increase for Bernoulli random strings
- combinatorial tool: Harper's theorem (Hamming balls have minimal neighborhoods)

Random change: what happens with complexity?

- $x \in \mathbb{B}^{n}, \mathrm{C}(x)=\alpha n$
- changing a random τ-fraction of bits
- better: each bit changed with probability τ independently
- $N_{\tau}(x)$: noise of intensity τ added to x
$N_{\tau}(x)=x \oplus B_{\tau}$ where B_{τ} is a Bernoulli distribution with parameter τ
- "random noise": probabilistic, not algorithmic randomness
- $\mathrm{C}\left(N_{\tau}(x)\right)$: a random variable
- concentration inequalities: for every x this random variable has some typical value
- some increase in complexity guaranteed with high probability
- exact lower bound for this increase

Complexity increases with high probability

Theorem

Let $\alpha \in(0,1)$ and $\tau \in(0,1 / 2)$. There exists some $\beta>\alpha$ with the following property:

$$
\mathrm{C}(x) \geqslant \alpha n \Rightarrow \operatorname{Pr}\left[\mathrm{C}\left(N_{\tau}(x)\right) \geqslant \beta n\right] \geqslant 1-\frac{1}{n}
$$

for sufficiently large n and for every x of length n
regime: α, β and τ are fixed, $n \rightarrow \infty$
β is some function of α and τ
different combinatorial arguments possible
(Fourier analysis, hypercontractivity inequalities)
but they do not give an optimal bound for β
$1 / n$ can be replaced by $1 / n^{d}$ for arbitrary fixed d

Optimal lower bound for the complexity increase

- $N_{\tau}\left(0^{n}\right)=B_{\tau}$
- \approx complexity of random string of length n with τn ones
- \log (number of strings of length n with τn ones)
- $\log \binom{n}{\tau n}=2^{H(\tau) n}$, where

$$
H(p)=p \log \frac{1}{p}+(1-p) \log \frac{1}{1-p}
$$

is the Shannon entropy of for the $(p, 1-p)$ distribution

- if B_{p} is a Bernoulli random string with probability p, then $N_{\tau}\left(B_{p}\right)=B_{N(p, \tau)}$
$N(p, \tau)=p(1-\tau)+(1-p) \tau$
- complexity increase $H(p) \mapsto H(N(p, \tau))$ for Bernoulli random strings

Complexity increases with high probability: optimal bound

Theorem

Let $p \in(0,1 / 2)$ and $\tau \in(0,1 / 2)$.
Let $\alpha=H(p)$ and $\beta=H(N(\tau, p))$. Then

$$
\mathrm{C}(x) \geqslant \alpha n \Rightarrow \operatorname{Pr}\left[\mathrm{C}\left(N_{\tau}(x)\right) \geqslant \beta n-o(n)\right] \geqslant 1-\frac{1}{n}
$$

for $n \rightarrow \infty$ and for every x of length n. This β is the best possible bound.

Remark: for some strings (e.g., random codewords) we have better bounds, but the lower bound is optimal: one cannot improve β for all strings

- Kolmogorov (1965): combinatorial, algorithmic, probabilistic
- combinatorial: an element of a set of size N has $\log N$ bits of information
- algorithmic: $\mathrm{C}(x)$, the minimal length of a program that produces x
- probabilistic: the Shannon entropy
- measures applied to different things (sets, strings, random variables) but they are deeply connected and this is our main tool
- Buhrman et al. result uses the connection between combinatorial and algorithmic approaches
- we need all three
- (complexity version) for every string length n at complexity $\geqslant \alpha n$ one can change at most τn bits to get a string of complexity $\geqslant \beta n$
- (combinatorial version) for every set of size at most $2^{\beta n}$ its τn-interior is of size at most $2^{\alpha n}$ (reformulation) for every set of size at least $2^{\alpha n}$ its τn-neighborhood is of size at least $2^{\beta n}$.
- d-neigborhood of a set X : all strings at distance at most d from X (union of d-balls)
- d-interior of a set X : all strings y that are in X together with the entire d-ball centered at y
- Harper's theorem: minimal neighborhoods / maximal interiors happen for Hamming balls

combinatorics \Rightarrow complexity

- assume the combinatorial version: every set of size $\leqslant 2^{\beta n}$ has interior of size at most $2^{\alpha n}$
- apply it to the set X of n-bit strings of complexity less than βn
- $\# X \leqslant 2^{\beta n}$
- its τn-interior has size at most $2^{\alpha n}$
- this interior is (computably) enumerable given $n, \beta n, \tau n$
- its elements have complexity less than $\alpha n+O(\log n)$ ($\log n$ terms are ignored)
- so a string of complexity $\geqslant \alpha n+O(\log n)$ is not in this interior...
- i.e., it can be changed in at most τn places to get outside X, i.e., to have complexity $\geqslant \beta n$

complexity \Rightarrow combinatorics

- assume the combinatorial statement: each string of complexity $\geqslant \alpha n$ can be changed in $\leqslant \tau n$ places to get a string of complexity $\geqslant \beta n$
- assume that combinatorial statement is false: there is a set X of size $2^{\beta n}$ whose τn-interior is (much) bigger that $2^{\alpha n}$
- let X be the first set with this property
- then all elements of X have complexity at most βn (ignore $O(\log n)$ terms $)$
- complexity statement implies that all the elements in the τn interior have complexity at most αn
- but there are too many of them: contradiction

Random noise case

- (Shannon information) for a distribution P on n-bit strings: if $H(P) \geqslant \alpha n$, then $H\left(N_{\tau}(P)\right) \geqslant \beta n$.
- (complexity) if $\mathrm{C}(x) \geqslant \alpha n$, then $\mathrm{C}\left(N_{\tau}(x)\right) \geqslant \beta n$ with probability at least $1-\frac{1}{n}$
- (combinatorial) if $\# B \leqslant 2^{\beta n}$, and every element of A get into B with probability at least $\frac{1}{n}$ after τ-noise, then $\# A \leqslant 2^{\alpha n}$.
- (weak combinatorial) if $\# B \leqslant 2^{\beta n}$, and every element of A get into B with probability at least $1-\frac{1}{n}$ after τ-noise, then $\# A \leqslant 2^{\alpha n}$.

All equivalent with precision $O(n)$ for complexity (log-cardinality)

Proof of equivalence

- complexity \Leftrightarrow combinatorial: as before
- complexity \Rightarrow Shannon entropy: random i.i.d. copies have complexity close to entropy with high probability
- entropy \Rightarrow weak combinatorial: coding argument (apply the entropy inequality to the uniform distribution on A)
- weak combinatorial \Rightarrow combinatorial: concentration inequality (McDiarmid inequality, a version of Azuma-Hoeffding inequality)

How to prove the entropy inequality

- "one-letter case" P is a distribution on $\{0,1\}(n=1)$
- $P=B_{p}$ for some p
- $H(P)=H(p)$
- $H\left(N_{\tau}(P)\right)=H(N(p, \tau))$
- exactly the curve mentioned in the lower bound
- "tensorization" + convexity argument
- P on n-bit strings
- $\left(H(P), H\left(N_{\tau}(P)\right)\right.$: which pairs are possible?
- a set S_{n} in $[0, n] \times[0, n]$

Lemma

$S_{n+m} \subset S_{n}+S_{m}$
Minkowski sum
correction: above the convex closure of $S_{n}+S_{m}$ lemma's proof: inequalities for Shannon entropies

It remains to check that the curves are convex (computation with power series)

Infinite consequences

- effective Hausdorff dimension of a binary sequence:

$$
\operatorname{dim}(X)=\liminf _{n} \frac{\mathrm{C}\left(X_{1} X_{2} \ldots X_{n}\right)}{n}
$$

- the effective dimension increases if random noise is applied to every bit (independently)
- if $\operatorname{dim}(X) \geqslant \alpha=H(p)$, then $\operatorname{dim}\left(N_{p}(X)\right) \geqslant H(N(p, \tau))$ with probability 1
- the same lower bound curve for the increase
- one may use different noise levels for different positions
- every sequence of dimension α can be changed in a negligible fraction of positions (Besicovitch distance 0) to a strongly α-random sequence. [weakly random: Greenberg et al.]

Thanks!

